Properties

Label 4256.2.a.f
Level $4256$
Weight $2$
Character orbit 4256.a
Self dual yes
Analytic conductor $33.984$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4256,2,Mod(1,4256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4256.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4256 = 2^{5} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9843311003\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2624.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 3x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + (\beta_{3} - \beta_{2} - \beta_1 + 1) q^{5} - q^{7} + (\beta_{2} - 1) q^{9} + \beta_1 q^{11} + ( - 2 \beta_{3} + \beta_{2} + \beta_1 - 1) q^{13} + (2 \beta_{3} - \beta_{2} + 1) q^{15}+ \cdots + (\beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{7} - 2 q^{9} + 2 q^{11} + 2 q^{15} - 6 q^{17} - 4 q^{19} - 2 q^{21} - 4 q^{23} - 4 q^{25} - 4 q^{27} + 2 q^{29} + 18 q^{31} - 8 q^{33} - 16 q^{37} + 2 q^{39} - 10 q^{41} - 4 q^{43}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 3x^{2} + 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 2\nu^{2} - 2\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 2\beta_{2} + 6\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.77462
0.814115
−0.360409
−1.22833
0 −1.77462 0 −1.50970 0 −1.00000 0 0.149286 0
1.2 0 0.185885 0 0.737118 0 −1.00000 0 −2.96545 0
1.3 0 1.36041 0 2.92391 0 −1.00000 0 −1.14929 0
1.4 0 2.22833 0 −2.15133 0 −1.00000 0 1.96545 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4256.2.a.f yes 4
4.b odd 2 1 4256.2.a.e 4
8.b even 2 1 8512.2.a.br 4
8.d odd 2 1 8512.2.a.bv 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4256.2.a.e 4 4.b odd 2 1
4256.2.a.f yes 4 1.a even 1 1 trivial
8512.2.a.br 4 8.b even 2 1
8512.2.a.bv 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4256))\):

\( T_{3}^{4} - 2T_{3}^{3} - 3T_{3}^{2} + 6T_{3} - 1 \) Copy content Toggle raw display
\( T_{23}^{2} + 2T_{23} - 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 2 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{4} - 8 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} - 16 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots + 71 \) Copy content Toggle raw display
$19$ \( (T + 1)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T - 17)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 2 T^{3} + \cdots - 223 \) Copy content Toggle raw display
$31$ \( T^{4} - 18 T^{3} + \cdots + 47 \) Copy content Toggle raw display
$37$ \( T^{4} + 16 T^{3} + \cdots - 103 \) Copy content Toggle raw display
$41$ \( T^{4} + 10 T^{3} + \cdots + 263 \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 887 \) Copy content Toggle raw display
$53$ \( T^{4} - 10 T^{3} + \cdots + 1849 \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots - 457 \) Copy content Toggle raw display
$61$ \( T^{4} + 16 T^{3} + \cdots - 425 \) Copy content Toggle raw display
$67$ \( T^{4} + 10 T^{3} + \cdots + 7321 \) Copy content Toggle raw display
$71$ \( T^{4} + 4 T^{3} + \cdots + 553 \) Copy content Toggle raw display
$73$ \( T^{4} + 18 T^{3} + \cdots + 3647 \) Copy content Toggle raw display
$79$ \( T^{4} + 4 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$83$ \( T^{4} + 14 T^{3} + \cdots - 7057 \) Copy content Toggle raw display
$89$ \( T^{4} + 24 T^{3} + \cdots - 18496 \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots - 9457 \) Copy content Toggle raw display
show more
show less