Properties

Label 4275.2.a.bs
Level $4275$
Weight $2$
Character orbit 4275.a
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.16717036.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} + 26x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 1) q^{4} + (\beta_{4} - \beta_{2}) q^{7} + (\beta_{3} + \beta_1) q^{8} + (\beta_{5} - \beta_{3} - \beta_1) q^{11} + ( - 2 \beta_{4} - 2) q^{13} + (\beta_{5} - \beta_{3} - 2 \beta_1) q^{14}+ \cdots + (3 \beta_{5} - \beta_{3} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} - 16 q^{13} - 6 q^{19} - 10 q^{22} - 30 q^{28} + 2 q^{31} - 12 q^{34} - 40 q^{37} - 4 q^{43} - 30 q^{46} + 10 q^{49} - 20 q^{52} - 24 q^{58} + 2 q^{61} + 26 q^{64} - 34 q^{67} - 22 q^{73}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 10x^{4} + 26x^{2} - 19 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 8\nu^{2} + 11 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 8\nu^{3} + 11\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 8\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 8\beta_{3} + 29\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.53035
−1.52185
−1.13194
1.13194
1.52185
2.53035
−2.53035 0 4.40268 0 0 −2.62981 −6.07962 0 0
1.2 −1.52185 0 0.316031 0 0 −1.48028 2.56275 0 0
1.3 −1.13194 0 −0.718710 0 0 4.11009 3.07742 0 0
1.4 1.13194 0 −0.718710 0 0 4.11009 −3.07742 0 0
1.5 1.52185 0 0.316031 0 0 −1.48028 −2.56275 0 0
1.6 2.53035 0 4.40268 0 0 −2.62981 6.07962 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)
\(19\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4275.2.a.bs 6
3.b odd 2 1 inner 4275.2.a.bs 6
5.b even 2 1 4275.2.a.bt yes 6
15.d odd 2 1 4275.2.a.bt yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4275.2.a.bs 6 1.a even 1 1 trivial
4275.2.a.bs 6 3.b odd 2 1 inner
4275.2.a.bt yes 6 5.b even 2 1
4275.2.a.bt yes 6 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4275))\):

\( T_{2}^{6} - 10T_{2}^{4} + 26T_{2}^{2} - 19 \) Copy content Toggle raw display
\( T_{7}^{3} - 13T_{7} - 16 \) Copy content Toggle raw display
\( T_{11}^{6} - 51T_{11}^{4} + 596T_{11}^{2} - 304 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 10 T^{4} + \cdots - 19 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} - 13 T - 16)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} - 51 T^{4} + \cdots - 304 \) Copy content Toggle raw display
$13$ \( (T^{3} + 8 T^{2} - 56)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 88 T^{4} + \cdots - 19456 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 71 T^{4} + \cdots - 304 \) Copy content Toggle raw display
$29$ \( T^{6} - 61 T^{4} + \cdots - 931 \) Copy content Toggle raw display
$31$ \( (T^{3} - T^{2} - 12 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 20 T^{2} + \cdots + 136)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 22 T^{4} + \cdots - 304 \) Copy content Toggle raw display
$43$ \( (T^{3} + 2 T^{2} - 48 T - 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 152 T^{4} + \cdots - 59584 \) Copy content Toggle raw display
$53$ \( T^{6} - 125 T^{4} + \cdots - 19 \) Copy content Toggle raw display
$59$ \( T^{6} - 74 T^{4} + \cdots - 76 \) Copy content Toggle raw display
$61$ \( (T^{3} - T^{2} - 117 T - 371)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 17 T^{2} + \cdots - 436)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 74 T^{4} + \cdots - 76 \) Copy content Toggle raw display
$73$ \( (T^{3} + 11 T^{2} + \cdots - 1523)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 3 T^{2} + \cdots - 112)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 251 T^{4} + \cdots - 14896 \) Copy content Toggle raw display
$89$ \( T^{6} - 421 T^{4} + \cdots - 2643451 \) Copy content Toggle raw display
$97$ \( (T^{3} + 8 T^{2} - 56)^{2} \) Copy content Toggle raw display
show more
show less