Properties

Label 425.4.b.e.324.1
Level $425$
Weight $4$
Character 425.324
Analytic conductor $25.076$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.4.b.e.324.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.73205i q^{2} +2.73205i q^{3} -5.92820 q^{4} +10.1962 q^{6} +16.5885i q^{7} -7.73205i q^{8} +19.5359 q^{9} -41.5167 q^{11} -16.1962i q^{12} -8.49742i q^{13} +61.9090 q^{14} -76.2820 q^{16} -17.0000i q^{17} -72.9090i q^{18} +100.392 q^{19} -45.3205 q^{21} +154.942i q^{22} +195.937i q^{23} +21.1244 q^{24} -31.7128 q^{26} +127.138i q^{27} -98.3397i q^{28} +187.674 q^{29} +279.219 q^{31} +222.832i q^{32} -113.426i q^{33} -63.4449 q^{34} -115.813 q^{36} -7.59739i q^{37} -374.669i q^{38} +23.2154 q^{39} -73.9512 q^{41} +169.138i q^{42} +331.520i q^{43} +246.119 q^{44} +731.247 q^{46} -187.856i q^{47} -208.406i q^{48} +67.8231 q^{49} +46.4449 q^{51} +50.3744i q^{52} +192.851i q^{53} +474.487 q^{54} +128.263 q^{56} +274.277i q^{57} -700.410i q^{58} +603.685 q^{59} +426.190 q^{61} -1042.06i q^{62} +324.070i q^{63} +221.364 q^{64} -423.310 q^{66} +511.472i q^{67} +100.779i q^{68} -535.310 q^{69} -548.886 q^{71} -151.053i q^{72} -575.177i q^{73} -28.3538 q^{74} -595.146 q^{76} -688.697i q^{77} -86.6410i q^{78} +1235.91 q^{79} +180.121 q^{81} +275.990i q^{82} -536.228i q^{83} +268.669 q^{84} +1237.25 q^{86} +512.736i q^{87} +321.009i q^{88} -1183.18 q^{89} +140.959 q^{91} -1161.56i q^{92} +762.841i q^{93} -701.090 q^{94} -608.788 q^{96} +1261.17i q^{97} -253.119i q^{98} -811.065 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 20 q^{6} + 92 q^{9} - 76 q^{11} + 116 q^{14} - 28 q^{16} + 360 q^{19} - 112 q^{21} + 36 q^{24} - 16 q^{26} + 432 q^{29} + 140 q^{31} - 136 q^{34} + 188 q^{36} + 176 q^{39} + 688 q^{41} + 548 q^{44}+ \cdots - 1436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.73205i − 1.31948i −0.751494 0.659740i \(-0.770667\pi\)
0.751494 0.659740i \(-0.229333\pi\)
\(3\) 2.73205i 0.525783i 0.964825 + 0.262892i \(0.0846762\pi\)
−0.964825 + 0.262892i \(0.915324\pi\)
\(4\) −5.92820 −0.741025
\(5\) 0 0
\(6\) 10.1962 0.693760
\(7\) 16.5885i 0.895693i 0.894111 + 0.447846i \(0.147809\pi\)
−0.894111 + 0.447846i \(0.852191\pi\)
\(8\) − 7.73205i − 0.341712i
\(9\) 19.5359 0.723552
\(10\) 0 0
\(11\) −41.5167 −1.13798 −0.568988 0.822346i \(-0.692665\pi\)
−0.568988 + 0.822346i \(0.692665\pi\)
\(12\) − 16.1962i − 0.389619i
\(13\) − 8.49742i − 0.181289i −0.995883 0.0906447i \(-0.971107\pi\)
0.995883 0.0906447i \(-0.0288927\pi\)
\(14\) 61.9090 1.18185
\(15\) 0 0
\(16\) −76.2820 −1.19191
\(17\) − 17.0000i − 0.242536i
\(18\) − 72.9090i − 0.954712i
\(19\) 100.392 1.21219 0.606094 0.795393i \(-0.292735\pi\)
0.606094 + 0.795393i \(0.292735\pi\)
\(20\) 0 0
\(21\) −45.3205 −0.470940
\(22\) 154.942i 1.50154i
\(23\) 195.937i 1.77634i 0.459519 + 0.888168i \(0.348022\pi\)
−0.459519 + 0.888168i \(0.651978\pi\)
\(24\) 21.1244 0.179666
\(25\) 0 0
\(26\) −31.7128 −0.239207
\(27\) 127.138i 0.906215i
\(28\) − 98.3397i − 0.663731i
\(29\) 187.674 1.20173 0.600866 0.799349i \(-0.294822\pi\)
0.600866 + 0.799349i \(0.294822\pi\)
\(30\) 0 0
\(31\) 279.219 1.61772 0.808859 0.588003i \(-0.200086\pi\)
0.808859 + 0.588003i \(0.200086\pi\)
\(32\) 222.832i 1.23098i
\(33\) − 113.426i − 0.598329i
\(34\) −63.4449 −0.320021
\(35\) 0 0
\(36\) −115.813 −0.536170
\(37\) − 7.59739i − 0.0337568i −0.999858 0.0168784i \(-0.994627\pi\)
0.999858 0.0168784i \(-0.00537282\pi\)
\(38\) − 374.669i − 1.59946i
\(39\) 23.2154 0.0953189
\(40\) 0 0
\(41\) −73.9512 −0.281689 −0.140844 0.990032i \(-0.544982\pi\)
−0.140844 + 0.990032i \(0.544982\pi\)
\(42\) 169.138i 0.621396i
\(43\) 331.520i 1.17573i 0.808959 + 0.587865i \(0.200031\pi\)
−0.808959 + 0.587865i \(0.799969\pi\)
\(44\) 246.119 0.843270
\(45\) 0 0
\(46\) 731.247 2.34384
\(47\) − 187.856i − 0.583014i −0.956569 0.291507i \(-0.905843\pi\)
0.956569 0.291507i \(-0.0941567\pi\)
\(48\) − 208.406i − 0.626685i
\(49\) 67.8231 0.197735
\(50\) 0 0
\(51\) 46.4449 0.127521
\(52\) 50.3744i 0.134340i
\(53\) 192.851i 0.499814i 0.968270 + 0.249907i \(0.0804001\pi\)
−0.968270 + 0.249907i \(0.919600\pi\)
\(54\) 474.487 1.19573
\(55\) 0 0
\(56\) 128.263 0.306069
\(57\) 274.277i 0.637348i
\(58\) − 700.410i − 1.58566i
\(59\) 603.685 1.33209 0.666043 0.745914i \(-0.267987\pi\)
0.666043 + 0.745914i \(0.267987\pi\)
\(60\) 0 0
\(61\) 426.190 0.894557 0.447279 0.894395i \(-0.352393\pi\)
0.447279 + 0.894395i \(0.352393\pi\)
\(62\) − 1042.06i − 2.13454i
\(63\) 324.070i 0.648080i
\(64\) 221.364 0.432352
\(65\) 0 0
\(66\) −423.310 −0.789483
\(67\) 511.472i 0.932630i 0.884619 + 0.466315i \(0.154419\pi\)
−0.884619 + 0.466315i \(0.845581\pi\)
\(68\) 100.779i 0.179725i
\(69\) −535.310 −0.933968
\(70\) 0 0
\(71\) −548.886 −0.917476 −0.458738 0.888572i \(-0.651698\pi\)
−0.458738 + 0.888572i \(0.651698\pi\)
\(72\) − 151.053i − 0.247246i
\(73\) − 575.177i − 0.922183i −0.887353 0.461092i \(-0.847458\pi\)
0.887353 0.461092i \(-0.152542\pi\)
\(74\) −28.3538 −0.0445414
\(75\) 0 0
\(76\) −595.146 −0.898262
\(77\) − 688.697i − 1.01928i
\(78\) − 86.6410i − 0.125771i
\(79\) 1235.91 1.76013 0.880065 0.474853i \(-0.157499\pi\)
0.880065 + 0.474853i \(0.157499\pi\)
\(80\) 0 0
\(81\) 180.121 0.247079
\(82\) 275.990i 0.371682i
\(83\) − 536.228i − 0.709141i −0.935029 0.354570i \(-0.884627\pi\)
0.935029 0.354570i \(-0.115373\pi\)
\(84\) 268.669 0.348979
\(85\) 0 0
\(86\) 1237.25 1.55135
\(87\) 512.736i 0.631851i
\(88\) 321.009i 0.388860i
\(89\) −1183.18 −1.40918 −0.704590 0.709615i \(-0.748869\pi\)
−0.704590 + 0.709615i \(0.748869\pi\)
\(90\) 0 0
\(91\) 140.959 0.162379
\(92\) − 1161.56i − 1.31631i
\(93\) 762.841i 0.850569i
\(94\) −701.090 −0.769275
\(95\) 0 0
\(96\) −608.788 −0.647231
\(97\) 1261.17i 1.32013i 0.751207 + 0.660066i \(0.229472\pi\)
−0.751207 + 0.660066i \(0.770528\pi\)
\(98\) − 253.119i − 0.260907i
\(99\) −811.065 −0.823385
\(100\) 0 0
\(101\) −428.141 −0.421798 −0.210899 0.977508i \(-0.567639\pi\)
−0.210899 + 0.977508i \(0.567639\pi\)
\(102\) − 173.335i − 0.168262i
\(103\) − 619.856i − 0.592973i −0.955037 0.296487i \(-0.904185\pi\)
0.955037 0.296487i \(-0.0958151\pi\)
\(104\) −65.7025 −0.0619487
\(105\) 0 0
\(106\) 719.731 0.659495
\(107\) − 51.4960i − 0.0465263i −0.999729 0.0232631i \(-0.992594\pi\)
0.999729 0.0232631i \(-0.00740555\pi\)
\(108\) − 753.703i − 0.671528i
\(109\) −990.841 −0.870691 −0.435346 0.900263i \(-0.643374\pi\)
−0.435346 + 0.900263i \(0.643374\pi\)
\(110\) 0 0
\(111\) 20.7564 0.0177488
\(112\) − 1265.40i − 1.06758i
\(113\) − 865.413i − 0.720453i −0.932865 0.360226i \(-0.882699\pi\)
0.932865 0.360226i \(-0.117301\pi\)
\(114\) 1023.62 0.840968
\(115\) 0 0
\(116\) −1112.57 −0.890514
\(117\) − 166.005i − 0.131172i
\(118\) − 2252.98i − 1.75766i
\(119\) 282.004 0.217237
\(120\) 0 0
\(121\) 392.633 0.294991
\(122\) − 1590.56i − 1.18035i
\(123\) − 202.038i − 0.148107i
\(124\) −1655.27 −1.19877
\(125\) 0 0
\(126\) 1209.45 0.855128
\(127\) − 2052.21i − 1.43389i −0.697130 0.716945i \(-0.745540\pi\)
0.697130 0.716945i \(-0.254460\pi\)
\(128\) 956.514i 0.660505i
\(129\) −905.731 −0.618179
\(130\) 0 0
\(131\) −77.4603 −0.0516621 −0.0258311 0.999666i \(-0.508223\pi\)
−0.0258311 + 0.999666i \(0.508223\pi\)
\(132\) 672.410i 0.443377i
\(133\) 1665.35i 1.08575i
\(134\) 1908.84 1.23059
\(135\) 0 0
\(136\) −131.445 −0.0828772
\(137\) 1936.63i 1.20772i 0.797091 + 0.603860i \(0.206371\pi\)
−0.797091 + 0.603860i \(0.793629\pi\)
\(138\) 1997.80i 1.23235i
\(139\) 1687.63 1.02980 0.514901 0.857249i \(-0.327828\pi\)
0.514901 + 0.857249i \(0.327828\pi\)
\(140\) 0 0
\(141\) 513.233 0.306539
\(142\) 2048.47i 1.21059i
\(143\) 352.785i 0.206303i
\(144\) −1490.24 −0.862406
\(145\) 0 0
\(146\) −2146.59 −1.21680
\(147\) 185.296i 0.103966i
\(148\) 45.0388i 0.0250147i
\(149\) −488.052 −0.268341 −0.134170 0.990958i \(-0.542837\pi\)
−0.134170 + 0.990958i \(0.542837\pi\)
\(150\) 0 0
\(151\) 1459.95 0.786813 0.393406 0.919365i \(-0.371297\pi\)
0.393406 + 0.919365i \(0.371297\pi\)
\(152\) − 776.238i − 0.414219i
\(153\) − 332.110i − 0.175487i
\(154\) −2570.25 −1.34492
\(155\) 0 0
\(156\) −137.626 −0.0706337
\(157\) 35.7286i 0.0181621i 0.999959 + 0.00908107i \(0.00289063\pi\)
−0.999959 + 0.00908107i \(0.997109\pi\)
\(158\) − 4612.46i − 2.32246i
\(159\) −526.879 −0.262794
\(160\) 0 0
\(161\) −3250.29 −1.59105
\(162\) − 672.219i − 0.326016i
\(163\) 3305.37i 1.58832i 0.607706 + 0.794162i \(0.292090\pi\)
−0.607706 + 0.794162i \(0.707910\pi\)
\(164\) 438.398 0.208739
\(165\) 0 0
\(166\) −2001.23 −0.935696
\(167\) 3228.66i 1.49606i 0.663667 + 0.748028i \(0.268999\pi\)
−0.663667 + 0.748028i \(0.731001\pi\)
\(168\) 350.420i 0.160926i
\(169\) 2124.79 0.967134
\(170\) 0 0
\(171\) 1961.25 0.877081
\(172\) − 1965.32i − 0.871246i
\(173\) 958.357i 0.421171i 0.977575 + 0.210585i \(0.0675370\pi\)
−0.977575 + 0.210585i \(0.932463\pi\)
\(174\) 1913.56 0.833714
\(175\) 0 0
\(176\) 3166.98 1.35636
\(177\) 1649.30i 0.700388i
\(178\) 4415.69i 1.85938i
\(179\) −1705.71 −0.712239 −0.356119 0.934440i \(-0.615900\pi\)
−0.356119 + 0.934440i \(0.615900\pi\)
\(180\) 0 0
\(181\) 600.566 0.246628 0.123314 0.992368i \(-0.460648\pi\)
0.123314 + 0.992368i \(0.460648\pi\)
\(182\) − 526.067i − 0.214256i
\(183\) 1164.37i 0.470343i
\(184\) 1515.00 0.606994
\(185\) 0 0
\(186\) 2846.96 1.12231
\(187\) 705.783i 0.276000i
\(188\) 1113.65i 0.432028i
\(189\) −2109.03 −0.811690
\(190\) 0 0
\(191\) −3994.31 −1.51318 −0.756591 0.653888i \(-0.773137\pi\)
−0.756591 + 0.653888i \(0.773137\pi\)
\(192\) 604.778i 0.227323i
\(193\) 1586.31i 0.591633i 0.955245 + 0.295816i \(0.0955916\pi\)
−0.955245 + 0.295816i \(0.904408\pi\)
\(194\) 4706.77 1.74189
\(195\) 0 0
\(196\) −402.069 −0.146527
\(197\) − 3011.98i − 1.08931i −0.838660 0.544656i \(-0.816660\pi\)
0.838660 0.544656i \(-0.183340\pi\)
\(198\) 3026.94i 1.08644i
\(199\) 2065.77 0.735872 0.367936 0.929851i \(-0.380065\pi\)
0.367936 + 0.929851i \(0.380065\pi\)
\(200\) 0 0
\(201\) −1397.37 −0.490361
\(202\) 1597.84i 0.556554i
\(203\) 3113.23i 1.07638i
\(204\) −275.335 −0.0944965
\(205\) 0 0
\(206\) −2313.34 −0.782416
\(207\) 3827.81i 1.28527i
\(208\) 648.201i 0.216080i
\(209\) −4167.95 −1.37944
\(210\) 0 0
\(211\) −1691.46 −0.551873 −0.275936 0.961176i \(-0.588988\pi\)
−0.275936 + 0.961176i \(0.588988\pi\)
\(212\) − 1143.26i − 0.370375i
\(213\) − 1499.58i − 0.482394i
\(214\) −192.186 −0.0613904
\(215\) 0 0
\(216\) 983.041 0.309664
\(217\) 4631.82i 1.44898i
\(218\) 3697.87i 1.14886i
\(219\) 1571.41 0.484869
\(220\) 0 0
\(221\) −144.456 −0.0439691
\(222\) − 77.4641i − 0.0234191i
\(223\) 1034.01i 0.310505i 0.987875 + 0.155253i \(0.0496191\pi\)
−0.987875 + 0.155253i \(0.950381\pi\)
\(224\) −3696.44 −1.10258
\(225\) 0 0
\(226\) −3229.76 −0.950622
\(227\) − 202.321i − 0.0591565i −0.999562 0.0295783i \(-0.990584\pi\)
0.999562 0.0295783i \(-0.00941642\pi\)
\(228\) − 1625.97i − 0.472291i
\(229\) −6346.43 −1.83137 −0.915685 0.401897i \(-0.868351\pi\)
−0.915685 + 0.401897i \(0.868351\pi\)
\(230\) 0 0
\(231\) 1881.56 0.535919
\(232\) − 1451.11i − 0.410646i
\(233\) − 3768.52i − 1.05959i −0.848126 0.529794i \(-0.822269\pi\)
0.848126 0.529794i \(-0.177731\pi\)
\(234\) −619.538 −0.173079
\(235\) 0 0
\(236\) −3578.77 −0.987109
\(237\) 3376.56i 0.925447i
\(238\) − 1052.45i − 0.286640i
\(239\) −5761.72 −1.55939 −0.779696 0.626159i \(-0.784626\pi\)
−0.779696 + 0.626159i \(0.784626\pi\)
\(240\) 0 0
\(241\) −2015.26 −0.538650 −0.269325 0.963049i \(-0.586800\pi\)
−0.269325 + 0.963049i \(0.586800\pi\)
\(242\) − 1465.33i − 0.389235i
\(243\) 3924.84i 1.03612i
\(244\) −2526.54 −0.662890
\(245\) 0 0
\(246\) −754.018 −0.195424
\(247\) − 853.076i − 0.219757i
\(248\) − 2158.94i − 0.552793i
\(249\) 1465.00 0.372854
\(250\) 0 0
\(251\) 808.179 0.203234 0.101617 0.994824i \(-0.467598\pi\)
0.101617 + 0.994824i \(0.467598\pi\)
\(252\) − 1921.16i − 0.480244i
\(253\) − 8134.66i − 2.02143i
\(254\) −7658.94 −1.89199
\(255\) 0 0
\(256\) 5340.67 1.30387
\(257\) 1911.01i 0.463836i 0.972735 + 0.231918i \(0.0745001\pi\)
−0.972735 + 0.231918i \(0.925500\pi\)
\(258\) 3380.23i 0.815675i
\(259\) 126.029 0.0302357
\(260\) 0 0
\(261\) 3666.39 0.869516
\(262\) 289.086i 0.0681671i
\(263\) − 314.792i − 0.0738058i −0.999319 0.0369029i \(-0.988251\pi\)
0.999319 0.0369029i \(-0.0117492\pi\)
\(264\) −877.013 −0.204456
\(265\) 0 0
\(266\) 6215.18 1.43262
\(267\) − 3232.51i − 0.740923i
\(268\) − 3032.11i − 0.691102i
\(269\) 7100.88 1.60947 0.804736 0.593633i \(-0.202307\pi\)
0.804736 + 0.593633i \(0.202307\pi\)
\(270\) 0 0
\(271\) −3238.60 −0.725944 −0.362972 0.931800i \(-0.618238\pi\)
−0.362972 + 0.931800i \(0.618238\pi\)
\(272\) 1296.79i 0.289080i
\(273\) 385.108i 0.0853764i
\(274\) 7227.60 1.59356
\(275\) 0 0
\(276\) 3173.43 0.692094
\(277\) − 4682.33i − 1.01565i −0.861461 0.507823i \(-0.830450\pi\)
0.861461 0.507823i \(-0.169550\pi\)
\(278\) − 6298.31i − 1.35880i
\(279\) 5454.80 1.17050
\(280\) 0 0
\(281\) 5914.75 1.25567 0.627837 0.778345i \(-0.283940\pi\)
0.627837 + 0.778345i \(0.283940\pi\)
\(282\) − 1915.41i − 0.404472i
\(283\) − 8154.53i − 1.71285i −0.516272 0.856425i \(-0.672681\pi\)
0.516272 0.856425i \(-0.327319\pi\)
\(284\) 3253.91 0.679873
\(285\) 0 0
\(286\) 1316.61 0.272213
\(287\) − 1226.74i − 0.252307i
\(288\) 4353.22i 0.890681i
\(289\) −289.000 −0.0588235
\(290\) 0 0
\(291\) −3445.59 −0.694104
\(292\) 3409.77i 0.683361i
\(293\) − 3005.77i − 0.599314i −0.954047 0.299657i \(-0.903128\pi\)
0.954047 0.299657i \(-0.0968722\pi\)
\(294\) 691.535 0.137181
\(295\) 0 0
\(296\) −58.7434 −0.0115351
\(297\) − 5278.36i − 1.03125i
\(298\) 1821.43i 0.354070i
\(299\) 1664.96 0.322031
\(300\) 0 0
\(301\) −5499.41 −1.05309
\(302\) − 5448.59i − 1.03818i
\(303\) − 1169.70i − 0.221774i
\(304\) −7658.13 −1.44482
\(305\) 0 0
\(306\) −1239.45 −0.231552
\(307\) − 4911.16i − 0.913013i −0.889720 0.456506i \(-0.849101\pi\)
0.889720 0.456506i \(-0.150899\pi\)
\(308\) 4082.74i 0.755310i
\(309\) 1693.48 0.311776
\(310\) 0 0
\(311\) −5449.43 −0.993597 −0.496799 0.867866i \(-0.665491\pi\)
−0.496799 + 0.867866i \(0.665491\pi\)
\(312\) − 179.503i − 0.0325716i
\(313\) 5273.09i 0.952246i 0.879379 + 0.476123i \(0.157958\pi\)
−0.879379 + 0.476123i \(0.842042\pi\)
\(314\) 133.341 0.0239646
\(315\) 0 0
\(316\) −7326.70 −1.30430
\(317\) − 10737.6i − 1.90246i −0.308477 0.951232i \(-0.599819\pi\)
0.308477 0.951232i \(-0.400181\pi\)
\(318\) 1966.34i 0.346751i
\(319\) −7791.61 −1.36754
\(320\) 0 0
\(321\) 140.690 0.0244627
\(322\) 12130.3i 2.09936i
\(323\) − 1706.67i − 0.293999i
\(324\) −1067.79 −0.183092
\(325\) 0 0
\(326\) 12335.8 2.09576
\(327\) − 2707.03i − 0.457795i
\(328\) 571.795i 0.0962563i
\(329\) 3116.25 0.522202
\(330\) 0 0
\(331\) −3868.26 −0.642354 −0.321177 0.947019i \(-0.604078\pi\)
−0.321177 + 0.947019i \(0.604078\pi\)
\(332\) 3178.87i 0.525491i
\(333\) − 148.422i − 0.0244248i
\(334\) 12049.5 1.97401
\(335\) 0 0
\(336\) 3457.14 0.561317
\(337\) 881.122i 0.142427i 0.997461 + 0.0712133i \(0.0226871\pi\)
−0.997461 + 0.0712133i \(0.977313\pi\)
\(338\) − 7929.84i − 1.27611i
\(339\) 2364.35 0.378802
\(340\) 0 0
\(341\) −11592.2 −1.84092
\(342\) − 7319.50i − 1.15729i
\(343\) 6814.92i 1.07280i
\(344\) 2563.33 0.401761
\(345\) 0 0
\(346\) 3576.64 0.555726
\(347\) − 722.460i − 0.111769i −0.998437 0.0558843i \(-0.982202\pi\)
0.998437 0.0558843i \(-0.0177978\pi\)
\(348\) − 3039.60i − 0.468218i
\(349\) −10730.8 −1.64587 −0.822935 0.568136i \(-0.807665\pi\)
−0.822935 + 0.568136i \(0.807665\pi\)
\(350\) 0 0
\(351\) 1080.35 0.164287
\(352\) − 9251.24i − 1.40083i
\(353\) − 6601.89i − 0.995420i −0.867344 0.497710i \(-0.834174\pi\)
0.867344 0.497710i \(-0.165826\pi\)
\(354\) 6155.26 0.924148
\(355\) 0 0
\(356\) 7014.14 1.04424
\(357\) 770.449i 0.114220i
\(358\) 6365.80i 0.939784i
\(359\) −3836.05 −0.563952 −0.281976 0.959421i \(-0.590990\pi\)
−0.281976 + 0.959421i \(0.590990\pi\)
\(360\) 0 0
\(361\) 3219.61 0.469400
\(362\) − 2241.34i − 0.325421i
\(363\) 1072.69i 0.155101i
\(364\) −835.634 −0.120327
\(365\) 0 0
\(366\) 4345.49 0.620608
\(367\) 10269.6i 1.46068i 0.683084 + 0.730340i \(0.260638\pi\)
−0.683084 + 0.730340i \(0.739362\pi\)
\(368\) − 14946.5i − 2.11723i
\(369\) −1444.70 −0.203816
\(370\) 0 0
\(371\) −3199.10 −0.447680
\(372\) − 4522.28i − 0.630293i
\(373\) − 2920.52i − 0.405412i −0.979240 0.202706i \(-0.935026\pi\)
0.979240 0.202706i \(-0.0649735\pi\)
\(374\) 2634.02 0.364176
\(375\) 0 0
\(376\) −1452.52 −0.199223
\(377\) − 1594.75i − 0.217861i
\(378\) 7871.01i 1.07101i
\(379\) 4683.11 0.634711 0.317355 0.948307i \(-0.397205\pi\)
0.317355 + 0.948307i \(0.397205\pi\)
\(380\) 0 0
\(381\) 5606.74 0.753915
\(382\) 14907.0i 1.99661i
\(383\) − 9524.24i − 1.27067i −0.772237 0.635334i \(-0.780862\pi\)
0.772237 0.635334i \(-0.219138\pi\)
\(384\) −2613.24 −0.347283
\(385\) 0 0
\(386\) 5920.19 0.780647
\(387\) 6476.55i 0.850702i
\(388\) − 7476.50i − 0.978252i
\(389\) 12389.7 1.61486 0.807430 0.589964i \(-0.200858\pi\)
0.807430 + 0.589964i \(0.200858\pi\)
\(390\) 0 0
\(391\) 3330.93 0.430825
\(392\) − 524.412i − 0.0675683i
\(393\) − 211.626i − 0.0271631i
\(394\) −11240.8 −1.43732
\(395\) 0 0
\(396\) 4808.16 0.610149
\(397\) 2797.07i 0.353604i 0.984246 + 0.176802i \(0.0565752\pi\)
−0.984246 + 0.176802i \(0.943425\pi\)
\(398\) − 7709.56i − 0.970968i
\(399\) −4549.83 −0.570868
\(400\) 0 0
\(401\) −10776.6 −1.34204 −0.671021 0.741438i \(-0.734144\pi\)
−0.671021 + 0.741438i \(0.734144\pi\)
\(402\) 5215.04i 0.647022i
\(403\) − 2372.64i − 0.293275i
\(404\) 2538.11 0.312563
\(405\) 0 0
\(406\) 11618.7 1.42027
\(407\) 315.418i 0.0384145i
\(408\) − 359.114i − 0.0435755i
\(409\) 1225.28 0.148133 0.0740663 0.997253i \(-0.476402\pi\)
0.0740663 + 0.997253i \(0.476402\pi\)
\(410\) 0 0
\(411\) −5290.97 −0.634999
\(412\) 3674.63i 0.439408i
\(413\) 10014.2i 1.19314i
\(414\) 14285.6 1.69589
\(415\) 0 0
\(416\) 1893.50 0.223164
\(417\) 4610.68i 0.541453i
\(418\) 15555.0i 1.82014i
\(419\) 7621.82 0.888664 0.444332 0.895862i \(-0.353441\pi\)
0.444332 + 0.895862i \(0.353441\pi\)
\(420\) 0 0
\(421\) −15961.2 −1.84775 −0.923874 0.382696i \(-0.874996\pi\)
−0.923874 + 0.382696i \(0.874996\pi\)
\(422\) 6312.63i 0.728184i
\(423\) − 3669.94i − 0.421841i
\(424\) 1491.14 0.170792
\(425\) 0 0
\(426\) −5596.52 −0.636508
\(427\) 7069.83i 0.801248i
\(428\) 305.279i 0.0344771i
\(429\) −963.825 −0.108471
\(430\) 0 0
\(431\) −1956.16 −0.218619 −0.109309 0.994008i \(-0.534864\pi\)
−0.109309 + 0.994008i \(0.534864\pi\)
\(432\) − 9698.38i − 1.08012i
\(433\) 4825.52i 0.535565i 0.963479 + 0.267783i \(0.0862909\pi\)
−0.963479 + 0.267783i \(0.913709\pi\)
\(434\) 17286.2 1.91190
\(435\) 0 0
\(436\) 5873.91 0.645204
\(437\) 19670.6i 2.15325i
\(438\) − 5864.59i − 0.639774i
\(439\) 9766.60 1.06181 0.530905 0.847432i \(-0.321852\pi\)
0.530905 + 0.847432i \(0.321852\pi\)
\(440\) 0 0
\(441\) 1324.98 0.143071
\(442\) 539.118i 0.0580163i
\(443\) − 11455.1i − 1.22855i −0.789091 0.614276i \(-0.789448\pi\)
0.789091 0.614276i \(-0.210552\pi\)
\(444\) −123.048 −0.0131523
\(445\) 0 0
\(446\) 3858.99 0.409705
\(447\) − 1333.38i − 0.141089i
\(448\) 3672.09i 0.387254i
\(449\) 9716.46 1.02126 0.510632 0.859799i \(-0.329411\pi\)
0.510632 + 0.859799i \(0.329411\pi\)
\(450\) 0 0
\(451\) 3070.21 0.320555
\(452\) 5130.34i 0.533874i
\(453\) 3988.65i 0.413693i
\(454\) −755.073 −0.0780558
\(455\) 0 0
\(456\) 2120.72 0.217789
\(457\) 10499.8i 1.07475i 0.843344 + 0.537374i \(0.180584\pi\)
−0.843344 + 0.537374i \(0.819416\pi\)
\(458\) 23685.2i 2.41645i
\(459\) 2161.35 0.219789
\(460\) 0 0
\(461\) 18649.9 1.88419 0.942095 0.335345i \(-0.108853\pi\)
0.942095 + 0.335345i \(0.108853\pi\)
\(462\) − 7022.06i − 0.707134i
\(463\) − 11011.7i − 1.10530i −0.833413 0.552651i \(-0.813616\pi\)
0.833413 0.552651i \(-0.186384\pi\)
\(464\) −14316.2 −1.43235
\(465\) 0 0
\(466\) −14064.3 −1.39811
\(467\) − 14194.7i − 1.40654i −0.710924 0.703269i \(-0.751723\pi\)
0.710924 0.703269i \(-0.248277\pi\)
\(468\) 984.110i 0.0972019i
\(469\) −8484.53 −0.835350
\(470\) 0 0
\(471\) −97.6125 −0.00954935
\(472\) − 4667.72i − 0.455189i
\(473\) − 13763.6i − 1.33795i
\(474\) 12601.5 1.22111
\(475\) 0 0
\(476\) −1671.78 −0.160978
\(477\) 3767.52i 0.361642i
\(478\) 21503.0i 2.05758i
\(479\) −14553.9 −1.38828 −0.694139 0.719841i \(-0.744215\pi\)
−0.694139 + 0.719841i \(0.744215\pi\)
\(480\) 0 0
\(481\) −64.5582 −0.00611975
\(482\) 7521.07i 0.710737i
\(483\) − 8879.97i − 0.836548i
\(484\) −2327.61 −0.218596
\(485\) 0 0
\(486\) 14647.7 1.36715
\(487\) 8047.78i 0.748829i 0.927261 + 0.374414i \(0.122156\pi\)
−0.927261 + 0.374414i \(0.877844\pi\)
\(488\) − 3295.32i − 0.305681i
\(489\) −9030.45 −0.835114
\(490\) 0 0
\(491\) 6917.64 0.635822 0.317911 0.948121i \(-0.397019\pi\)
0.317911 + 0.948121i \(0.397019\pi\)
\(492\) 1197.73i 0.109751i
\(493\) − 3190.46i − 0.291463i
\(494\) −3183.72 −0.289964
\(495\) 0 0
\(496\) −21299.4 −1.92817
\(497\) − 9105.17i − 0.821776i
\(498\) − 5467.46i − 0.491974i
\(499\) 20501.4 1.83922 0.919608 0.392836i \(-0.128506\pi\)
0.919608 + 0.392836i \(0.128506\pi\)
\(500\) 0 0
\(501\) −8820.87 −0.786601
\(502\) − 3016.16i − 0.268163i
\(503\) 12448.0i 1.10344i 0.834029 + 0.551720i \(0.186028\pi\)
−0.834029 + 0.551720i \(0.813972\pi\)
\(504\) 2505.73 0.221456
\(505\) 0 0
\(506\) −30358.9 −2.66723
\(507\) 5805.04i 0.508503i
\(508\) 12165.9i 1.06255i
\(509\) 5349.99 0.465882 0.232941 0.972491i \(-0.425165\pi\)
0.232941 + 0.972491i \(0.425165\pi\)
\(510\) 0 0
\(511\) 9541.30 0.825992
\(512\) − 12279.5i − 1.05993i
\(513\) 12763.7i 1.09850i
\(514\) 7132.00 0.612022
\(515\) 0 0
\(516\) 5369.36 0.458087
\(517\) 7799.17i 0.663457i
\(518\) − 470.346i − 0.0398954i
\(519\) −2618.28 −0.221444
\(520\) 0 0
\(521\) 2375.79 0.199780 0.0998900 0.994998i \(-0.468151\pi\)
0.0998900 + 0.994998i \(0.468151\pi\)
\(522\) − 13683.1i − 1.14731i
\(523\) 1983.51i 0.165837i 0.996556 + 0.0829186i \(0.0264241\pi\)
−0.996556 + 0.0829186i \(0.973576\pi\)
\(524\) 459.201 0.0382830
\(525\) 0 0
\(526\) −1174.82 −0.0973852
\(527\) − 4746.73i − 0.392354i
\(528\) 8652.34i 0.713153i
\(529\) −26224.4 −2.15537
\(530\) 0 0
\(531\) 11793.5 0.963833
\(532\) − 9872.55i − 0.804567i
\(533\) 628.395i 0.0510672i
\(534\) −12063.9 −0.977633
\(535\) 0 0
\(536\) 3954.72 0.318690
\(537\) − 4660.09i − 0.374483i
\(538\) − 26500.8i − 2.12367i
\(539\) −2815.79 −0.225018
\(540\) 0 0
\(541\) −19924.8 −1.58343 −0.791713 0.610893i \(-0.790811\pi\)
−0.791713 + 0.610893i \(0.790811\pi\)
\(542\) 12086.6i 0.957869i
\(543\) 1640.78i 0.129673i
\(544\) 3788.14 0.298558
\(545\) 0 0
\(546\) 1437.24 0.112652
\(547\) − 360.478i − 0.0281772i −0.999901 0.0140886i \(-0.995515\pi\)
0.999901 0.0140886i \(-0.00448469\pi\)
\(548\) − 11480.7i − 0.894951i
\(549\) 8326.00 0.647258
\(550\) 0 0
\(551\) 18841.1 1.45673
\(552\) 4139.05i 0.319148i
\(553\) 20501.8i 1.57654i
\(554\) −17474.7 −1.34012
\(555\) 0 0
\(556\) −10004.6 −0.763110
\(557\) − 18433.0i − 1.40221i −0.713059 0.701104i \(-0.752691\pi\)
0.713059 0.701104i \(-0.247309\pi\)
\(558\) − 20357.6i − 1.54445i
\(559\) 2817.07 0.213147
\(560\) 0 0
\(561\) −1928.24 −0.145116
\(562\) − 22074.2i − 1.65684i
\(563\) 4574.39i 0.342429i 0.985234 + 0.171215i \(0.0547692\pi\)
−0.985234 + 0.171215i \(0.945231\pi\)
\(564\) −3042.55 −0.227153
\(565\) 0 0
\(566\) −30433.1 −2.26007
\(567\) 2987.92i 0.221307i
\(568\) 4244.01i 0.313512i
\(569\) −24577.3 −1.81078 −0.905390 0.424580i \(-0.860422\pi\)
−0.905390 + 0.424580i \(0.860422\pi\)
\(570\) 0 0
\(571\) 18058.2 1.32349 0.661745 0.749729i \(-0.269816\pi\)
0.661745 + 0.749729i \(0.269816\pi\)
\(572\) − 2091.38i − 0.152876i
\(573\) − 10912.6i − 0.795606i
\(574\) −4578.24 −0.332913
\(575\) 0 0
\(576\) 4324.55 0.312829
\(577\) − 25619.8i − 1.84847i −0.381828 0.924233i \(-0.624705\pi\)
0.381828 0.924233i \(-0.375295\pi\)
\(578\) 1078.56i 0.0776164i
\(579\) −4333.88 −0.311071
\(580\) 0 0
\(581\) 8895.20 0.635172
\(582\) 12859.1i 0.915855i
\(583\) − 8006.54i − 0.568777i
\(584\) −4447.30 −0.315121
\(585\) 0 0
\(586\) −11217.7 −0.790782
\(587\) − 23487.4i − 1.65150i −0.564039 0.825748i \(-0.690753\pi\)
0.564039 0.825748i \(-0.309247\pi\)
\(588\) − 1098.47i − 0.0770413i
\(589\) 28031.5 1.96098
\(590\) 0 0
\(591\) 8228.87 0.572742
\(592\) 579.544i 0.0402350i
\(593\) 22914.9i 1.58685i 0.608669 + 0.793424i \(0.291704\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(594\) −19699.1 −1.36071
\(595\) 0 0
\(596\) 2893.27 0.198847
\(597\) 5643.79i 0.386909i
\(598\) − 6213.72i − 0.424913i
\(599\) 16868.5 1.15063 0.575315 0.817932i \(-0.304880\pi\)
0.575315 + 0.817932i \(0.304880\pi\)
\(600\) 0 0
\(601\) −3820.28 −0.259289 −0.129644 0.991561i \(-0.541384\pi\)
−0.129644 + 0.991561i \(0.541384\pi\)
\(602\) 20524.1i 1.38953i
\(603\) 9992.06i 0.674806i
\(604\) −8654.85 −0.583048
\(605\) 0 0
\(606\) −4365.39 −0.292627
\(607\) − 739.230i − 0.0494307i −0.999695 0.0247153i \(-0.992132\pi\)
0.999695 0.0247153i \(-0.00786794\pi\)
\(608\) 22370.6i 1.49218i
\(609\) −8505.50 −0.565944
\(610\) 0 0
\(611\) −1596.30 −0.105694
\(612\) 1968.82i 0.130040i
\(613\) 20527.3i 1.35251i 0.736666 + 0.676257i \(0.236399\pi\)
−0.736666 + 0.676257i \(0.763601\pi\)
\(614\) −18328.7 −1.20470
\(615\) 0 0
\(616\) −5325.04 −0.348299
\(617\) 6823.03i 0.445194i 0.974911 + 0.222597i \(0.0714534\pi\)
−0.974911 + 0.222597i \(0.928547\pi\)
\(618\) − 6320.15i − 0.411381i
\(619\) −2964.75 −0.192510 −0.0962548 0.995357i \(-0.530686\pi\)
−0.0962548 + 0.995357i \(0.530686\pi\)
\(620\) 0 0
\(621\) −24911.1 −1.60974
\(622\) 20337.5i 1.31103i
\(623\) − 19627.2i − 1.26219i
\(624\) −1770.92 −0.113611
\(625\) 0 0
\(626\) 19679.5 1.25647
\(627\) − 11387.1i − 0.725288i
\(628\) − 211.807i − 0.0134586i
\(629\) −129.156 −0.00818723
\(630\) 0 0
\(631\) 25883.6 1.63298 0.816491 0.577358i \(-0.195916\pi\)
0.816491 + 0.577358i \(0.195916\pi\)
\(632\) − 9556.09i − 0.601457i
\(633\) − 4621.16i − 0.290165i
\(634\) −40073.1 −2.51026
\(635\) 0 0
\(636\) 3123.45 0.194737
\(637\) − 576.321i − 0.0358472i
\(638\) 29078.7i 1.80445i
\(639\) −10723.0 −0.663841
\(640\) 0 0
\(641\) −7806.60 −0.481033 −0.240517 0.970645i \(-0.577317\pi\)
−0.240517 + 0.970645i \(0.577317\pi\)
\(642\) − 525.061i − 0.0322781i
\(643\) − 15373.9i − 0.942902i −0.881892 0.471451i \(-0.843730\pi\)
0.881892 0.471451i \(-0.156270\pi\)
\(644\) 19268.4 1.17901
\(645\) 0 0
\(646\) −6369.38 −0.387925
\(647\) 14583.3i 0.886135i 0.896488 + 0.443068i \(0.146110\pi\)
−0.896488 + 0.443068i \(0.853890\pi\)
\(648\) − 1392.70i − 0.0844298i
\(649\) −25063.0 −1.51588
\(650\) 0 0
\(651\) −12654.4 −0.761848
\(652\) − 19594.9i − 1.17699i
\(653\) − 7477.60i − 0.448118i −0.974576 0.224059i \(-0.928069\pi\)
0.974576 0.224059i \(-0.0719308\pi\)
\(654\) −10102.8 −0.604051
\(655\) 0 0
\(656\) 5641.15 0.335747
\(657\) − 11236.6i − 0.667247i
\(658\) − 11630.0i − 0.689034i
\(659\) 18061.0 1.06761 0.533805 0.845607i \(-0.320762\pi\)
0.533805 + 0.845607i \(0.320762\pi\)
\(660\) 0 0
\(661\) −3386.54 −0.199276 −0.0996379 0.995024i \(-0.531768\pi\)
−0.0996379 + 0.995024i \(0.531768\pi\)
\(662\) 14436.6i 0.847572i
\(663\) − 394.662i − 0.0231182i
\(664\) −4146.14 −0.242322
\(665\) 0 0
\(666\) −553.918 −0.0322280
\(667\) 36772.4i 2.13468i
\(668\) − 19140.2i − 1.10862i
\(669\) −2824.98 −0.163258
\(670\) 0 0
\(671\) −17694.0 −1.01799
\(672\) − 10098.9i − 0.579720i
\(673\) − 5873.50i − 0.336414i −0.985752 0.168207i \(-0.946202\pi\)
0.985752 0.168207i \(-0.0537977\pi\)
\(674\) 3288.39 0.187929
\(675\) 0 0
\(676\) −12596.2 −0.716671
\(677\) − 21147.3i − 1.20053i −0.799803 0.600263i \(-0.795063\pi\)
0.799803 0.600263i \(-0.204937\pi\)
\(678\) − 8823.88i − 0.499822i
\(679\) −20920.9 −1.18243
\(680\) 0 0
\(681\) 552.752 0.0311035
\(682\) 43262.9i 2.42906i
\(683\) 25556.1i 1.43174i 0.698234 + 0.715870i \(0.253970\pi\)
−0.698234 + 0.715870i \(0.746030\pi\)
\(684\) −11626.7 −0.649939
\(685\) 0 0
\(686\) 25433.6 1.41554
\(687\) − 17338.8i − 0.962904i
\(688\) − 25289.1i − 1.40136i
\(689\) 1638.74 0.0906110
\(690\) 0 0
\(691\) −2255.04 −0.124147 −0.0620737 0.998072i \(-0.519771\pi\)
−0.0620737 + 0.998072i \(0.519771\pi\)
\(692\) − 5681.33i − 0.312098i
\(693\) − 13454.3i − 0.737500i
\(694\) −2696.26 −0.147476
\(695\) 0 0
\(696\) 3964.50 0.215911
\(697\) 1257.17i 0.0683196i
\(698\) 40048.0i 2.17169i
\(699\) 10295.8 0.557114
\(700\) 0 0
\(701\) 26613.7 1.43393 0.716966 0.697108i \(-0.245530\pi\)
0.716966 + 0.697108i \(0.245530\pi\)
\(702\) − 4031.92i − 0.216773i
\(703\) − 762.719i − 0.0409196i
\(704\) −9190.30 −0.492006
\(705\) 0 0
\(706\) −24638.6 −1.31344
\(707\) − 7102.20i − 0.377801i
\(708\) − 9777.37i − 0.519006i
\(709\) 12957.1 0.686339 0.343169 0.939274i \(-0.388500\pi\)
0.343169 + 0.939274i \(0.388500\pi\)
\(710\) 0 0
\(711\) 24144.5 1.27355
\(712\) 9148.42i 0.481533i
\(713\) 54709.4i 2.87361i
\(714\) 2875.35 0.150711
\(715\) 0 0
\(716\) 10111.8 0.527787
\(717\) − 15741.3i − 0.819902i
\(718\) 14316.3i 0.744123i
\(719\) −2156.18 −0.111839 −0.0559194 0.998435i \(-0.517809\pi\)
−0.0559194 + 0.998435i \(0.517809\pi\)
\(720\) 0 0
\(721\) 10282.5 0.531122
\(722\) − 12015.8i − 0.619364i
\(723\) − 5505.80i − 0.283213i
\(724\) −3560.28 −0.182758
\(725\) 0 0
\(726\) 4003.35 0.204653
\(727\) 20197.3i 1.03037i 0.857080 + 0.515183i \(0.172276\pi\)
−0.857080 + 0.515183i \(0.827724\pi\)
\(728\) − 1089.90i − 0.0554869i
\(729\) −5859.60 −0.297698
\(730\) 0 0
\(731\) 5635.85 0.285156
\(732\) − 6902.63i − 0.348536i
\(733\) 31546.6i 1.58963i 0.606850 + 0.794816i \(0.292433\pi\)
−0.606850 + 0.794816i \(0.707567\pi\)
\(734\) 38326.7 1.92734
\(735\) 0 0
\(736\) −43661.1 −2.18664
\(737\) − 21234.6i − 1.06131i
\(738\) 5391.71i 0.268932i
\(739\) 6903.36 0.343632 0.171816 0.985129i \(-0.445037\pi\)
0.171816 + 0.985129i \(0.445037\pi\)
\(740\) 0 0
\(741\) 2330.65 0.115544
\(742\) 11939.2i 0.590704i
\(743\) − 17697.6i − 0.873837i −0.899501 0.436919i \(-0.856070\pi\)
0.899501 0.436919i \(-0.143930\pi\)
\(744\) 5898.32 0.290649
\(745\) 0 0
\(746\) −10899.5 −0.534932
\(747\) − 10475.7i − 0.513100i
\(748\) − 4184.03i − 0.204523i
\(749\) 854.240 0.0416732
\(750\) 0 0
\(751\) −15547.9 −0.755459 −0.377729 0.925916i \(-0.623295\pi\)
−0.377729 + 0.925916i \(0.623295\pi\)
\(752\) 14330.1i 0.694899i
\(753\) 2207.98i 0.106857i
\(754\) −5951.68 −0.287463
\(755\) 0 0
\(756\) 12502.8 0.601483
\(757\) − 9321.80i − 0.447565i −0.974639 0.223782i \(-0.928159\pi\)
0.974639 0.223782i \(-0.0718405\pi\)
\(758\) − 17477.6i − 0.837487i
\(759\) 22224.3 1.06283
\(760\) 0 0
\(761\) 3553.19 0.169255 0.0846275 0.996413i \(-0.473030\pi\)
0.0846275 + 0.996413i \(0.473030\pi\)
\(762\) − 20924.6i − 0.994776i
\(763\) − 16436.5i − 0.779872i
\(764\) 23679.1 1.12131
\(765\) 0 0
\(766\) −35545.0 −1.67662
\(767\) − 5129.76i − 0.241493i
\(768\) 14591.0i 0.685556i
\(769\) 16346.5 0.766539 0.383269 0.923637i \(-0.374798\pi\)
0.383269 + 0.923637i \(0.374798\pi\)
\(770\) 0 0
\(771\) −5220.99 −0.243877
\(772\) − 9403.97i − 0.438415i
\(773\) 25978.1i 1.20875i 0.796699 + 0.604376i \(0.206578\pi\)
−0.796699 + 0.604376i \(0.793422\pi\)
\(774\) 24170.8 1.12248
\(775\) 0 0
\(776\) 9751.46 0.451105
\(777\) 344.317i 0.0158974i
\(778\) − 46238.8i − 2.13077i
\(779\) −7424.13 −0.341460
\(780\) 0 0
\(781\) 22787.9 1.04407
\(782\) − 12431.2i − 0.568464i
\(783\) 23860.6i 1.08903i
\(784\) −5173.68 −0.235682
\(785\) 0 0
\(786\) −789.797 −0.0358411
\(787\) − 28832.9i − 1.30595i −0.757381 0.652973i \(-0.773521\pi\)
0.757381 0.652973i \(-0.226479\pi\)
\(788\) 17855.6i 0.807208i
\(789\) 860.028 0.0388058
\(790\) 0 0
\(791\) 14355.9 0.645304
\(792\) 6271.20i 0.281360i
\(793\) − 3621.51i − 0.162174i
\(794\) 10438.8 0.466573
\(795\) 0 0
\(796\) −12246.3 −0.545300
\(797\) 1944.04i 0.0864010i 0.999066 + 0.0432005i \(0.0137554\pi\)
−0.999066 + 0.0432005i \(0.986245\pi\)
\(798\) 16980.2i 0.753249i
\(799\) −3193.56 −0.141402
\(800\) 0 0
\(801\) −23114.5 −1.01961
\(802\) 40218.9i 1.77080i
\(803\) 23879.4i 1.04942i
\(804\) 8283.87 0.363370
\(805\) 0 0
\(806\) −8854.83 −0.386970
\(807\) 19400.0i 0.846234i
\(808\) 3310.41i 0.144133i
\(809\) 3649.63 0.158608 0.0793042 0.996850i \(-0.474730\pi\)
0.0793042 + 0.996850i \(0.474730\pi\)
\(810\) 0 0
\(811\) 3446.54 0.149228 0.0746142 0.997212i \(-0.476227\pi\)
0.0746142 + 0.997212i \(0.476227\pi\)
\(812\) − 18455.8i − 0.797627i
\(813\) − 8848.02i − 0.381690i
\(814\) 1177.16 0.0506871
\(815\) 0 0
\(816\) −3542.91 −0.151993
\(817\) 33282.1i 1.42521i
\(818\) − 4572.81i − 0.195458i
\(819\) 2753.76 0.117490
\(820\) 0 0
\(821\) 23999.4 1.02020 0.510101 0.860114i \(-0.329608\pi\)
0.510101 + 0.860114i \(0.329608\pi\)
\(822\) 19746.2i 0.837868i
\(823\) − 45868.4i − 1.94274i −0.237578 0.971368i \(-0.576354\pi\)
0.237578 0.971368i \(-0.423646\pi\)
\(824\) −4792.76 −0.202626
\(825\) 0 0
\(826\) 37373.5 1.57432
\(827\) 25703.9i 1.08079i 0.841412 + 0.540394i \(0.181725\pi\)
−0.841412 + 0.540394i \(0.818275\pi\)
\(828\) − 22692.0i − 0.952418i
\(829\) −5582.56 −0.233884 −0.116942 0.993139i \(-0.537309\pi\)
−0.116942 + 0.993139i \(0.537309\pi\)
\(830\) 0 0
\(831\) 12792.4 0.534010
\(832\) − 1881.02i − 0.0783808i
\(833\) − 1152.99i − 0.0479578i
\(834\) 17207.3 0.714436
\(835\) 0 0
\(836\) 24708.5 1.02220
\(837\) 35499.5i 1.46600i
\(838\) − 28445.0i − 1.17257i
\(839\) 11733.1 0.482805 0.241402 0.970425i \(-0.422393\pi\)
0.241402 + 0.970425i \(0.422393\pi\)
\(840\) 0 0
\(841\) 10832.7 0.444162
\(842\) 59568.1i 2.43807i
\(843\) 16159.4i 0.660213i
\(844\) 10027.3 0.408952
\(845\) 0 0
\(846\) −13696.4 −0.556611
\(847\) 6513.18i 0.264221i
\(848\) − 14711.1i − 0.595732i
\(849\) 22278.6 0.900588
\(850\) 0 0
\(851\) 1488.61 0.0599634
\(852\) 8889.84i 0.357466i
\(853\) − 23737.8i − 0.952834i −0.879219 0.476417i \(-0.841935\pi\)
0.879219 0.476417i \(-0.158065\pi\)
\(854\) 26385.0 1.05723
\(855\) 0 0
\(856\) −398.170 −0.0158986
\(857\) − 13090.6i − 0.521780i −0.965369 0.260890i \(-0.915984\pi\)
0.965369 0.260890i \(-0.0840160\pi\)
\(858\) 3597.05i 0.143125i
\(859\) 14982.0 0.595086 0.297543 0.954708i \(-0.403833\pi\)
0.297543 + 0.954708i \(0.403833\pi\)
\(860\) 0 0
\(861\) 3351.51 0.132659
\(862\) 7300.47i 0.288463i
\(863\) − 2666.74i − 0.105188i −0.998616 0.0525938i \(-0.983251\pi\)
0.998616 0.0525938i \(-0.0167489\pi\)
\(864\) −28330.5 −1.11554
\(865\) 0 0
\(866\) 18009.1 0.706667
\(867\) − 789.563i − 0.0309284i
\(868\) − 27458.3i − 1.07373i
\(869\) −51310.7 −2.00299
\(870\) 0 0
\(871\) 4346.19 0.169076
\(872\) 7661.23i 0.297525i
\(873\) 24638.2i 0.955184i
\(874\) 73411.6 2.84117
\(875\) 0 0
\(876\) −9315.65 −0.359300
\(877\) 23168.6i 0.892074i 0.895014 + 0.446037i \(0.147165\pi\)
−0.895014 + 0.446037i \(0.852835\pi\)
\(878\) − 36449.4i − 1.40104i
\(879\) 8211.91 0.315109
\(880\) 0 0
\(881\) −8797.34 −0.336424 −0.168212 0.985751i \(-0.553799\pi\)
−0.168212 + 0.985751i \(0.553799\pi\)
\(882\) − 4944.91i − 0.188780i
\(883\) − 26761.1i − 1.01991i −0.860201 0.509955i \(-0.829662\pi\)
0.860201 0.509955i \(-0.170338\pi\)
\(884\) 856.366 0.0325822
\(885\) 0 0
\(886\) −42751.0 −1.62105
\(887\) 24934.6i 0.943881i 0.881630 + 0.471940i \(0.156446\pi\)
−0.881630 + 0.471940i \(0.843554\pi\)
\(888\) − 160.490i − 0.00606496i
\(889\) 34043.0 1.28432
\(890\) 0 0
\(891\) −7478.01 −0.281170
\(892\) − 6129.84i − 0.230092i
\(893\) − 18859.3i − 0.706723i
\(894\) −4976.25 −0.186164
\(895\) 0 0
\(896\) −15867.1 −0.591610
\(897\) 4548.76i 0.169318i
\(898\) − 36262.3i − 1.34754i
\(899\) 52402.3 1.94406
\(900\) 0 0
\(901\) 3278.47 0.121223
\(902\) − 11458.2i − 0.422966i
\(903\) − 15024.7i − 0.553699i
\(904\) −6691.41 −0.246187
\(905\) 0 0
\(906\) 14885.8 0.545859
\(907\) 5006.91i 0.183298i 0.995791 + 0.0916492i \(0.0292139\pi\)
−0.995791 + 0.0916492i \(0.970786\pi\)
\(908\) 1199.40i 0.0438365i
\(909\) −8364.12 −0.305193
\(910\) 0 0
\(911\) 1890.74 0.0687628 0.0343814 0.999409i \(-0.489054\pi\)
0.0343814 + 0.999409i \(0.489054\pi\)
\(912\) − 20922.4i − 0.759660i
\(913\) 22262.4i 0.806986i
\(914\) 39185.8 1.41811
\(915\) 0 0
\(916\) 37622.9 1.35709
\(917\) − 1284.95i − 0.0462734i
\(918\) − 8066.28i − 0.290008i
\(919\) 12849.0 0.461206 0.230603 0.973048i \(-0.425930\pi\)
0.230603 + 0.973048i \(0.425930\pi\)
\(920\) 0 0
\(921\) 13417.5 0.480047
\(922\) − 69602.3i − 2.48615i
\(923\) 4664.12i 0.166329i
\(924\) −11154.2 −0.397130
\(925\) 0 0
\(926\) −41096.1 −1.45842
\(927\) − 12109.5i − 0.429047i
\(928\) 41819.9i 1.47931i
\(929\) −49273.8 −1.74017 −0.870087 0.492899i \(-0.835937\pi\)
−0.870087 + 0.492899i \(0.835937\pi\)
\(930\) 0 0
\(931\) 6808.92 0.239692
\(932\) 22340.6i 0.785182i
\(933\) − 14888.1i − 0.522417i
\(934\) −52975.4 −1.85590
\(935\) 0 0
\(936\) −1283.56 −0.0448231
\(937\) − 29936.4i − 1.04373i −0.853027 0.521867i \(-0.825236\pi\)
0.853027 0.521867i \(-0.174764\pi\)
\(938\) 31664.7i 1.10223i
\(939\) −14406.4 −0.500675
\(940\) 0 0
\(941\) 8120.33 0.281313 0.140656 0.990058i \(-0.455079\pi\)
0.140656 + 0.990058i \(0.455079\pi\)
\(942\) 364.295i 0.0126002i
\(943\) − 14489.8i − 0.500374i
\(944\) −46050.3 −1.58772
\(945\) 0 0
\(946\) −51366.5 −1.76540
\(947\) − 32978.0i − 1.13162i −0.824536 0.565809i \(-0.808564\pi\)
0.824536 0.565809i \(-0.191436\pi\)
\(948\) − 20016.9i − 0.685780i
\(949\) −4887.52 −0.167182
\(950\) 0 0
\(951\) 29335.5 1.00028
\(952\) − 2180.47i − 0.0742325i
\(953\) − 37722.3i − 1.28221i −0.767454 0.641104i \(-0.778477\pi\)
0.767454 0.641104i \(-0.221523\pi\)
\(954\) 14060.6 0.477178
\(955\) 0 0
\(956\) 34156.6 1.15555
\(957\) − 21287.1i − 0.719032i
\(958\) 54316.0i 1.83181i
\(959\) −32125.7 −1.08175
\(960\) 0 0
\(961\) 48172.3 1.61701
\(962\) 240.934i 0.00807488i
\(963\) − 1006.02i − 0.0336642i
\(964\) 11946.9 0.399153
\(965\) 0 0
\(966\) −33140.5 −1.10381
\(967\) − 16615.2i − 0.552542i −0.961080 0.276271i \(-0.910901\pi\)
0.961080 0.276271i \(-0.0890987\pi\)
\(968\) − 3035.86i − 0.100802i
\(969\) 4662.71 0.154580
\(970\) 0 0
\(971\) 17678.7 0.584279 0.292140 0.956376i \(-0.405633\pi\)
0.292140 + 0.956376i \(0.405633\pi\)
\(972\) − 23267.2i − 0.767795i
\(973\) 27995.1i 0.922387i
\(974\) 30034.7 0.988064
\(975\) 0 0
\(976\) −32510.6 −1.06623
\(977\) − 15575.2i − 0.510024i −0.966938 0.255012i \(-0.917920\pi\)
0.966938 0.255012i \(-0.0820795\pi\)
\(978\) 33702.1i 1.10192i
\(979\) 49121.8 1.60361
\(980\) 0 0
\(981\) −19357.0 −0.629990
\(982\) − 25817.0i − 0.838954i
\(983\) 51898.9i 1.68395i 0.539520 + 0.841973i \(0.318606\pi\)
−0.539520 + 0.841973i \(0.681394\pi\)
\(984\) −1562.17 −0.0506100
\(985\) 0 0
\(986\) −11907.0 −0.384579
\(987\) 8513.75i 0.274565i
\(988\) 5057.21i 0.162845i
\(989\) −64957.2 −2.08849
\(990\) 0 0
\(991\) −60599.6 −1.94249 −0.971246 0.238080i \(-0.923482\pi\)
−0.971246 + 0.238080i \(0.923482\pi\)
\(992\) 62219.0i 1.99139i
\(993\) − 10568.3i − 0.337739i
\(994\) −33981.0 −1.08432
\(995\) 0 0
\(996\) −8684.83 −0.276295
\(997\) − 18476.9i − 0.586929i −0.955970 0.293464i \(-0.905192\pi\)
0.955970 0.293464i \(-0.0948082\pi\)
\(998\) − 76512.3i − 2.42681i
\(999\) 965.920 0.0305909
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.4.b.e.324.1 4
5.2 odd 4 425.4.a.e.1.2 2
5.3 odd 4 85.4.a.d.1.1 2
5.4 even 2 inner 425.4.b.e.324.4 4
15.8 even 4 765.4.a.i.1.2 2
20.3 even 4 1360.4.a.m.1.2 2
85.33 odd 4 1445.4.a.i.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.4.a.d.1.1 2 5.3 odd 4
425.4.a.e.1.2 2 5.2 odd 4
425.4.b.e.324.1 4 1.1 even 1 trivial
425.4.b.e.324.4 4 5.4 even 2 inner
765.4.a.i.1.2 2 15.8 even 4
1360.4.a.m.1.2 2 20.3 even 4
1445.4.a.i.1.1 2 85.33 odd 4