Properties

Label 4275.2.a.bq.1.4
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.15044092.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 12x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.92914\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.551006 q^{2} -1.69639 q^{4} -0.574141 q^{7} -2.03673 q^{8} +3.83882 q^{11} -2.00000 q^{13} -0.316355 q^{14} +2.27053 q^{16} -5.17548 q^{17} +1.00000 q^{19} +2.11521 q^{22} +1.33666 q^{23} -1.10201 q^{26} +0.973969 q^{28} +0.934722 q^{29} +4.96693 q^{31} +5.32454 q^{32} -2.85172 q^{34} +3.39279 q^{37} +0.551006 q^{38} +3.37340 q^{41} -4.85172 q^{43} -6.51214 q^{44} +0.736508 q^{46} -9.88165 q^{47} -6.67036 q^{49} +3.39279 q^{52} +3.13874 q^{53} +1.16937 q^{56} +0.515037 q^{58} -4.47541 q^{59} +8.08214 q^{61} +2.73680 q^{62} -1.60721 q^{64} +0.115209 q^{67} +8.77964 q^{68} -16.2265 q^{71} -5.85172 q^{73} +1.86944 q^{74} -1.69639 q^{76} -2.20402 q^{77} -8.35971 q^{79} +1.85876 q^{82} +6.51214 q^{83} -2.67332 q^{86} -7.81864 q^{88} -3.13874 q^{89} +1.14828 q^{91} -2.26750 q^{92} -5.44485 q^{94} -9.68935 q^{97} -3.67541 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} - 8 q^{7} - 12 q^{13} + 6 q^{19} - 10 q^{22} - 26 q^{28} - 2 q^{31} - 8 q^{34} - 16 q^{37} - 20 q^{43} + 18 q^{46} + 10 q^{49} - 16 q^{52} - 56 q^{58} - 6 q^{61} - 46 q^{64} - 22 q^{67} - 26 q^{73}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.551006 0.389620 0.194810 0.980841i \(-0.437591\pi\)
0.194810 + 0.980841i \(0.437591\pi\)
\(3\) 0 0
\(4\) −1.69639 −0.848196
\(5\) 0 0
\(6\) 0 0
\(7\) −0.574141 −0.217005 −0.108502 0.994096i \(-0.534606\pi\)
−0.108502 + 0.994096i \(0.534606\pi\)
\(8\) −2.03673 −0.720094
\(9\) 0 0
\(10\) 0 0
\(11\) 3.83882 1.15745 0.578723 0.815524i \(-0.303551\pi\)
0.578723 + 0.815524i \(0.303551\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −0.316355 −0.0845494
\(15\) 0 0
\(16\) 2.27053 0.567634
\(17\) −5.17548 −1.25524 −0.627619 0.778521i \(-0.715970\pi\)
−0.627619 + 0.778521i \(0.715970\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 2.11521 0.450964
\(23\) 1.33666 0.278713 0.139357 0.990242i \(-0.455497\pi\)
0.139357 + 0.990242i \(0.455497\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.10201 −0.216122
\(27\) 0 0
\(28\) 0.973969 0.184063
\(29\) 0.934722 0.173574 0.0867868 0.996227i \(-0.472340\pi\)
0.0867868 + 0.996227i \(0.472340\pi\)
\(30\) 0 0
\(31\) 4.96693 0.892086 0.446043 0.895011i \(-0.352833\pi\)
0.446043 + 0.895011i \(0.352833\pi\)
\(32\) 5.32454 0.941255
\(33\) 0 0
\(34\) −2.85172 −0.489066
\(35\) 0 0
\(36\) 0 0
\(37\) 3.39279 0.557771 0.278885 0.960324i \(-0.410035\pi\)
0.278885 + 0.960324i \(0.410035\pi\)
\(38\) 0.551006 0.0893849
\(39\) 0 0
\(40\) 0 0
\(41\) 3.37340 0.526836 0.263418 0.964682i \(-0.415150\pi\)
0.263418 + 0.964682i \(0.415150\pi\)
\(42\) 0 0
\(43\) −4.85172 −0.739880 −0.369940 0.929056i \(-0.620622\pi\)
−0.369940 + 0.929056i \(0.620622\pi\)
\(44\) −6.51214 −0.981742
\(45\) 0 0
\(46\) 0.736508 0.108592
\(47\) −9.88165 −1.44139 −0.720694 0.693254i \(-0.756177\pi\)
−0.720694 + 0.693254i \(0.756177\pi\)
\(48\) 0 0
\(49\) −6.67036 −0.952909
\(50\) 0 0
\(51\) 0 0
\(52\) 3.39279 0.470495
\(53\) 3.13874 0.431140 0.215570 0.976488i \(-0.430839\pi\)
0.215570 + 0.976488i \(0.430839\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.16937 0.156264
\(57\) 0 0
\(58\) 0.515037 0.0676277
\(59\) −4.47541 −0.582648 −0.291324 0.956624i \(-0.594096\pi\)
−0.291324 + 0.956624i \(0.594096\pi\)
\(60\) 0 0
\(61\) 8.08214 1.03481 0.517406 0.855740i \(-0.326898\pi\)
0.517406 + 0.855740i \(0.326898\pi\)
\(62\) 2.73680 0.347575
\(63\) 0 0
\(64\) −1.60721 −0.200902
\(65\) 0 0
\(66\) 0 0
\(67\) 0.115209 0.0140751 0.00703753 0.999975i \(-0.497760\pi\)
0.00703753 + 0.999975i \(0.497760\pi\)
\(68\) 8.77964 1.06469
\(69\) 0 0
\(70\) 0 0
\(71\) −16.2265 −1.92573 −0.962866 0.269980i \(-0.912983\pi\)
−0.962866 + 0.269980i \(0.912983\pi\)
\(72\) 0 0
\(73\) −5.85172 −0.684892 −0.342446 0.939538i \(-0.611255\pi\)
−0.342446 + 0.939538i \(0.611255\pi\)
\(74\) 1.86944 0.217318
\(75\) 0 0
\(76\) −1.69639 −0.194590
\(77\) −2.20402 −0.251172
\(78\) 0 0
\(79\) −8.35971 −0.940541 −0.470271 0.882522i \(-0.655844\pi\)
−0.470271 + 0.882522i \(0.655844\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.85876 0.205266
\(83\) 6.51214 0.714800 0.357400 0.933951i \(-0.383663\pi\)
0.357400 + 0.933951i \(0.383663\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.67332 −0.288272
\(87\) 0 0
\(88\) −7.81864 −0.833470
\(89\) −3.13874 −0.332706 −0.166353 0.986066i \(-0.553199\pi\)
−0.166353 + 0.986066i \(0.553199\pi\)
\(90\) 0 0
\(91\) 1.14828 0.120373
\(92\) −2.26750 −0.236404
\(93\) 0 0
\(94\) −5.44485 −0.561593
\(95\) 0 0
\(96\) 0 0
\(97\) −9.68935 −0.983804 −0.491902 0.870650i \(-0.663698\pi\)
−0.491902 + 0.870650i \(0.663698\pi\)
\(98\) −3.67541 −0.371272
\(99\) 0 0
\(100\) 0 0
\(101\) −10.6491 −1.05962 −0.529812 0.848115i \(-0.677737\pi\)
−0.529812 + 0.848115i \(0.677737\pi\)
\(102\) 0 0
\(103\) −12.9669 −1.27767 −0.638835 0.769344i \(-0.720583\pi\)
−0.638835 + 0.769344i \(0.720583\pi\)
\(104\) 4.07347 0.399436
\(105\) 0 0
\(106\) 1.72947 0.167981
\(107\) 9.94902 0.961808 0.480904 0.876773i \(-0.340309\pi\)
0.480904 + 0.876773i \(0.340309\pi\)
\(108\) 0 0
\(109\) −2.83763 −0.271796 −0.135898 0.990723i \(-0.543392\pi\)
−0.135898 + 0.990723i \(0.543392\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.30361 −0.123179
\(113\) 1.96937 0.185263 0.0926315 0.995700i \(-0.470472\pi\)
0.0926315 + 0.995700i \(0.470472\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.58566 −0.147224
\(117\) 0 0
\(118\) −2.46597 −0.227011
\(119\) 2.97146 0.272393
\(120\) 0 0
\(121\) 3.73651 0.339683
\(122\) 4.45330 0.403183
\(123\) 0 0
\(124\) −8.42586 −0.756664
\(125\) 0 0
\(126\) 0 0
\(127\) −5.27758 −0.468309 −0.234155 0.972199i \(-0.575232\pi\)
−0.234155 + 0.972199i \(0.575232\pi\)
\(128\) −11.5347 −1.01953
\(129\) 0 0
\(130\) 0 0
\(131\) 19.9980 1.74723 0.873615 0.486618i \(-0.161770\pi\)
0.873615 + 0.486618i \(0.161770\pi\)
\(132\) 0 0
\(133\) −0.574141 −0.0497844
\(134\) 0.0634810 0.00548392
\(135\) 0 0
\(136\) 10.5411 0.903889
\(137\) 9.24894 0.790191 0.395095 0.918640i \(-0.370712\pi\)
0.395095 + 0.918640i \(0.370712\pi\)
\(138\) 0 0
\(139\) 6.50799 0.552001 0.276000 0.961158i \(-0.410991\pi\)
0.276000 + 0.961158i \(0.410991\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.94090 −0.750303
\(143\) −7.67763 −0.642036
\(144\) 0 0
\(145\) 0 0
\(146\) −3.22433 −0.266847
\(147\) 0 0
\(148\) −5.75550 −0.473099
\(149\) 8.14693 0.667423 0.333711 0.942675i \(-0.391699\pi\)
0.333711 + 0.942675i \(0.391699\pi\)
\(150\) 0 0
\(151\) 4.24450 0.345413 0.172706 0.984973i \(-0.444749\pi\)
0.172706 + 0.984973i \(0.444749\pi\)
\(152\) −2.03673 −0.165201
\(153\) 0 0
\(154\) −1.21443 −0.0978615
\(155\) 0 0
\(156\) 0 0
\(157\) −13.1152 −1.04671 −0.523354 0.852115i \(-0.675319\pi\)
−0.523354 + 0.852115i \(0.675319\pi\)
\(158\) −4.60625 −0.366453
\(159\) 0 0
\(160\) 0 0
\(161\) −0.767433 −0.0604822
\(162\) 0 0
\(163\) −9.65628 −0.756338 −0.378169 0.925737i \(-0.623446\pi\)
−0.378169 + 0.925737i \(0.623446\pi\)
\(164\) −5.72260 −0.446860
\(165\) 0 0
\(166\) 3.58823 0.278500
\(167\) −8.07957 −0.625216 −0.312608 0.949882i \(-0.601203\pi\)
−0.312608 + 0.949882i \(0.601203\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 8.23042 0.627564
\(173\) −3.60805 −0.274315 −0.137157 0.990549i \(-0.543797\pi\)
−0.137157 + 0.990549i \(0.543797\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 8.71616 0.657005
\(177\) 0 0
\(178\) −1.72947 −0.129629
\(179\) −21.7001 −1.62194 −0.810971 0.585086i \(-0.801061\pi\)
−0.810971 + 0.585086i \(0.801061\pi\)
\(180\) 0 0
\(181\) 1.21443 0.0902678 0.0451339 0.998981i \(-0.485629\pi\)
0.0451339 + 0.998981i \(0.485629\pi\)
\(182\) 0.632710 0.0468996
\(183\) 0 0
\(184\) −2.72242 −0.200700
\(185\) 0 0
\(186\) 0 0
\(187\) −19.8677 −1.45287
\(188\) 16.7632 1.22258
\(189\) 0 0
\(190\) 0 0
\(191\) −12.3203 −0.891468 −0.445734 0.895166i \(-0.647057\pi\)
−0.445734 + 0.895166i \(0.647057\pi\)
\(192\) 0 0
\(193\) −19.0301 −1.36981 −0.684907 0.728630i \(-0.740157\pi\)
−0.684907 + 0.728630i \(0.740157\pi\)
\(194\) −5.33889 −0.383310
\(195\) 0 0
\(196\) 11.3156 0.808254
\(197\) −17.3959 −1.23940 −0.619702 0.784837i \(-0.712747\pi\)
−0.619702 + 0.784837i \(0.712747\pi\)
\(198\) 0 0
\(199\) −0.277576 −0.0196769 −0.00983843 0.999952i \(-0.503132\pi\)
−0.00983843 + 0.999952i \(0.503132\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −5.86771 −0.412850
\(203\) −0.536662 −0.0376663
\(204\) 0 0
\(205\) 0 0
\(206\) −7.14485 −0.497805
\(207\) 0 0
\(208\) −4.54107 −0.314866
\(209\) 3.83882 0.265536
\(210\) 0 0
\(211\) −6.12929 −0.421958 −0.210979 0.977491i \(-0.567665\pi\)
−0.210979 + 0.977491i \(0.567665\pi\)
\(212\) −5.32454 −0.365691
\(213\) 0 0
\(214\) 5.48196 0.374739
\(215\) 0 0
\(216\) 0 0
\(217\) −2.85172 −0.193587
\(218\) −1.56355 −0.105897
\(219\) 0 0
\(220\) 0 0
\(221\) 10.3510 0.696281
\(222\) 0 0
\(223\) −29.0791 −1.94728 −0.973642 0.228084i \(-0.926754\pi\)
−0.973642 + 0.228084i \(0.926754\pi\)
\(224\) −3.05704 −0.204257
\(225\) 0 0
\(226\) 1.08514 0.0721821
\(227\) −18.4305 −1.22328 −0.611639 0.791137i \(-0.709489\pi\)
−0.611639 + 0.791137i \(0.709489\pi\)
\(228\) 0 0
\(229\) 1.81864 0.120179 0.0600897 0.998193i \(-0.480861\pi\)
0.0600897 + 0.998193i \(0.480861\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.90378 −0.124989
\(233\) 8.48151 0.555642 0.277821 0.960633i \(-0.410388\pi\)
0.277821 + 0.960633i \(0.410388\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.59205 0.494200
\(237\) 0 0
\(238\) 1.63729 0.106130
\(239\) −18.7960 −1.21581 −0.607907 0.794008i \(-0.707991\pi\)
−0.607907 + 0.794008i \(0.707991\pi\)
\(240\) 0 0
\(241\) −0.541068 −0.0348533 −0.0174266 0.999848i \(-0.505547\pi\)
−0.0174266 + 0.999848i \(0.505547\pi\)
\(242\) 2.05884 0.132347
\(243\) 0 0
\(244\) −13.7105 −0.877723
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) −10.1163 −0.642386
\(249\) 0 0
\(250\) 0 0
\(251\) 16.4573 1.03877 0.519387 0.854539i \(-0.326160\pi\)
0.519387 + 0.854539i \(0.326160\pi\)
\(252\) 0 0
\(253\) 5.13120 0.322596
\(254\) −2.90797 −0.182463
\(255\) 0 0
\(256\) −3.14124 −0.196328
\(257\) 27.1102 1.69109 0.845545 0.533904i \(-0.179276\pi\)
0.845545 + 0.533904i \(0.179276\pi\)
\(258\) 0 0
\(259\) −1.94794 −0.121039
\(260\) 0 0
\(261\) 0 0
\(262\) 11.0190 0.680755
\(263\) −15.2918 −0.942932 −0.471466 0.881884i \(-0.656275\pi\)
−0.471466 + 0.881884i \(0.656275\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.316355 −0.0193970
\(267\) 0 0
\(268\) −0.195440 −0.0119384
\(269\) 26.5101 1.61635 0.808175 0.588943i \(-0.200456\pi\)
0.808175 + 0.588943i \(0.200456\pi\)
\(270\) 0 0
\(271\) −5.65628 −0.343594 −0.171797 0.985132i \(-0.554957\pi\)
−0.171797 + 0.985132i \(0.554957\pi\)
\(272\) −11.7511 −0.712515
\(273\) 0 0
\(274\) 5.09622 0.307874
\(275\) 0 0
\(276\) 0 0
\(277\) −24.6373 −1.48031 −0.740156 0.672436i \(-0.765248\pi\)
−0.740156 + 0.672436i \(0.765248\pi\)
\(278\) 3.58594 0.215071
\(279\) 0 0
\(280\) 0 0
\(281\) −9.64700 −0.575492 −0.287746 0.957707i \(-0.592906\pi\)
−0.287746 + 0.957707i \(0.592906\pi\)
\(282\) 0 0
\(283\) 5.93385 0.352731 0.176365 0.984325i \(-0.443566\pi\)
0.176365 + 0.984325i \(0.443566\pi\)
\(284\) 27.5265 1.63340
\(285\) 0 0
\(286\) −4.23042 −0.250150
\(287\) −1.93681 −0.114326
\(288\) 0 0
\(289\) 9.78557 0.575622
\(290\) 0 0
\(291\) 0 0
\(292\) 9.92681 0.580923
\(293\) 26.4102 1.54290 0.771449 0.636291i \(-0.219532\pi\)
0.771449 + 0.636291i \(0.219532\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.91020 −0.401647
\(297\) 0 0
\(298\) 4.48901 0.260041
\(299\) −2.67332 −0.154602
\(300\) 0 0
\(301\) 2.78557 0.160558
\(302\) 2.33875 0.134580
\(303\) 0 0
\(304\) 2.27053 0.130224
\(305\) 0 0
\(306\) 0 0
\(307\) −12.0491 −0.687676 −0.343838 0.939029i \(-0.611727\pi\)
−0.343838 + 0.939029i \(0.611727\pi\)
\(308\) 3.73889 0.213043
\(309\) 0 0
\(310\) 0 0
\(311\) 8.48151 0.480942 0.240471 0.970656i \(-0.422698\pi\)
0.240471 + 0.970656i \(0.422698\pi\)
\(312\) 0 0
\(313\) −30.5381 −1.72611 −0.863057 0.505107i \(-0.831453\pi\)
−0.863057 + 0.505107i \(0.831453\pi\)
\(314\) −7.22655 −0.407818
\(315\) 0 0
\(316\) 14.1814 0.797764
\(317\) 30.2451 1.69873 0.849367 0.527802i \(-0.176984\pi\)
0.849367 + 0.527802i \(0.176984\pi\)
\(318\) 0 0
\(319\) 3.58823 0.200902
\(320\) 0 0
\(321\) 0 0
\(322\) −0.422860 −0.0235651
\(323\) −5.17548 −0.287971
\(324\) 0 0
\(325\) 0 0
\(326\) −5.32066 −0.294684
\(327\) 0 0
\(328\) −6.87071 −0.379371
\(329\) 5.67347 0.312788
\(330\) 0 0
\(331\) −14.9669 −0.822657 −0.411328 0.911487i \(-0.634935\pi\)
−0.411328 + 0.911487i \(0.634935\pi\)
\(332\) −11.0471 −0.606291
\(333\) 0 0
\(334\) −4.45189 −0.243597
\(335\) 0 0
\(336\) 0 0
\(337\) −20.4890 −1.11611 −0.558054 0.829805i \(-0.688452\pi\)
−0.558054 + 0.829805i \(0.688452\pi\)
\(338\) −4.95905 −0.269737
\(339\) 0 0
\(340\) 0 0
\(341\) 19.0671 1.03254
\(342\) 0 0
\(343\) 7.84872 0.423791
\(344\) 9.88165 0.532783
\(345\) 0 0
\(346\) −1.98805 −0.106878
\(347\) −7.71408 −0.414113 −0.207057 0.978329i \(-0.566388\pi\)
−0.207057 + 0.978329i \(0.566388\pi\)
\(348\) 0 0
\(349\) −11.2304 −0.601151 −0.300575 0.953758i \(-0.597179\pi\)
−0.300575 + 0.953758i \(0.597179\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 20.4399 1.08945
\(353\) −1.27318 −0.0677646 −0.0338823 0.999426i \(-0.510787\pi\)
−0.0338823 + 0.999426i \(0.510787\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5.32454 0.282200
\(357\) 0 0
\(358\) −11.9569 −0.631941
\(359\) 4.24464 0.224023 0.112012 0.993707i \(-0.464271\pi\)
0.112012 + 0.993707i \(0.464271\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0.669157 0.0351701
\(363\) 0 0
\(364\) −1.94794 −0.102100
\(365\) 0 0
\(366\) 0 0
\(367\) 4.23042 0.220826 0.110413 0.993886i \(-0.464783\pi\)
0.110413 + 0.993886i \(0.464783\pi\)
\(368\) 3.03494 0.158207
\(369\) 0 0
\(370\) 0 0
\(371\) −1.80208 −0.0935595
\(372\) 0 0
\(373\) −20.4088 −1.05673 −0.528363 0.849018i \(-0.677194\pi\)
−0.528363 + 0.849018i \(0.677194\pi\)
\(374\) −10.9472 −0.566067
\(375\) 0 0
\(376\) 20.1263 1.03793
\(377\) −1.86944 −0.0962813
\(378\) 0 0
\(379\) −19.6514 −1.00942 −0.504712 0.863288i \(-0.668401\pi\)
−0.504712 + 0.863288i \(0.668401\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −6.78857 −0.347333
\(383\) 0.736518 0.0376343 0.0188172 0.999823i \(-0.494010\pi\)
0.0188172 + 0.999823i \(0.494010\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.4857 −0.533707
\(387\) 0 0
\(388\) 16.4369 0.834459
\(389\) 16.6284 0.843096 0.421548 0.906806i \(-0.361487\pi\)
0.421548 + 0.906806i \(0.361487\pi\)
\(390\) 0 0
\(391\) −6.91786 −0.349851
\(392\) 13.5857 0.686184
\(393\) 0 0
\(394\) −9.58523 −0.482897
\(395\) 0 0
\(396\) 0 0
\(397\) 3.75250 0.188332 0.0941662 0.995556i \(-0.469981\pi\)
0.0941662 + 0.995556i \(0.469981\pi\)
\(398\) −0.152946 −0.00766650
\(399\) 0 0
\(400\) 0 0
\(401\) −20.9366 −1.04552 −0.522761 0.852479i \(-0.675098\pi\)
−0.522761 + 0.852479i \(0.675098\pi\)
\(402\) 0 0
\(403\) −9.93385 −0.494840
\(404\) 18.0650 0.898769
\(405\) 0 0
\(406\) −0.295704 −0.0146755
\(407\) 13.0243 0.645590
\(408\) 0 0
\(409\) 16.1784 0.799968 0.399984 0.916522i \(-0.369016\pi\)
0.399984 + 0.916522i \(0.369016\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 21.9970 1.08371
\(413\) 2.56952 0.126438
\(414\) 0 0
\(415\) 0 0
\(416\) −10.6491 −0.522114
\(417\) 0 0
\(418\) 2.11521 0.103458
\(419\) 14.4244 0.704679 0.352340 0.935872i \(-0.385386\pi\)
0.352340 + 0.935872i \(0.385386\pi\)
\(420\) 0 0
\(421\) 17.5711 0.856365 0.428183 0.903692i \(-0.359154\pi\)
0.428183 + 0.903692i \(0.359154\pi\)
\(422\) −3.37728 −0.164403
\(423\) 0 0
\(424\) −6.39279 −0.310461
\(425\) 0 0
\(426\) 0 0
\(427\) −4.64029 −0.224559
\(428\) −16.8774 −0.815802
\(429\) 0 0
\(430\) 0 0
\(431\) 15.1609 0.730277 0.365138 0.930953i \(-0.381022\pi\)
0.365138 + 0.930953i \(0.381022\pi\)
\(432\) 0 0
\(433\) 4.23042 0.203301 0.101650 0.994820i \(-0.467588\pi\)
0.101650 + 0.994820i \(0.467588\pi\)
\(434\) −1.57131 −0.0754254
\(435\) 0 0
\(436\) 4.81374 0.230536
\(437\) 1.33666 0.0639412
\(438\) 0 0
\(439\) 11.5741 0.552404 0.276202 0.961100i \(-0.410924\pi\)
0.276202 + 0.961100i \(0.410924\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.70344 0.271285
\(443\) 22.3367 1.06125 0.530624 0.847607i \(-0.321957\pi\)
0.530624 + 0.847607i \(0.321957\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.0228 −0.758700
\(447\) 0 0
\(448\) 0.922768 0.0435967
\(449\) 3.13874 0.148127 0.0740633 0.997254i \(-0.476403\pi\)
0.0740633 + 0.997254i \(0.476403\pi\)
\(450\) 0 0
\(451\) 12.9498 0.609784
\(452\) −3.34083 −0.157139
\(453\) 0 0
\(454\) −10.1553 −0.476613
\(455\) 0 0
\(456\) 0 0
\(457\) −6.32964 −0.296088 −0.148044 0.988981i \(-0.547298\pi\)
−0.148044 + 0.988981i \(0.547298\pi\)
\(458\) 1.00208 0.0468243
\(459\) 0 0
\(460\) 0 0
\(461\) 34.8204 1.62175 0.810875 0.585220i \(-0.198992\pi\)
0.810875 + 0.585220i \(0.198992\pi\)
\(462\) 0 0
\(463\) 27.5050 1.27827 0.639133 0.769096i \(-0.279293\pi\)
0.639133 + 0.769096i \(0.279293\pi\)
\(464\) 2.12232 0.0985261
\(465\) 0 0
\(466\) 4.67336 0.216489
\(467\) 26.1043 1.20796 0.603981 0.796999i \(-0.293580\pi\)
0.603981 + 0.796999i \(0.293580\pi\)
\(468\) 0 0
\(469\) −0.0661464 −0.00305436
\(470\) 0 0
\(471\) 0 0
\(472\) 9.11521 0.419562
\(473\) −18.6249 −0.856372
\(474\) 0 0
\(475\) 0 0
\(476\) −5.04076 −0.231043
\(477\) 0 0
\(478\) −10.3567 −0.473705
\(479\) 3.07138 0.140335 0.0701675 0.997535i \(-0.477647\pi\)
0.0701675 + 0.997535i \(0.477647\pi\)
\(480\) 0 0
\(481\) −6.78557 −0.309395
\(482\) −0.298132 −0.0135795
\(483\) 0 0
\(484\) −6.33859 −0.288118
\(485\) 0 0
\(486\) 0 0
\(487\) 28.4890 1.29096 0.645480 0.763777i \(-0.276657\pi\)
0.645480 + 0.763777i \(0.276657\pi\)
\(488\) −16.4612 −0.745162
\(489\) 0 0
\(490\) 0 0
\(491\) −26.9430 −1.21592 −0.607959 0.793968i \(-0.708012\pi\)
−0.607959 + 0.793968i \(0.708012\pi\)
\(492\) 0 0
\(493\) −4.83763 −0.217876
\(494\) −1.10201 −0.0495818
\(495\) 0 0
\(496\) 11.2776 0.506378
\(497\) 9.31631 0.417893
\(498\) 0 0
\(499\) 27.7224 1.24103 0.620513 0.784196i \(-0.286924\pi\)
0.620513 + 0.784196i \(0.286924\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.06805 0.404727
\(503\) −7.67763 −0.342329 −0.171164 0.985242i \(-0.554753\pi\)
−0.171164 + 0.985242i \(0.554753\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.82732 0.125690
\(507\) 0 0
\(508\) 8.95284 0.397218
\(509\) −6.40833 −0.284044 −0.142022 0.989863i \(-0.545360\pi\)
−0.142022 + 0.989863i \(0.545360\pi\)
\(510\) 0 0
\(511\) 3.35971 0.148625
\(512\) 21.3385 0.943037
\(513\) 0 0
\(514\) 14.9379 0.658882
\(515\) 0 0
\(516\) 0 0
\(517\) −37.9339 −1.66833
\(518\) −1.07332 −0.0471592
\(519\) 0 0
\(520\) 0 0
\(521\) 13.3550 0.585092 0.292546 0.956251i \(-0.405498\pi\)
0.292546 + 0.956251i \(0.405498\pi\)
\(522\) 0 0
\(523\) 33.2605 1.45438 0.727190 0.686436i \(-0.240826\pi\)
0.727190 + 0.686436i \(0.240826\pi\)
\(524\) −33.9244 −1.48199
\(525\) 0 0
\(526\) −8.42586 −0.367385
\(527\) −25.7062 −1.11978
\(528\) 0 0
\(529\) −21.2133 −0.922319
\(530\) 0 0
\(531\) 0 0
\(532\) 0.973969 0.0422269
\(533\) −6.74679 −0.292236
\(534\) 0 0
\(535\) 0 0
\(536\) −0.234651 −0.0101354
\(537\) 0 0
\(538\) 14.6072 0.629762
\(539\) −25.6063 −1.10294
\(540\) 0 0
\(541\) −4.47792 −0.192521 −0.0962604 0.995356i \(-0.530688\pi\)
−0.0962604 + 0.995356i \(0.530688\pi\)
\(542\) −3.11664 −0.133871
\(543\) 0 0
\(544\) −27.5571 −1.18150
\(545\) 0 0
\(546\) 0 0
\(547\) 16.2936 0.696663 0.348331 0.937371i \(-0.386748\pi\)
0.348331 + 0.937371i \(0.386748\pi\)
\(548\) −15.6898 −0.670237
\(549\) 0 0
\(550\) 0 0
\(551\) 0.934722 0.0398205
\(552\) 0 0
\(553\) 4.79966 0.204102
\(554\) −13.5753 −0.576759
\(555\) 0 0
\(556\) −11.0401 −0.468205
\(557\) −39.0651 −1.65524 −0.827620 0.561288i \(-0.810306\pi\)
−0.827620 + 0.561288i \(0.810306\pi\)
\(558\) 0 0
\(559\) 9.70344 0.410412
\(560\) 0 0
\(561\) 0 0
\(562\) −5.31555 −0.224223
\(563\) −3.53680 −0.149059 −0.0745293 0.997219i \(-0.523745\pi\)
−0.0745293 + 0.997219i \(0.523745\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.26959 0.137431
\(567\) 0 0
\(568\) 33.0491 1.38671
\(569\) −20.9327 −0.877544 −0.438772 0.898599i \(-0.644586\pi\)
−0.438772 + 0.898599i \(0.644586\pi\)
\(570\) 0 0
\(571\) −46.0130 −1.92558 −0.962792 0.270244i \(-0.912896\pi\)
−0.962792 + 0.270244i \(0.912896\pi\)
\(572\) 13.0243 0.544572
\(573\) 0 0
\(574\) −1.06719 −0.0445437
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0111 1.33264 0.666319 0.745666i \(-0.267869\pi\)
0.666319 + 0.745666i \(0.267869\pi\)
\(578\) 5.39190 0.224274
\(579\) 0 0
\(580\) 0 0
\(581\) −3.73889 −0.155115
\(582\) 0 0
\(583\) 12.0491 0.499021
\(584\) 11.9184 0.493186
\(585\) 0 0
\(586\) 14.5522 0.601144
\(587\) 4.00222 0.165190 0.0825948 0.996583i \(-0.473679\pi\)
0.0825948 + 0.996583i \(0.473679\pi\)
\(588\) 0 0
\(589\) 4.96693 0.204659
\(590\) 0 0
\(591\) 0 0
\(592\) 7.70344 0.316609
\(593\) −14.7590 −0.606080 −0.303040 0.952978i \(-0.598002\pi\)
−0.303040 + 0.952978i \(0.598002\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −13.8204 −0.566106
\(597\) 0 0
\(598\) −1.47302 −0.0602361
\(599\) 46.8774 1.91536 0.957680 0.287835i \(-0.0929355\pi\)
0.957680 + 0.287835i \(0.0929355\pi\)
\(600\) 0 0
\(601\) 36.2906 1.48032 0.740162 0.672429i \(-0.234749\pi\)
0.740162 + 0.672429i \(0.234749\pi\)
\(602\) 1.53487 0.0625564
\(603\) 0 0
\(604\) −7.20034 −0.292978
\(605\) 0 0
\(606\) 0 0
\(607\) 7.24941 0.294244 0.147122 0.989118i \(-0.452999\pi\)
0.147122 + 0.989118i \(0.452999\pi\)
\(608\) 5.32454 0.215939
\(609\) 0 0
\(610\) 0 0
\(611\) 19.7633 0.799538
\(612\) 0 0
\(613\) 19.2415 0.777157 0.388579 0.921416i \(-0.372966\pi\)
0.388579 + 0.921416i \(0.372966\pi\)
\(614\) −6.63910 −0.267932
\(615\) 0 0
\(616\) 4.48901 0.180867
\(617\) −31.9837 −1.28762 −0.643808 0.765187i \(-0.722646\pi\)
−0.643808 + 0.765187i \(0.722646\pi\)
\(618\) 0 0
\(619\) 14.0472 0.564603 0.282301 0.959326i \(-0.408902\pi\)
0.282301 + 0.959326i \(0.408902\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 4.67336 0.187385
\(623\) 1.80208 0.0721989
\(624\) 0 0
\(625\) 0 0
\(626\) −16.8266 −0.672528
\(627\) 0 0
\(628\) 22.2485 0.887814
\(629\) −17.5593 −0.700135
\(630\) 0 0
\(631\) −37.5430 −1.49456 −0.747281 0.664508i \(-0.768641\pi\)
−0.747281 + 0.664508i \(0.768641\pi\)
\(632\) 17.0265 0.677278
\(633\) 0 0
\(634\) 16.6652 0.661861
\(635\) 0 0
\(636\) 0 0
\(637\) 13.3407 0.528579
\(638\) 1.97713 0.0782754
\(639\) 0 0
\(640\) 0 0
\(641\) −20.5672 −0.812355 −0.406178 0.913794i \(-0.633139\pi\)
−0.406178 + 0.913794i \(0.633139\pi\)
\(642\) 0 0
\(643\) −2.44185 −0.0962971 −0.0481486 0.998840i \(-0.515332\pi\)
−0.0481486 + 0.998840i \(0.515332\pi\)
\(644\) 1.30187 0.0513008
\(645\) 0 0
\(646\) −2.85172 −0.112199
\(647\) 17.8017 0.699857 0.349928 0.936776i \(-0.386206\pi\)
0.349928 + 0.936776i \(0.386206\pi\)
\(648\) 0 0
\(649\) −17.1803 −0.674384
\(650\) 0 0
\(651\) 0 0
\(652\) 16.3808 0.641523
\(653\) −9.41235 −0.368334 −0.184167 0.982895i \(-0.558959\pi\)
−0.184167 + 0.982895i \(0.558959\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 7.65941 0.299050
\(657\) 0 0
\(658\) 3.12611 0.121869
\(659\) 33.8532 1.31873 0.659366 0.751822i \(-0.270825\pi\)
0.659366 + 0.751822i \(0.270825\pi\)
\(660\) 0 0
\(661\) −27.0681 −1.05283 −0.526413 0.850229i \(-0.676463\pi\)
−0.526413 + 0.850229i \(0.676463\pi\)
\(662\) −8.24686 −0.320523
\(663\) 0 0
\(664\) −13.2635 −0.514723
\(665\) 0 0
\(666\) 0 0
\(667\) 1.24941 0.0483772
\(668\) 13.7061 0.530306
\(669\) 0 0
\(670\) 0 0
\(671\) 31.0258 1.19774
\(672\) 0 0
\(673\) −0.132293 −0.00509951 −0.00254976 0.999997i \(-0.500812\pi\)
−0.00254976 + 0.999997i \(0.500812\pi\)
\(674\) −11.2896 −0.434858
\(675\) 0 0
\(676\) 15.2675 0.587213
\(677\) 1.40402 0.0539610 0.0269805 0.999636i \(-0.491411\pi\)
0.0269805 + 0.999636i \(0.491411\pi\)
\(678\) 0 0
\(679\) 5.56306 0.213490
\(680\) 0 0
\(681\) 0 0
\(682\) 10.5061 0.402299
\(683\) −10.8799 −0.416306 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.32469 0.165117
\(687\) 0 0
\(688\) −11.0160 −0.419981
\(689\) −6.27749 −0.239153
\(690\) 0 0
\(691\) −8.85172 −0.336735 −0.168368 0.985724i \(-0.553850\pi\)
−0.168368 + 0.985724i \(0.553850\pi\)
\(692\) 6.12066 0.232673
\(693\) 0 0
\(694\) −4.25050 −0.161347
\(695\) 0 0
\(696\) 0 0
\(697\) −17.4589 −0.661304
\(698\) −6.18802 −0.234220
\(699\) 0 0
\(700\) 0 0
\(701\) −17.3959 −0.657033 −0.328517 0.944498i \(-0.606549\pi\)
−0.328517 + 0.944498i \(0.606549\pi\)
\(702\) 0 0
\(703\) 3.39279 0.127961
\(704\) −6.16980 −0.232533
\(705\) 0 0
\(706\) −0.701530 −0.0264024
\(707\) 6.11408 0.229944
\(708\) 0 0
\(709\) 23.9498 0.899455 0.449728 0.893166i \(-0.351521\pi\)
0.449728 + 0.893166i \(0.351521\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.39279 0.239580
\(713\) 6.63910 0.248636
\(714\) 0 0
\(715\) 0 0
\(716\) 36.8119 1.37573
\(717\) 0 0
\(718\) 2.33882 0.0872839
\(719\) 20.6020 0.768324 0.384162 0.923266i \(-0.374490\pi\)
0.384162 + 0.923266i \(0.374490\pi\)
\(720\) 0 0
\(721\) 7.44485 0.277261
\(722\) 0.551006 0.0205063
\(723\) 0 0
\(724\) −2.06015 −0.0765648
\(725\) 0 0
\(726\) 0 0
\(727\) −17.6844 −0.655880 −0.327940 0.944699i \(-0.606354\pi\)
−0.327940 + 0.944699i \(0.606354\pi\)
\(728\) −2.33875 −0.0866797
\(729\) 0 0
\(730\) 0 0
\(731\) 25.1100 0.928725
\(732\) 0 0
\(733\) −29.0601 −1.07336 −0.536681 0.843786i \(-0.680322\pi\)
−0.536681 + 0.843786i \(0.680322\pi\)
\(734\) 2.33098 0.0860382
\(735\) 0 0
\(736\) 7.11711 0.262340
\(737\) 0.442267 0.0162911
\(738\) 0 0
\(739\) 29.2274 1.07515 0.537574 0.843217i \(-0.319341\pi\)
0.537574 + 0.843217i \(0.319341\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.992958 −0.0364526
\(743\) −2.94054 −0.107878 −0.0539390 0.998544i \(-0.517178\pi\)
−0.0539390 + 0.998544i \(0.517178\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −11.2454 −0.411722
\(747\) 0 0
\(748\) 33.7034 1.23232
\(749\) −5.71214 −0.208717
\(750\) 0 0
\(751\) −2.91786 −0.106474 −0.0532372 0.998582i \(-0.516954\pi\)
−0.0532372 + 0.998582i \(0.516954\pi\)
\(752\) −22.4366 −0.818180
\(753\) 0 0
\(754\) −1.03007 −0.0375131
\(755\) 0 0
\(756\) 0 0
\(757\) 25.0981 0.912207 0.456103 0.889927i \(-0.349245\pi\)
0.456103 + 0.889927i \(0.349245\pi\)
\(758\) −10.8280 −0.393291
\(759\) 0 0
\(760\) 0 0
\(761\) 8.91437 0.323146 0.161573 0.986861i \(-0.448343\pi\)
0.161573 + 0.986861i \(0.448343\pi\)
\(762\) 0 0
\(763\) 1.62920 0.0589811
\(764\) 20.9001 0.756140
\(765\) 0 0
\(766\) 0.405826 0.0146631
\(767\) 8.95081 0.323195
\(768\) 0 0
\(769\) 32.3126 1.16522 0.582610 0.812752i \(-0.302031\pi\)
0.582610 + 0.812752i \(0.302031\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 32.2825 1.16187
\(773\) 46.0426 1.65604 0.828019 0.560700i \(-0.189468\pi\)
0.828019 + 0.560700i \(0.189468\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 19.7346 0.708432
\(777\) 0 0
\(778\) 9.16237 0.328487
\(779\) 3.37340 0.120864
\(780\) 0 0
\(781\) −62.2906 −2.22893
\(782\) −3.81178 −0.136309
\(783\) 0 0
\(784\) −15.1453 −0.540903
\(785\) 0 0
\(786\) 0 0
\(787\) −18.0350 −0.642878 −0.321439 0.946930i \(-0.604166\pi\)
−0.321439 + 0.946930i \(0.604166\pi\)
\(788\) 29.5102 1.05126
\(789\) 0 0
\(790\) 0 0
\(791\) −1.13070 −0.0402030
\(792\) 0 0
\(793\) −16.1643 −0.574010
\(794\) 2.06765 0.0733781
\(795\) 0 0
\(796\) 0.470878 0.0166898
\(797\) 5.23508 0.185436 0.0927180 0.995692i \(-0.470444\pi\)
0.0927180 + 0.995692i \(0.470444\pi\)
\(798\) 0 0
\(799\) 51.1423 1.80928
\(800\) 0 0
\(801\) 0 0
\(802\) −11.5362 −0.407356
\(803\) −22.4637 −0.792726
\(804\) 0 0
\(805\) 0 0
\(806\) −5.47361 −0.192800
\(807\) 0 0
\(808\) 21.6894 0.763029
\(809\) 26.6448 0.936782 0.468391 0.883521i \(-0.344834\pi\)
0.468391 + 0.883521i \(0.344834\pi\)
\(810\) 0 0
\(811\) −6.96693 −0.244642 −0.122321 0.992491i \(-0.539034\pi\)
−0.122321 + 0.992491i \(0.539034\pi\)
\(812\) 0.910390 0.0319484
\(813\) 0 0
\(814\) 7.17645 0.251534
\(815\) 0 0
\(816\) 0 0
\(817\) −4.85172 −0.169740
\(818\) 8.91437 0.311683
\(819\) 0 0
\(820\) 0 0
\(821\) −36.4282 −1.27135 −0.635676 0.771956i \(-0.719279\pi\)
−0.635676 + 0.771956i \(0.719279\pi\)
\(822\) 0 0
\(823\) 39.2556 1.36836 0.684182 0.729311i \(-0.260159\pi\)
0.684182 + 0.729311i \(0.260159\pi\)
\(824\) 26.4102 0.920042
\(825\) 0 0
\(826\) 1.41582 0.0492626
\(827\) −3.61193 −0.125599 −0.0627995 0.998026i \(-0.520003\pi\)
−0.0627995 + 0.998026i \(0.520003\pi\)
\(828\) 0 0
\(829\) −42.3567 −1.47111 −0.735555 0.677465i \(-0.763078\pi\)
−0.735555 + 0.677465i \(0.763078\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.21443 0.111440
\(833\) 34.5223 1.19613
\(834\) 0 0
\(835\) 0 0
\(836\) −6.51214 −0.225227
\(837\) 0 0
\(838\) 7.94794 0.274557
\(839\) 11.6837 0.403367 0.201684 0.979451i \(-0.435359\pi\)
0.201684 + 0.979451i \(0.435359\pi\)
\(840\) 0 0
\(841\) −28.1263 −0.969872
\(842\) 9.68180 0.333657
\(843\) 0 0
\(844\) 10.3977 0.357903
\(845\) 0 0
\(846\) 0 0
\(847\) −2.14528 −0.0737128
\(848\) 7.12663 0.244729
\(849\) 0 0
\(850\) 0 0
\(851\) 4.53501 0.155458
\(852\) 0 0
\(853\) 2.19735 0.0752357 0.0376178 0.999292i \(-0.488023\pi\)
0.0376178 + 0.999292i \(0.488023\pi\)
\(854\) −2.55682 −0.0874927
\(855\) 0 0
\(856\) −20.2635 −0.692592
\(857\) 17.1938 0.587329 0.293664 0.955909i \(-0.405125\pi\)
0.293664 + 0.955909i \(0.405125\pi\)
\(858\) 0 0
\(859\) 50.7666 1.73213 0.866067 0.499928i \(-0.166640\pi\)
0.866067 + 0.499928i \(0.166640\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 8.35376 0.284530
\(863\) −21.1039 −0.718383 −0.359192 0.933264i \(-0.616948\pi\)
−0.359192 + 0.933264i \(0.616948\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.33098 0.0792101
\(867\) 0 0
\(868\) 4.83763 0.164200
\(869\) −32.0914 −1.08863
\(870\) 0 0
\(871\) −0.230419 −0.00780744
\(872\) 5.77950 0.195719
\(873\) 0 0
\(874\) 0.736508 0.0249128
\(875\) 0 0
\(876\) 0 0
\(877\) −44.9498 −1.51785 −0.758924 0.651179i \(-0.774275\pi\)
−0.758924 + 0.651179i \(0.774275\pi\)
\(878\) 6.37742 0.215227
\(879\) 0 0
\(880\) 0 0
\(881\) −50.3546 −1.69649 −0.848245 0.529603i \(-0.822341\pi\)
−0.848245 + 0.529603i \(0.822341\pi\)
\(882\) 0 0
\(883\) 36.4700 1.22731 0.613657 0.789573i \(-0.289698\pi\)
0.613657 + 0.789573i \(0.289698\pi\)
\(884\) −17.5593 −0.590583
\(885\) 0 0
\(886\) 12.3077 0.413484
\(887\) −38.2612 −1.28469 −0.642343 0.766418i \(-0.722037\pi\)
−0.642343 + 0.766418i \(0.722037\pi\)
\(888\) 0 0
\(889\) 3.03007 0.101625
\(890\) 0 0
\(891\) 0 0
\(892\) 49.3296 1.65168
\(893\) −9.88165 −0.330677
\(894\) 0 0
\(895\) 0 0
\(896\) 6.62253 0.221243
\(897\) 0 0
\(898\) 1.72947 0.0577130
\(899\) 4.64270 0.154843
\(900\) 0 0
\(901\) −16.2445 −0.541183
\(902\) 7.13544 0.237584
\(903\) 0 0
\(904\) −4.01109 −0.133407
\(905\) 0 0
\(906\) 0 0
\(907\) −38.3426 −1.27315 −0.636573 0.771216i \(-0.719649\pi\)
−0.636573 + 0.771216i \(0.719649\pi\)
\(908\) 31.2654 1.03758
\(909\) 0 0
\(910\) 0 0
\(911\) −30.6509 −1.01551 −0.507755 0.861501i \(-0.669525\pi\)
−0.507755 + 0.861501i \(0.669525\pi\)
\(912\) 0 0
\(913\) 24.9989 0.827343
\(914\) −3.48767 −0.115362
\(915\) 0 0
\(916\) −3.08514 −0.101936
\(917\) −11.4817 −0.379158
\(918\) 0 0
\(919\) 0.507995 0.0167572 0.00837860 0.999965i \(-0.497333\pi\)
0.00837860 + 0.999965i \(0.497333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 19.1863 0.631866
\(923\) 32.4530 1.06820
\(924\) 0 0
\(925\) 0 0
\(926\) 15.1554 0.498038
\(927\) 0 0
\(928\) 4.97697 0.163377
\(929\) −19.7998 −0.649609 −0.324804 0.945781i \(-0.605298\pi\)
−0.324804 + 0.945781i \(0.605298\pi\)
\(930\) 0 0
\(931\) −6.67036 −0.218612
\(932\) −14.3880 −0.471294
\(933\) 0 0
\(934\) 14.3836 0.470646
\(935\) 0 0
\(936\) 0 0
\(937\) 43.2415 1.41264 0.706319 0.707894i \(-0.250354\pi\)
0.706319 + 0.707894i \(0.250354\pi\)
\(938\) −0.0364470 −0.00119004
\(939\) 0 0
\(940\) 0 0
\(941\) 26.2832 0.856808 0.428404 0.903587i \(-0.359076\pi\)
0.428404 + 0.903587i \(0.359076\pi\)
\(942\) 0 0
\(943\) 4.50909 0.146836
\(944\) −10.1616 −0.330731
\(945\) 0 0
\(946\) −10.2624 −0.333659
\(947\) 19.2940 0.626971 0.313486 0.949593i \(-0.398503\pi\)
0.313486 + 0.949593i \(0.398503\pi\)
\(948\) 0 0
\(949\) 11.7034 0.379910
\(950\) 0 0
\(951\) 0 0
\(952\) −6.05206 −0.196148
\(953\) −35.1225 −1.13773 −0.568864 0.822432i \(-0.692617\pi\)
−0.568864 + 0.822432i \(0.692617\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 31.8854 1.03125
\(957\) 0 0
\(958\) 1.69235 0.0546773
\(959\) −5.31020 −0.171475
\(960\) 0 0
\(961\) −6.32964 −0.204182
\(962\) −3.73889 −0.120547
\(963\) 0 0
\(964\) 0.917864 0.0295624
\(965\) 0 0
\(966\) 0 0
\(967\) −0.870706 −0.0280000 −0.0140000 0.999902i \(-0.504456\pi\)
−0.0140000 + 0.999902i \(0.504456\pi\)
\(968\) −7.61027 −0.244603
\(969\) 0 0
\(970\) 0 0
\(971\) −33.9934 −1.09090 −0.545450 0.838143i \(-0.683641\pi\)
−0.545450 + 0.838143i \(0.683641\pi\)
\(972\) 0 0
\(973\) −3.73651 −0.119787
\(974\) 15.6976 0.502984
\(975\) 0 0
\(976\) 18.3508 0.587394
\(977\) −36.8611 −1.17929 −0.589645 0.807663i \(-0.700732\pi\)
−0.589645 + 0.807663i \(0.700732\pi\)
\(978\) 0 0
\(979\) −12.0491 −0.385090
\(980\) 0 0
\(981\) 0 0
\(982\) −14.8457 −0.473746
\(983\) 39.9959 1.27567 0.637836 0.770172i \(-0.279830\pi\)
0.637836 + 0.770172i \(0.279830\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.66556 −0.0848888
\(987\) 0 0
\(988\) 3.39279 0.107939
\(989\) −6.48511 −0.206214
\(990\) 0 0
\(991\) 6.83463 0.217109 0.108555 0.994090i \(-0.465378\pi\)
0.108555 + 0.994090i \(0.465378\pi\)
\(992\) 26.4466 0.839681
\(993\) 0 0
\(994\) 5.13334 0.162820
\(995\) 0 0
\(996\) 0 0
\(997\) −52.1092 −1.65032 −0.825158 0.564903i \(-0.808914\pi\)
−0.825158 + 0.564903i \(0.808914\pi\)
\(998\) 15.2752 0.483528
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bq.1.4 yes 6
3.2 odd 2 inner 4275.2.a.bq.1.3 6
5.4 even 2 4275.2.a.bu.1.3 yes 6
15.14 odd 2 4275.2.a.bu.1.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4275.2.a.bq.1.3 6 3.2 odd 2 inner
4275.2.a.bq.1.4 yes 6 1.1 even 1 trivial
4275.2.a.bu.1.3 yes 6 5.4 even 2
4275.2.a.bu.1.4 yes 6 15.14 odd 2