Properties

Label 4275.2.a.bg
Level $4275$
Weight $2$
Character orbit 4275.a
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + ( - \beta_{2} - \beta_1) q^{7} + (2 \beta_1 + 1) q^{8} + ( - \beta_{2} + \beta_1 + 1) q^{11} + 4 q^{13} + ( - \beta_{2} - 2 \beta_1 - 5) q^{14} + (\beta_1 + 4) q^{16}+ \cdots + (5 \beta_{2} + 5 \beta_1 + 19) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} + 3 q^{8} + 3 q^{11} + 12 q^{13} - 15 q^{14} + 12 q^{16} + 6 q^{17} - 3 q^{19} + 9 q^{22} + 9 q^{23} - 27 q^{28} + 15 q^{29} + 15 q^{31} + 6 q^{32} + 6 q^{34} + 12 q^{37} - 12 q^{41} + 12 q^{43}+ \cdots + 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.36147
−0.167449
2.52892
−2.36147 0 3.57653 0 0 0.784934 −3.72294 0 0
1.2 −0.167449 0 −1.97196 0 0 4.13941 0.665102 0 0
1.3 2.52892 0 4.39543 0 0 −4.92434 6.05784 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4275.2.a.bg 3
3.b odd 2 1 1425.2.a.w yes 3
5.b even 2 1 4275.2.a.bf 3
15.d odd 2 1 1425.2.a.t 3
15.e even 4 2 1425.2.c.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1425.2.a.t 3 15.d odd 2 1
1425.2.a.w yes 3 3.b odd 2 1
1425.2.c.o 6 15.e even 4 2
4275.2.a.bf 3 5.b even 2 1
4275.2.a.bg 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4275))\):

\( T_{2}^{3} - 6T_{2} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} - 21T_{7} + 16 \) Copy content Toggle raw display
\( T_{11}^{3} - 3T_{11}^{2} - 12T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 6T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 21T + 16 \) Copy content Toggle raw display
$11$ \( T^{3} - 3 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( (T - 4)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} + \cdots + 208 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 9 T^{2} + \cdots + 52 \) Copy content Toggle raw display
$29$ \( (T - 5)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 15 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$37$ \( T^{3} - 12 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$41$ \( T^{3} + 12 T^{2} + \cdots + 6 \) Copy content Toggle raw display
$43$ \( (T - 4)^{3} \) Copy content Toggle raw display
$47$ \( T^{3} + 12 T^{2} + \cdots - 192 \) Copy content Toggle raw display
$53$ \( T^{3} - 9 T^{2} + \cdots + 197 \) Copy content Toggle raw display
$59$ \( T^{3} + 12 T^{2} + \cdots - 320 \) Copy content Toggle raw display
$61$ \( T^{3} - 3 T^{2} + \cdots + 43 \) Copy content Toggle raw display
$67$ \( T^{3} - 15 T^{2} + \cdots - 52 \) Copy content Toggle raw display
$71$ \( T^{3} + 18 T^{2} + \cdots - 282 \) Copy content Toggle raw display
$73$ \( T^{3} - 3 T^{2} + \cdots + 31 \) Copy content Toggle raw display
$79$ \( T^{3} - 3 T^{2} + \cdots + 620 \) Copy content Toggle raw display
$83$ \( T^{3} + 3 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$89$ \( T^{3} - 3 T^{2} + \cdots - 45 \) Copy content Toggle raw display
$97$ \( T^{3} + 12 T^{2} + \cdots - 904 \) Copy content Toggle raw display
show more
show less