Properties

Label 4275.2.a.bw.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 8x^{5} + 26x^{4} + 11x^{3} - 51x^{2} + 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.70383\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70383 q^{2} +0.903045 q^{4} +0.338398 q^{7} +1.86903 q^{8} -1.26153 q^{11} -6.57224 q^{13} -0.576574 q^{14} -4.99060 q^{16} +3.65980 q^{17} +1.00000 q^{19} +2.14943 q^{22} -5.14881 q^{23} +11.1980 q^{26} +0.305589 q^{28} +4.73743 q^{29} -3.25083 q^{31} +4.76509 q^{32} -6.23569 q^{34} -4.44536 q^{37} -1.70383 q^{38} +4.93134 q^{41} -9.32202 q^{43} -1.13922 q^{44} +8.77271 q^{46} +8.42466 q^{47} -6.88549 q^{49} -5.93503 q^{52} -6.98052 q^{53} +0.632476 q^{56} -8.07179 q^{58} -2.34081 q^{59} +14.2007 q^{61} +5.53887 q^{62} +1.86228 q^{64} +0.160860 q^{67} +3.30497 q^{68} -0.160860 q^{71} +5.07893 q^{73} +7.57416 q^{74} +0.903045 q^{76} -0.426899 q^{77} +16.6039 q^{79} -8.40218 q^{82} +6.81966 q^{83} +15.8832 q^{86} -2.35783 q^{88} +16.3639 q^{89} -2.22403 q^{91} -4.64961 q^{92} -14.3542 q^{94} -13.7180 q^{97} +11.7317 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{2} + 11 q^{4} - 8 q^{7} + 9 q^{8} + 4 q^{11} - 8 q^{13} + 4 q^{14} + 19 q^{16} + 4 q^{17} + 7 q^{19} - 12 q^{22} + 10 q^{23} + 20 q^{26} - 14 q^{28} + 6 q^{29} + 4 q^{31} + 31 q^{32} + 2 q^{34}+ \cdots + 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.70383 −1.20479 −0.602396 0.798198i \(-0.705787\pi\)
−0.602396 + 0.798198i \(0.705787\pi\)
\(3\) 0 0
\(4\) 0.903045 0.451523
\(5\) 0 0
\(6\) 0 0
\(7\) 0.338398 0.127903 0.0639513 0.997953i \(-0.479630\pi\)
0.0639513 + 0.997953i \(0.479630\pi\)
\(8\) 1.86903 0.660801
\(9\) 0 0
\(10\) 0 0
\(11\) −1.26153 −0.380365 −0.190183 0.981749i \(-0.560908\pi\)
−0.190183 + 0.981749i \(0.560908\pi\)
\(12\) 0 0
\(13\) −6.57224 −1.82281 −0.911406 0.411509i \(-0.865002\pi\)
−0.911406 + 0.411509i \(0.865002\pi\)
\(14\) −0.576574 −0.154096
\(15\) 0 0
\(16\) −4.99060 −1.24765
\(17\) 3.65980 0.887633 0.443816 0.896118i \(-0.353624\pi\)
0.443816 + 0.896118i \(0.353624\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 2.14943 0.458261
\(23\) −5.14881 −1.07360 −0.536801 0.843709i \(-0.680367\pi\)
−0.536801 + 0.843709i \(0.680367\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 11.1980 2.19611
\(27\) 0 0
\(28\) 0.305589 0.0577509
\(29\) 4.73743 0.879719 0.439860 0.898067i \(-0.355028\pi\)
0.439860 + 0.898067i \(0.355028\pi\)
\(30\) 0 0
\(31\) −3.25083 −0.583867 −0.291933 0.956439i \(-0.594299\pi\)
−0.291933 + 0.956439i \(0.594299\pi\)
\(32\) 4.76509 0.842357
\(33\) 0 0
\(34\) −6.23569 −1.06941
\(35\) 0 0
\(36\) 0 0
\(37\) −4.44536 −0.730813 −0.365407 0.930848i \(-0.619070\pi\)
−0.365407 + 0.930848i \(0.619070\pi\)
\(38\) −1.70383 −0.276398
\(39\) 0 0
\(40\) 0 0
\(41\) 4.93134 0.770147 0.385073 0.922886i \(-0.374176\pi\)
0.385073 + 0.922886i \(0.374176\pi\)
\(42\) 0 0
\(43\) −9.32202 −1.42159 −0.710797 0.703397i \(-0.751666\pi\)
−0.710797 + 0.703397i \(0.751666\pi\)
\(44\) −1.13922 −0.171743
\(45\) 0 0
\(46\) 8.77271 1.29347
\(47\) 8.42466 1.22886 0.614431 0.788970i \(-0.289386\pi\)
0.614431 + 0.788970i \(0.289386\pi\)
\(48\) 0 0
\(49\) −6.88549 −0.983641
\(50\) 0 0
\(51\) 0 0
\(52\) −5.93503 −0.823040
\(53\) −6.98052 −0.958849 −0.479424 0.877583i \(-0.659155\pi\)
−0.479424 + 0.877583i \(0.659155\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.632476 0.0845181
\(57\) 0 0
\(58\) −8.07179 −1.05988
\(59\) −2.34081 −0.304747 −0.152374 0.988323i \(-0.548692\pi\)
−0.152374 + 0.988323i \(0.548692\pi\)
\(60\) 0 0
\(61\) 14.2007 1.81821 0.909105 0.416567i \(-0.136767\pi\)
0.909105 + 0.416567i \(0.136767\pi\)
\(62\) 5.53887 0.703438
\(63\) 0 0
\(64\) 1.86228 0.232785
\(65\) 0 0
\(66\) 0 0
\(67\) 0.160860 0.0196522 0.00982608 0.999952i \(-0.496872\pi\)
0.00982608 + 0.999952i \(0.496872\pi\)
\(68\) 3.30497 0.400786
\(69\) 0 0
\(70\) 0 0
\(71\) −0.160860 −0.0190906 −0.00954528 0.999954i \(-0.503038\pi\)
−0.00954528 + 0.999954i \(0.503038\pi\)
\(72\) 0 0
\(73\) 5.07893 0.594443 0.297222 0.954809i \(-0.403940\pi\)
0.297222 + 0.954809i \(0.403940\pi\)
\(74\) 7.57416 0.880478
\(75\) 0 0
\(76\) 0.903045 0.103586
\(77\) −0.426899 −0.0486497
\(78\) 0 0
\(79\) 16.6039 1.86808 0.934040 0.357168i \(-0.116258\pi\)
0.934040 + 0.357168i \(0.116258\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −8.40218 −0.927866
\(83\) 6.81966 0.748555 0.374278 0.927317i \(-0.377891\pi\)
0.374278 + 0.927317i \(0.377891\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 15.8832 1.71272
\(87\) 0 0
\(88\) −2.35783 −0.251346
\(89\) 16.3639 1.73457 0.867283 0.497815i \(-0.165864\pi\)
0.867283 + 0.497815i \(0.165864\pi\)
\(90\) 0 0
\(91\) −2.22403 −0.233142
\(92\) −4.64961 −0.484755
\(93\) 0 0
\(94\) −14.3542 −1.48052
\(95\) 0 0
\(96\) 0 0
\(97\) −13.7180 −1.39285 −0.696424 0.717631i \(-0.745227\pi\)
−0.696424 + 0.717631i \(0.745227\pi\)
\(98\) 11.7317 1.18508
\(99\) 0 0
\(100\) 0 0
\(101\) 3.01514 0.300018 0.150009 0.988685i \(-0.452070\pi\)
0.150009 + 0.988685i \(0.452070\pi\)
\(102\) 0 0
\(103\) −6.03399 −0.594546 −0.297273 0.954792i \(-0.596077\pi\)
−0.297273 + 0.954792i \(0.596077\pi\)
\(104\) −12.2837 −1.20452
\(105\) 0 0
\(106\) 11.8936 1.15521
\(107\) 4.67680 0.452123 0.226062 0.974113i \(-0.427415\pi\)
0.226062 + 0.974113i \(0.427415\pi\)
\(108\) 0 0
\(109\) 2.19391 0.210138 0.105069 0.994465i \(-0.466494\pi\)
0.105069 + 0.994465i \(0.466494\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.68881 −0.159578
\(113\) −2.54559 −0.239469 −0.119734 0.992806i \(-0.538204\pi\)
−0.119734 + 0.992806i \(0.538204\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.27812 0.397213
\(117\) 0 0
\(118\) 3.98834 0.367157
\(119\) 1.23847 0.113531
\(120\) 0 0
\(121\) −9.40854 −0.855322
\(122\) −24.1956 −2.19056
\(123\) 0 0
\(124\) −2.93565 −0.263629
\(125\) 0 0
\(126\) 0 0
\(127\) −6.77093 −0.600823 −0.300411 0.953810i \(-0.597124\pi\)
−0.300411 + 0.953810i \(0.597124\pi\)
\(128\) −12.7032 −1.12281
\(129\) 0 0
\(130\) 0 0
\(131\) −6.23896 −0.545101 −0.272550 0.962142i \(-0.587867\pi\)
−0.272550 + 0.962142i \(0.587867\pi\)
\(132\) 0 0
\(133\) 0.338398 0.0293429
\(134\) −0.274078 −0.0236768
\(135\) 0 0
\(136\) 6.84027 0.586549
\(137\) −8.88502 −0.759098 −0.379549 0.925172i \(-0.623921\pi\)
−0.379549 + 0.925172i \(0.623921\pi\)
\(138\) 0 0
\(139\) 15.9529 1.35311 0.676553 0.736394i \(-0.263473\pi\)
0.676553 + 0.736394i \(0.263473\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.274078 0.0230001
\(143\) 8.29107 0.693334
\(144\) 0 0
\(145\) 0 0
\(146\) −8.65364 −0.716180
\(147\) 0 0
\(148\) −4.01436 −0.329979
\(149\) −13.4315 −1.10035 −0.550175 0.835049i \(-0.685439\pi\)
−0.550175 + 0.835049i \(0.685439\pi\)
\(150\) 0 0
\(151\) −8.59789 −0.699686 −0.349843 0.936808i \(-0.613765\pi\)
−0.349843 + 0.936808i \(0.613765\pi\)
\(152\) 1.86903 0.151598
\(153\) 0 0
\(154\) 0.727365 0.0586127
\(155\) 0 0
\(156\) 0 0
\(157\) 23.5887 1.88258 0.941292 0.337592i \(-0.109612\pi\)
0.941292 + 0.337592i \(0.109612\pi\)
\(158\) −28.2902 −2.25065
\(159\) 0 0
\(160\) 0 0
\(161\) −1.74235 −0.137316
\(162\) 0 0
\(163\) −4.57348 −0.358223 −0.179111 0.983829i \(-0.557322\pi\)
−0.179111 + 0.983829i \(0.557322\pi\)
\(164\) 4.45323 0.347738
\(165\) 0 0
\(166\) −11.6196 −0.901853
\(167\) −4.77725 −0.369675 −0.184837 0.982769i \(-0.559176\pi\)
−0.184837 + 0.982769i \(0.559176\pi\)
\(168\) 0 0
\(169\) 30.1943 2.32264
\(170\) 0 0
\(171\) 0 0
\(172\) −8.41820 −0.641882
\(173\) 12.5915 0.957311 0.478656 0.878003i \(-0.341124\pi\)
0.478656 + 0.878003i \(0.341124\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.29579 0.474563
\(177\) 0 0
\(178\) −27.8813 −2.08979
\(179\) −13.5976 −1.01633 −0.508167 0.861259i \(-0.669677\pi\)
−0.508167 + 0.861259i \(0.669677\pi\)
\(180\) 0 0
\(181\) 6.38782 0.474803 0.237401 0.971412i \(-0.423704\pi\)
0.237401 + 0.971412i \(0.423704\pi\)
\(182\) 3.78938 0.280888
\(183\) 0 0
\(184\) −9.62327 −0.709437
\(185\) 0 0
\(186\) 0 0
\(187\) −4.61695 −0.337625
\(188\) 7.60784 0.554859
\(189\) 0 0
\(190\) 0 0
\(191\) −10.9816 −0.794597 −0.397299 0.917689i \(-0.630052\pi\)
−0.397299 + 0.917689i \(0.630052\pi\)
\(192\) 0 0
\(193\) 4.01436 0.288960 0.144480 0.989508i \(-0.453849\pi\)
0.144480 + 0.989508i \(0.453849\pi\)
\(194\) 23.3731 1.67809
\(195\) 0 0
\(196\) −6.21790 −0.444136
\(197\) 8.84545 0.630213 0.315106 0.949056i \(-0.397960\pi\)
0.315106 + 0.949056i \(0.397960\pi\)
\(198\) 0 0
\(199\) −15.2576 −1.08158 −0.540791 0.841157i \(-0.681875\pi\)
−0.540791 + 0.841157i \(0.681875\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −5.13729 −0.361459
\(203\) 1.60314 0.112518
\(204\) 0 0
\(205\) 0 0
\(206\) 10.2809 0.716304
\(207\) 0 0
\(208\) 32.7994 2.27423
\(209\) −1.26153 −0.0872618
\(210\) 0 0
\(211\) 15.9598 1.09872 0.549359 0.835586i \(-0.314872\pi\)
0.549359 + 0.835586i \(0.314872\pi\)
\(212\) −6.30373 −0.432942
\(213\) 0 0
\(214\) −7.96848 −0.544714
\(215\) 0 0
\(216\) 0 0
\(217\) −1.10008 −0.0746781
\(218\) −3.73806 −0.253173
\(219\) 0 0
\(220\) 0 0
\(221\) −24.0531 −1.61799
\(222\) 0 0
\(223\) −14.2079 −0.951430 −0.475715 0.879600i \(-0.657811\pi\)
−0.475715 + 0.879600i \(0.657811\pi\)
\(224\) 1.61250 0.107740
\(225\) 0 0
\(226\) 4.33725 0.288510
\(227\) 4.98748 0.331031 0.165515 0.986207i \(-0.447071\pi\)
0.165515 + 0.986207i \(0.447071\pi\)
\(228\) 0 0
\(229\) 17.0988 1.12992 0.564959 0.825119i \(-0.308892\pi\)
0.564959 + 0.825119i \(0.308892\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.85439 0.581319
\(233\) −20.3833 −1.33536 −0.667678 0.744450i \(-0.732712\pi\)
−0.667678 + 0.744450i \(0.732712\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.11385 −0.137600
\(237\) 0 0
\(238\) −2.11015 −0.136781
\(239\) 13.7888 0.891924 0.445962 0.895052i \(-0.352862\pi\)
0.445962 + 0.895052i \(0.352862\pi\)
\(240\) 0 0
\(241\) 19.2835 1.24216 0.621081 0.783746i \(-0.286694\pi\)
0.621081 + 0.783746i \(0.286694\pi\)
\(242\) 16.0306 1.03048
\(243\) 0 0
\(244\) 12.8238 0.820963
\(245\) 0 0
\(246\) 0 0
\(247\) −6.57224 −0.418182
\(248\) −6.07590 −0.385820
\(249\) 0 0
\(250\) 0 0
\(251\) 28.4001 1.79260 0.896299 0.443449i \(-0.146245\pi\)
0.896299 + 0.443449i \(0.146245\pi\)
\(252\) 0 0
\(253\) 6.49538 0.408361
\(254\) 11.5365 0.723866
\(255\) 0 0
\(256\) 17.9196 1.11997
\(257\) −21.6561 −1.35087 −0.675435 0.737420i \(-0.736044\pi\)
−0.675435 + 0.737420i \(0.736044\pi\)
\(258\) 0 0
\(259\) −1.50430 −0.0934729
\(260\) 0 0
\(261\) 0 0
\(262\) 10.6301 0.656732
\(263\) 29.9857 1.84900 0.924498 0.381186i \(-0.124484\pi\)
0.924498 + 0.381186i \(0.124484\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.576574 −0.0353520
\(267\) 0 0
\(268\) 0.145264 0.00887339
\(269\) −9.71487 −0.592326 −0.296163 0.955137i \(-0.595707\pi\)
−0.296163 + 0.955137i \(0.595707\pi\)
\(270\) 0 0
\(271\) −17.5794 −1.06787 −0.533937 0.845524i \(-0.679288\pi\)
−0.533937 + 0.845524i \(0.679288\pi\)
\(272\) −18.2646 −1.10746
\(273\) 0 0
\(274\) 15.1386 0.914555
\(275\) 0 0
\(276\) 0 0
\(277\) 21.6333 1.29982 0.649910 0.760011i \(-0.274807\pi\)
0.649910 + 0.760011i \(0.274807\pi\)
\(278\) −27.1811 −1.63021
\(279\) 0 0
\(280\) 0 0
\(281\) 24.3262 1.45118 0.725588 0.688129i \(-0.241568\pi\)
0.725588 + 0.688129i \(0.241568\pi\)
\(282\) 0 0
\(283\) 26.0867 1.55070 0.775348 0.631534i \(-0.217575\pi\)
0.775348 + 0.631534i \(0.217575\pi\)
\(284\) −0.145264 −0.00861981
\(285\) 0 0
\(286\) −14.1266 −0.835323
\(287\) 1.66876 0.0985037
\(288\) 0 0
\(289\) −3.60583 −0.212108
\(290\) 0 0
\(291\) 0 0
\(292\) 4.58650 0.268405
\(293\) 25.8399 1.50958 0.754790 0.655966i \(-0.227739\pi\)
0.754790 + 0.655966i \(0.227739\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.30851 −0.482922
\(297\) 0 0
\(298\) 22.8850 1.32569
\(299\) 33.8392 1.95697
\(300\) 0 0
\(301\) −3.15456 −0.181826
\(302\) 14.6494 0.842976
\(303\) 0 0
\(304\) −4.99060 −0.286231
\(305\) 0 0
\(306\) 0 0
\(307\) 13.4520 0.767744 0.383872 0.923386i \(-0.374590\pi\)
0.383872 + 0.923386i \(0.374590\pi\)
\(308\) −0.385509 −0.0219664
\(309\) 0 0
\(310\) 0 0
\(311\) 18.3714 1.04175 0.520874 0.853633i \(-0.325606\pi\)
0.520874 + 0.853633i \(0.325606\pi\)
\(312\) 0 0
\(313\) 5.36525 0.303262 0.151631 0.988437i \(-0.451547\pi\)
0.151631 + 0.988437i \(0.451547\pi\)
\(314\) −40.1912 −2.26812
\(315\) 0 0
\(316\) 14.9940 0.843480
\(317\) 19.8770 1.11640 0.558201 0.829706i \(-0.311492\pi\)
0.558201 + 0.829706i \(0.311492\pi\)
\(318\) 0 0
\(319\) −5.97641 −0.334615
\(320\) 0 0
\(321\) 0 0
\(322\) 2.96867 0.165438
\(323\) 3.65980 0.203637
\(324\) 0 0
\(325\) 0 0
\(326\) 7.79245 0.431584
\(327\) 0 0
\(328\) 9.21682 0.508914
\(329\) 2.85089 0.157175
\(330\) 0 0
\(331\) −14.9005 −0.819007 −0.409504 0.912308i \(-0.634298\pi\)
−0.409504 + 0.912308i \(0.634298\pi\)
\(332\) 6.15846 0.337990
\(333\) 0 0
\(334\) 8.13964 0.445381
\(335\) 0 0
\(336\) 0 0
\(337\) −1.38458 −0.0754229 −0.0377115 0.999289i \(-0.512007\pi\)
−0.0377115 + 0.999289i \(0.512007\pi\)
\(338\) −51.4461 −2.79830
\(339\) 0 0
\(340\) 0 0
\(341\) 4.10102 0.222083
\(342\) 0 0
\(343\) −4.69883 −0.253713
\(344\) −17.4231 −0.939391
\(345\) 0 0
\(346\) −21.4537 −1.15336
\(347\) 6.07341 0.326038 0.163019 0.986623i \(-0.447877\pi\)
0.163019 + 0.986623i \(0.447877\pi\)
\(348\) 0 0
\(349\) −24.3054 −1.30104 −0.650518 0.759491i \(-0.725448\pi\)
−0.650518 + 0.759491i \(0.725448\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −6.01130 −0.320403
\(353\) −1.64440 −0.0875225 −0.0437612 0.999042i \(-0.513934\pi\)
−0.0437612 + 0.999042i \(0.513934\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 14.7773 0.783196
\(357\) 0 0
\(358\) 23.1680 1.22447
\(359\) −7.55763 −0.398877 −0.199438 0.979910i \(-0.563912\pi\)
−0.199438 + 0.979910i \(0.563912\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −10.8838 −0.572039
\(363\) 0 0
\(364\) −2.00840 −0.105269
\(365\) 0 0
\(366\) 0 0
\(367\) 27.8973 1.45623 0.728114 0.685457i \(-0.240397\pi\)
0.728114 + 0.685457i \(0.240397\pi\)
\(368\) 25.6957 1.33948
\(369\) 0 0
\(370\) 0 0
\(371\) −2.36220 −0.122639
\(372\) 0 0
\(373\) 4.48495 0.232222 0.116111 0.993236i \(-0.462957\pi\)
0.116111 + 0.993236i \(0.462957\pi\)
\(374\) 7.86651 0.406767
\(375\) 0 0
\(376\) 15.7459 0.812034
\(377\) −31.1355 −1.60356
\(378\) 0 0
\(379\) −0.870441 −0.0447116 −0.0223558 0.999750i \(-0.507117\pi\)
−0.0223558 + 0.999750i \(0.507117\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 18.7107 0.957324
\(383\) 24.1047 1.23169 0.615845 0.787867i \(-0.288815\pi\)
0.615845 + 0.787867i \(0.288815\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.83980 −0.348137
\(387\) 0 0
\(388\) −12.3879 −0.628902
\(389\) 9.42190 0.477709 0.238855 0.971055i \(-0.423228\pi\)
0.238855 + 0.971055i \(0.423228\pi\)
\(390\) 0 0
\(391\) −18.8436 −0.952964
\(392\) −12.8692 −0.649991
\(393\) 0 0
\(394\) −15.0712 −0.759275
\(395\) 0 0
\(396\) 0 0
\(397\) 22.4127 1.12486 0.562429 0.826845i \(-0.309867\pi\)
0.562429 + 0.826845i \(0.309867\pi\)
\(398\) 25.9964 1.30308
\(399\) 0 0
\(400\) 0 0
\(401\) 19.1341 0.955513 0.477757 0.878492i \(-0.341450\pi\)
0.477757 + 0.878492i \(0.341450\pi\)
\(402\) 0 0
\(403\) 21.3653 1.06428
\(404\) 2.72281 0.135465
\(405\) 0 0
\(406\) −2.73148 −0.135561
\(407\) 5.60796 0.277976
\(408\) 0 0
\(409\) −29.9491 −1.48089 −0.740445 0.672117i \(-0.765385\pi\)
−0.740445 + 0.672117i \(0.765385\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −5.44896 −0.268451
\(413\) −0.792125 −0.0389779
\(414\) 0 0
\(415\) 0 0
\(416\) −31.3173 −1.53546
\(417\) 0 0
\(418\) 2.14943 0.105132
\(419\) 9.25091 0.451936 0.225968 0.974135i \(-0.427445\pi\)
0.225968 + 0.974135i \(0.427445\pi\)
\(420\) 0 0
\(421\) −1.37526 −0.0670263 −0.0335131 0.999438i \(-0.510670\pi\)
−0.0335131 + 0.999438i \(0.510670\pi\)
\(422\) −27.1928 −1.32373
\(423\) 0 0
\(424\) −13.0468 −0.633608
\(425\) 0 0
\(426\) 0 0
\(427\) 4.80548 0.232554
\(428\) 4.22336 0.204144
\(429\) 0 0
\(430\) 0 0
\(431\) 37.8011 1.82082 0.910408 0.413713i \(-0.135768\pi\)
0.910408 + 0.413713i \(0.135768\pi\)
\(432\) 0 0
\(433\) −11.8369 −0.568844 −0.284422 0.958699i \(-0.591802\pi\)
−0.284422 + 0.958699i \(0.591802\pi\)
\(434\) 1.87435 0.0899715
\(435\) 0 0
\(436\) 1.98120 0.0948822
\(437\) −5.14881 −0.246301
\(438\) 0 0
\(439\) 1.26164 0.0602148 0.0301074 0.999547i \(-0.490415\pi\)
0.0301074 + 0.999547i \(0.490415\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 40.9825 1.94934
\(443\) 12.3103 0.584880 0.292440 0.956284i \(-0.405533\pi\)
0.292440 + 0.956284i \(0.405533\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 24.2078 1.14627
\(447\) 0 0
\(448\) 0.630194 0.0297738
\(449\) −20.5974 −0.972049 −0.486025 0.873945i \(-0.661554\pi\)
−0.486025 + 0.873945i \(0.661554\pi\)
\(450\) 0 0
\(451\) −6.22103 −0.292937
\(452\) −2.29878 −0.108125
\(453\) 0 0
\(454\) −8.49783 −0.398823
\(455\) 0 0
\(456\) 0 0
\(457\) 5.44702 0.254801 0.127401 0.991851i \(-0.459337\pi\)
0.127401 + 0.991851i \(0.459337\pi\)
\(458\) −29.1334 −1.36132
\(459\) 0 0
\(460\) 0 0
\(461\) 20.2718 0.944152 0.472076 0.881558i \(-0.343505\pi\)
0.472076 + 0.881558i \(0.343505\pi\)
\(462\) 0 0
\(463\) −5.96485 −0.277210 −0.138605 0.990348i \(-0.544262\pi\)
−0.138605 + 0.990348i \(0.544262\pi\)
\(464\) −23.6426 −1.09758
\(465\) 0 0
\(466\) 34.7298 1.60883
\(467\) 23.9168 1.10674 0.553368 0.832937i \(-0.313342\pi\)
0.553368 + 0.832937i \(0.313342\pi\)
\(468\) 0 0
\(469\) 0.0544347 0.00251356
\(470\) 0 0
\(471\) 0 0
\(472\) −4.37503 −0.201377
\(473\) 11.7600 0.540725
\(474\) 0 0
\(475\) 0 0
\(476\) 1.11840 0.0512616
\(477\) 0 0
\(478\) −23.4938 −1.07458
\(479\) 22.8932 1.04602 0.523009 0.852327i \(-0.324809\pi\)
0.523009 + 0.852327i \(0.324809\pi\)
\(480\) 0 0
\(481\) 29.2160 1.33213
\(482\) −32.8559 −1.49655
\(483\) 0 0
\(484\) −8.49634 −0.386197
\(485\) 0 0
\(486\) 0 0
\(487\) −29.2434 −1.32515 −0.662573 0.748997i \(-0.730536\pi\)
−0.662573 + 0.748997i \(0.730536\pi\)
\(488\) 26.5414 1.20147
\(489\) 0 0
\(490\) 0 0
\(491\) −38.4307 −1.73435 −0.867177 0.498001i \(-0.834068\pi\)
−0.867177 + 0.498001i \(0.834068\pi\)
\(492\) 0 0
\(493\) 17.3381 0.780868
\(494\) 11.1980 0.503822
\(495\) 0 0
\(496\) 16.2236 0.728461
\(497\) −0.0544347 −0.00244173
\(498\) 0 0
\(499\) −18.0065 −0.806081 −0.403041 0.915182i \(-0.632047\pi\)
−0.403041 + 0.915182i \(0.632047\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −48.3890 −2.15971
\(503\) 21.9944 0.980683 0.490341 0.871530i \(-0.336872\pi\)
0.490341 + 0.871530i \(0.336872\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −11.0670 −0.491990
\(507\) 0 0
\(508\) −6.11445 −0.271285
\(509\) 28.2815 1.25356 0.626778 0.779198i \(-0.284373\pi\)
0.626778 + 0.779198i \(0.284373\pi\)
\(510\) 0 0
\(511\) 1.71870 0.0760308
\(512\) −5.12552 −0.226518
\(513\) 0 0
\(514\) 36.8983 1.62752
\(515\) 0 0
\(516\) 0 0
\(517\) −10.6279 −0.467417
\(518\) 2.56308 0.112615
\(519\) 0 0
\(520\) 0 0
\(521\) 38.9817 1.70782 0.853909 0.520422i \(-0.174225\pi\)
0.853909 + 0.520422i \(0.174225\pi\)
\(522\) 0 0
\(523\) −15.9957 −0.699445 −0.349723 0.936853i \(-0.613724\pi\)
−0.349723 + 0.936853i \(0.613724\pi\)
\(524\) −5.63406 −0.246125
\(525\) 0 0
\(526\) −51.0906 −2.22766
\(527\) −11.8974 −0.518259
\(528\) 0 0
\(529\) 3.51028 0.152621
\(530\) 0 0
\(531\) 0 0
\(532\) 0.305589 0.0132490
\(533\) −32.4100 −1.40383
\(534\) 0 0
\(535\) 0 0
\(536\) 0.300652 0.0129862
\(537\) 0 0
\(538\) 16.5525 0.713629
\(539\) 8.68624 0.374143
\(540\) 0 0
\(541\) 29.8743 1.28439 0.642197 0.766539i \(-0.278023\pi\)
0.642197 + 0.766539i \(0.278023\pi\)
\(542\) 29.9524 1.28656
\(543\) 0 0
\(544\) 17.4393 0.747704
\(545\) 0 0
\(546\) 0 0
\(547\) −10.7906 −0.461375 −0.230687 0.973028i \(-0.574097\pi\)
−0.230687 + 0.973028i \(0.574097\pi\)
\(548\) −8.02357 −0.342750
\(549\) 0 0
\(550\) 0 0
\(551\) 4.73743 0.201821
\(552\) 0 0
\(553\) 5.61872 0.238932
\(554\) −36.8595 −1.56601
\(555\) 0 0
\(556\) 14.4062 0.610958
\(557\) 21.5086 0.911349 0.455674 0.890147i \(-0.349398\pi\)
0.455674 + 0.890147i \(0.349398\pi\)
\(558\) 0 0
\(559\) 61.2665 2.59130
\(560\) 0 0
\(561\) 0 0
\(562\) −41.4477 −1.74837
\(563\) −38.2483 −1.61197 −0.805986 0.591934i \(-0.798364\pi\)
−0.805986 + 0.591934i \(0.798364\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −44.4474 −1.86826
\(567\) 0 0
\(568\) −0.300652 −0.0126151
\(569\) −1.58310 −0.0663672 −0.0331836 0.999449i \(-0.510565\pi\)
−0.0331836 + 0.999449i \(0.510565\pi\)
\(570\) 0 0
\(571\) 16.7896 0.702625 0.351312 0.936258i \(-0.385736\pi\)
0.351312 + 0.936258i \(0.385736\pi\)
\(572\) 7.48721 0.313056
\(573\) 0 0
\(574\) −2.84329 −0.118676
\(575\) 0 0
\(576\) 0 0
\(577\) −12.4194 −0.517026 −0.258513 0.966008i \(-0.583232\pi\)
−0.258513 + 0.966008i \(0.583232\pi\)
\(578\) 6.14374 0.255546
\(579\) 0 0
\(580\) 0 0
\(581\) 2.30776 0.0957422
\(582\) 0 0
\(583\) 8.80613 0.364713
\(584\) 9.49265 0.392809
\(585\) 0 0
\(586\) −44.0268 −1.81873
\(587\) 36.8546 1.52115 0.760577 0.649248i \(-0.224916\pi\)
0.760577 + 0.649248i \(0.224916\pi\)
\(588\) 0 0
\(589\) −3.25083 −0.133948
\(590\) 0 0
\(591\) 0 0
\(592\) 22.1850 0.911799
\(593\) −25.3678 −1.04173 −0.520866 0.853638i \(-0.674391\pi\)
−0.520866 + 0.853638i \(0.674391\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.1292 −0.496833
\(597\) 0 0
\(598\) −57.6564 −2.35774
\(599\) −9.06026 −0.370192 −0.185096 0.982720i \(-0.559260\pi\)
−0.185096 + 0.982720i \(0.559260\pi\)
\(600\) 0 0
\(601\) −20.2910 −0.827688 −0.413844 0.910348i \(-0.635814\pi\)
−0.413844 + 0.910348i \(0.635814\pi\)
\(602\) 5.37483 0.219062
\(603\) 0 0
\(604\) −7.76428 −0.315924
\(605\) 0 0
\(606\) 0 0
\(607\) 15.1815 0.616199 0.308099 0.951354i \(-0.400307\pi\)
0.308099 + 0.951354i \(0.400307\pi\)
\(608\) 4.76509 0.193250
\(609\) 0 0
\(610\) 0 0
\(611\) −55.3689 −2.23998
\(612\) 0 0
\(613\) −0.895386 −0.0361643 −0.0180821 0.999837i \(-0.505756\pi\)
−0.0180821 + 0.999837i \(0.505756\pi\)
\(614\) −22.9199 −0.924971
\(615\) 0 0
\(616\) −0.797887 −0.0321478
\(617\) −8.13119 −0.327349 −0.163675 0.986514i \(-0.552335\pi\)
−0.163675 + 0.986514i \(0.552335\pi\)
\(618\) 0 0
\(619\) −30.5308 −1.22714 −0.613568 0.789642i \(-0.710266\pi\)
−0.613568 + 0.789642i \(0.710266\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −31.3018 −1.25509
\(623\) 5.53750 0.221855
\(624\) 0 0
\(625\) 0 0
\(626\) −9.14149 −0.365367
\(627\) 0 0
\(628\) 21.3017 0.850029
\(629\) −16.2692 −0.648694
\(630\) 0 0
\(631\) −31.1834 −1.24139 −0.620696 0.784051i \(-0.713150\pi\)
−0.620696 + 0.784051i \(0.713150\pi\)
\(632\) 31.0331 1.23443
\(633\) 0 0
\(634\) −33.8670 −1.34503
\(635\) 0 0
\(636\) 0 0
\(637\) 45.2531 1.79299
\(638\) 10.1828 0.403141
\(639\) 0 0
\(640\) 0 0
\(641\) −41.9990 −1.65886 −0.829430 0.558611i \(-0.811335\pi\)
−0.829430 + 0.558611i \(0.811335\pi\)
\(642\) 0 0
\(643\) 37.0767 1.46216 0.731081 0.682291i \(-0.239016\pi\)
0.731081 + 0.682291i \(0.239016\pi\)
\(644\) −1.57342 −0.0620014
\(645\) 0 0
\(646\) −6.23569 −0.245340
\(647\) 11.4455 0.449967 0.224984 0.974363i \(-0.427767\pi\)
0.224984 + 0.974363i \(0.427767\pi\)
\(648\) 0 0
\(649\) 2.95300 0.115915
\(650\) 0 0
\(651\) 0 0
\(652\) −4.13006 −0.161746
\(653\) 10.3303 0.404258 0.202129 0.979359i \(-0.435214\pi\)
0.202129 + 0.979359i \(0.435214\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −24.6104 −0.960873
\(657\) 0 0
\(658\) −4.85744 −0.189363
\(659\) 33.0422 1.28714 0.643571 0.765387i \(-0.277452\pi\)
0.643571 + 0.765387i \(0.277452\pi\)
\(660\) 0 0
\(661\) 44.3029 1.72318 0.861592 0.507602i \(-0.169468\pi\)
0.861592 + 0.507602i \(0.169468\pi\)
\(662\) 25.3880 0.986733
\(663\) 0 0
\(664\) 12.7461 0.494646
\(665\) 0 0
\(666\) 0 0
\(667\) −24.3922 −0.944468
\(668\) −4.31407 −0.166917
\(669\) 0 0
\(670\) 0 0
\(671\) −17.9146 −0.691584
\(672\) 0 0
\(673\) 24.5532 0.946458 0.473229 0.880939i \(-0.343088\pi\)
0.473229 + 0.880939i \(0.343088\pi\)
\(674\) 2.35909 0.0908689
\(675\) 0 0
\(676\) 27.2668 1.04872
\(677\) 31.1408 1.19684 0.598420 0.801183i \(-0.295796\pi\)
0.598420 + 0.801183i \(0.295796\pi\)
\(678\) 0 0
\(679\) −4.64213 −0.178149
\(680\) 0 0
\(681\) 0 0
\(682\) −6.98745 −0.267563
\(683\) −1.25288 −0.0479401 −0.0239701 0.999713i \(-0.507631\pi\)
−0.0239701 + 0.999713i \(0.507631\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 8.00601 0.305671
\(687\) 0 0
\(688\) 46.5225 1.77365
\(689\) 45.8777 1.74780
\(690\) 0 0
\(691\) 8.26243 0.314318 0.157159 0.987573i \(-0.449767\pi\)
0.157159 + 0.987573i \(0.449767\pi\)
\(692\) 11.3707 0.432248
\(693\) 0 0
\(694\) −10.3481 −0.392808
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0478 0.683607
\(698\) 41.4123 1.56748
\(699\) 0 0
\(700\) 0 0
\(701\) 34.3808 1.29855 0.649273 0.760555i \(-0.275073\pi\)
0.649273 + 0.760555i \(0.275073\pi\)
\(702\) 0 0
\(703\) −4.44536 −0.167660
\(704\) −2.34932 −0.0885435
\(705\) 0 0
\(706\) 2.80178 0.105446
\(707\) 1.02032 0.0383730
\(708\) 0 0
\(709\) −20.5553 −0.771972 −0.385986 0.922505i \(-0.626139\pi\)
−0.385986 + 0.922505i \(0.626139\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30.5845 1.14620
\(713\) 16.7379 0.626840
\(714\) 0 0
\(715\) 0 0
\(716\) −12.2793 −0.458897
\(717\) 0 0
\(718\) 12.8769 0.480563
\(719\) 40.8151 1.52215 0.761074 0.648665i \(-0.224672\pi\)
0.761074 + 0.648665i \(0.224672\pi\)
\(720\) 0 0
\(721\) −2.04189 −0.0760440
\(722\) −1.70383 −0.0634101
\(723\) 0 0
\(724\) 5.76849 0.214384
\(725\) 0 0
\(726\) 0 0
\(727\) −7.23285 −0.268252 −0.134126 0.990964i \(-0.542823\pi\)
−0.134126 + 0.990964i \(0.542823\pi\)
\(728\) −4.15678 −0.154061
\(729\) 0 0
\(730\) 0 0
\(731\) −34.1168 −1.26185
\(732\) 0 0
\(733\) −14.8463 −0.548361 −0.274180 0.961678i \(-0.588407\pi\)
−0.274180 + 0.961678i \(0.588407\pi\)
\(734\) −47.5323 −1.75445
\(735\) 0 0
\(736\) −24.5346 −0.904356
\(737\) −0.202929 −0.00747500
\(738\) 0 0
\(739\) 46.2049 1.69967 0.849837 0.527046i \(-0.176701\pi\)
0.849837 + 0.527046i \(0.176701\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.02479 0.147755
\(743\) −27.5405 −1.01036 −0.505181 0.863014i \(-0.668574\pi\)
−0.505181 + 0.863014i \(0.668574\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −7.64160 −0.279779
\(747\) 0 0
\(748\) −4.16931 −0.152445
\(749\) 1.58262 0.0578277
\(750\) 0 0
\(751\) 4.64254 0.169409 0.0847044 0.996406i \(-0.473005\pi\)
0.0847044 + 0.996406i \(0.473005\pi\)
\(752\) −42.0441 −1.53319
\(753\) 0 0
\(754\) 53.0498 1.93196
\(755\) 0 0
\(756\) 0 0
\(757\) 21.0894 0.766506 0.383253 0.923643i \(-0.374804\pi\)
0.383253 + 0.923643i \(0.374804\pi\)
\(758\) 1.48309 0.0538681
\(759\) 0 0
\(760\) 0 0
\(761\) −25.7211 −0.932391 −0.466195 0.884682i \(-0.654376\pi\)
−0.466195 + 0.884682i \(0.654376\pi\)
\(762\) 0 0
\(763\) 0.742416 0.0268772
\(764\) −9.91683 −0.358778
\(765\) 0 0
\(766\) −41.0703 −1.48393
\(767\) 15.3843 0.555496
\(768\) 0 0
\(769\) 4.09791 0.147774 0.0738872 0.997267i \(-0.476460\pi\)
0.0738872 + 0.997267i \(0.476460\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.62515 0.130472
\(773\) −6.10515 −0.219587 −0.109794 0.993954i \(-0.535019\pi\)
−0.109794 + 0.993954i \(0.535019\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −25.6392 −0.920395
\(777\) 0 0
\(778\) −16.0533 −0.575540
\(779\) 4.93134 0.176684
\(780\) 0 0
\(781\) 0.202929 0.00726138
\(782\) 32.1064 1.14812
\(783\) 0 0
\(784\) 34.3627 1.22724
\(785\) 0 0
\(786\) 0 0
\(787\) 5.40729 0.192749 0.0963746 0.995345i \(-0.469275\pi\)
0.0963746 + 0.995345i \(0.469275\pi\)
\(788\) 7.98784 0.284555
\(789\) 0 0
\(790\) 0 0
\(791\) −0.861422 −0.0306287
\(792\) 0 0
\(793\) −93.3302 −3.31425
\(794\) −38.1874 −1.35522
\(795\) 0 0
\(796\) −13.7783 −0.488359
\(797\) −15.2892 −0.541572 −0.270786 0.962640i \(-0.587284\pi\)
−0.270786 + 0.962640i \(0.587284\pi\)
\(798\) 0 0
\(799\) 30.8326 1.09078
\(800\) 0 0
\(801\) 0 0
\(802\) −32.6014 −1.15119
\(803\) −6.40721 −0.226106
\(804\) 0 0
\(805\) 0 0
\(806\) −36.4028 −1.28223
\(807\) 0 0
\(808\) 5.63538 0.198252
\(809\) 14.1943 0.499046 0.249523 0.968369i \(-0.419726\pi\)
0.249523 + 0.968369i \(0.419726\pi\)
\(810\) 0 0
\(811\) 7.04888 0.247520 0.123760 0.992312i \(-0.460505\pi\)
0.123760 + 0.992312i \(0.460505\pi\)
\(812\) 1.44771 0.0508046
\(813\) 0 0
\(814\) −9.55502 −0.334903
\(815\) 0 0
\(816\) 0 0
\(817\) −9.32202 −0.326136
\(818\) 51.0283 1.78416
\(819\) 0 0
\(820\) 0 0
\(821\) −4.55973 −0.159136 −0.0795678 0.996829i \(-0.525354\pi\)
−0.0795678 + 0.996829i \(0.525354\pi\)
\(822\) 0 0
\(823\) 51.4832 1.79459 0.897296 0.441430i \(-0.145529\pi\)
0.897296 + 0.441430i \(0.145529\pi\)
\(824\) −11.2777 −0.392877
\(825\) 0 0
\(826\) 1.34965 0.0469603
\(827\) −5.27138 −0.183304 −0.0916519 0.995791i \(-0.529215\pi\)
−0.0916519 + 0.995791i \(0.529215\pi\)
\(828\) 0 0
\(829\) −3.33691 −0.115896 −0.0579478 0.998320i \(-0.518456\pi\)
−0.0579478 + 0.998320i \(0.518456\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −12.2394 −0.424324
\(833\) −25.1995 −0.873112
\(834\) 0 0
\(835\) 0 0
\(836\) −1.13922 −0.0394007
\(837\) 0 0
\(838\) −15.7620 −0.544489
\(839\) −46.6426 −1.61028 −0.805141 0.593084i \(-0.797910\pi\)
−0.805141 + 0.593084i \(0.797910\pi\)
\(840\) 0 0
\(841\) −6.55672 −0.226094
\(842\) 2.34322 0.0807527
\(843\) 0 0
\(844\) 14.4124 0.496096
\(845\) 0 0
\(846\) 0 0
\(847\) −3.18384 −0.109398
\(848\) 34.8370 1.19631
\(849\) 0 0
\(850\) 0 0
\(851\) 22.8883 0.784602
\(852\) 0 0
\(853\) −54.9577 −1.88171 −0.940857 0.338803i \(-0.889978\pi\)
−0.940857 + 0.338803i \(0.889978\pi\)
\(854\) −8.18774 −0.280179
\(855\) 0 0
\(856\) 8.74106 0.298763
\(857\) −20.9465 −0.715520 −0.357760 0.933814i \(-0.616459\pi\)
−0.357760 + 0.933814i \(0.616459\pi\)
\(858\) 0 0
\(859\) −22.8957 −0.781191 −0.390595 0.920562i \(-0.627731\pi\)
−0.390595 + 0.920562i \(0.627731\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −64.4067 −2.19370
\(863\) −1.14448 −0.0389585 −0.0194792 0.999810i \(-0.506201\pi\)
−0.0194792 + 0.999810i \(0.506201\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 20.1681 0.685339
\(867\) 0 0
\(868\) −0.993419 −0.0337188
\(869\) −20.9463 −0.710553
\(870\) 0 0
\(871\) −1.05721 −0.0358222
\(872\) 4.10048 0.138860
\(873\) 0 0
\(874\) 8.77271 0.296742
\(875\) 0 0
\(876\) 0 0
\(877\) −24.0552 −0.812285 −0.406143 0.913810i \(-0.633126\pi\)
−0.406143 + 0.913810i \(0.633126\pi\)
\(878\) −2.14962 −0.0725463
\(879\) 0 0
\(880\) 0 0
\(881\) −6.21009 −0.209223 −0.104612 0.994513i \(-0.533360\pi\)
−0.104612 + 0.994513i \(0.533360\pi\)
\(882\) 0 0
\(883\) 48.6495 1.63719 0.818594 0.574373i \(-0.194754\pi\)
0.818594 + 0.574373i \(0.194754\pi\)
\(884\) −21.7210 −0.730558
\(885\) 0 0
\(886\) −20.9747 −0.704659
\(887\) −21.6544 −0.727085 −0.363542 0.931578i \(-0.618433\pi\)
−0.363542 + 0.931578i \(0.618433\pi\)
\(888\) 0 0
\(889\) −2.29127 −0.0768468
\(890\) 0 0
\(891\) 0 0
\(892\) −12.8303 −0.429592
\(893\) 8.42466 0.281920
\(894\) 0 0
\(895\) 0 0
\(896\) −4.29874 −0.143611
\(897\) 0 0
\(898\) 35.0944 1.17112
\(899\) −15.4006 −0.513639
\(900\) 0 0
\(901\) −25.5474 −0.851106
\(902\) 10.5996 0.352928
\(903\) 0 0
\(904\) −4.75777 −0.158241
\(905\) 0 0
\(906\) 0 0
\(907\) −34.4404 −1.14357 −0.571787 0.820402i \(-0.693750\pi\)
−0.571787 + 0.820402i \(0.693750\pi\)
\(908\) 4.50392 0.149468
\(909\) 0 0
\(910\) 0 0
\(911\) −0.736061 −0.0243868 −0.0121934 0.999926i \(-0.503881\pi\)
−0.0121934 + 0.999926i \(0.503881\pi\)
\(912\) 0 0
\(913\) −8.60321 −0.284725
\(914\) −9.28082 −0.306982
\(915\) 0 0
\(916\) 15.4410 0.510184
\(917\) −2.11125 −0.0697198
\(918\) 0 0
\(919\) −50.4080 −1.66281 −0.831403 0.555670i \(-0.812462\pi\)
−0.831403 + 0.555670i \(0.812462\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −34.5397 −1.13751
\(923\) 1.05721 0.0347985
\(924\) 0 0
\(925\) 0 0
\(926\) 10.1631 0.333980
\(927\) 0 0
\(928\) 22.5743 0.741038
\(929\) −48.1908 −1.58109 −0.790544 0.612405i \(-0.790202\pi\)
−0.790544 + 0.612405i \(0.790202\pi\)
\(930\) 0 0
\(931\) −6.88549 −0.225663
\(932\) −18.4071 −0.602943
\(933\) 0 0
\(934\) −40.7502 −1.33339
\(935\) 0 0
\(936\) 0 0
\(937\) 54.6458 1.78520 0.892601 0.450848i \(-0.148878\pi\)
0.892601 + 0.450848i \(0.148878\pi\)
\(938\) −0.0927476 −0.00302832
\(939\) 0 0
\(940\) 0 0
\(941\) 55.7010 1.81580 0.907901 0.419185i \(-0.137684\pi\)
0.907901 + 0.419185i \(0.137684\pi\)
\(942\) 0 0
\(943\) −25.3906 −0.826831
\(944\) 11.6820 0.380218
\(945\) 0 0
\(946\) −20.0371 −0.651461
\(947\) −40.3454 −1.31105 −0.655524 0.755174i \(-0.727552\pi\)
−0.655524 + 0.755174i \(0.727552\pi\)
\(948\) 0 0
\(949\) −33.3799 −1.08356
\(950\) 0 0
\(951\) 0 0
\(952\) 2.31474 0.0750211
\(953\) −38.4655 −1.24602 −0.623009 0.782214i \(-0.714090\pi\)
−0.623009 + 0.782214i \(0.714090\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 12.4519 0.402724
\(957\) 0 0
\(958\) −39.0062 −1.26023
\(959\) −3.00667 −0.0970906
\(960\) 0 0
\(961\) −20.4321 −0.659099
\(962\) −49.7792 −1.60494
\(963\) 0 0
\(964\) 17.4139 0.560864
\(965\) 0 0
\(966\) 0 0
\(967\) −31.7715 −1.02170 −0.510851 0.859669i \(-0.670670\pi\)
−0.510851 + 0.859669i \(0.670670\pi\)
\(968\) −17.5848 −0.565198
\(969\) 0 0
\(970\) 0 0
\(971\) −43.7049 −1.40256 −0.701279 0.712887i \(-0.747387\pi\)
−0.701279 + 0.712887i \(0.747387\pi\)
\(972\) 0 0
\(973\) 5.39843 0.173066
\(974\) 49.8259 1.59652
\(975\) 0 0
\(976\) −70.8699 −2.26849
\(977\) −3.98536 −0.127503 −0.0637515 0.997966i \(-0.520306\pi\)
−0.0637515 + 0.997966i \(0.520306\pi\)
\(978\) 0 0
\(979\) −20.6435 −0.659769
\(980\) 0 0
\(981\) 0 0
\(982\) 65.4795 2.08953
\(983\) 51.4517 1.64105 0.820527 0.571608i \(-0.193680\pi\)
0.820527 + 0.571608i \(0.193680\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −29.5412 −0.940783
\(987\) 0 0
\(988\) −5.93503 −0.188818
\(989\) 47.9973 1.52623
\(990\) 0 0
\(991\) 24.0024 0.762463 0.381231 0.924480i \(-0.375500\pi\)
0.381231 + 0.924480i \(0.375500\pi\)
\(992\) −15.4905 −0.491824
\(993\) 0 0
\(994\) 0.0927476 0.00294178
\(995\) 0 0
\(996\) 0 0
\(997\) 42.9027 1.35874 0.679371 0.733795i \(-0.262253\pi\)
0.679371 + 0.733795i \(0.262253\pi\)
\(998\) 30.6800 0.971160
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bw.1.2 7
3.2 odd 2 1425.2.a.y.1.6 7
5.2 odd 4 855.2.c.g.514.4 14
5.3 odd 4 855.2.c.g.514.11 14
5.4 even 2 4275.2.a.bv.1.6 7
15.2 even 4 285.2.c.b.229.11 yes 14
15.8 even 4 285.2.c.b.229.4 14
15.14 odd 2 1425.2.a.z.1.2 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.b.229.4 14 15.8 even 4
285.2.c.b.229.11 yes 14 15.2 even 4
855.2.c.g.514.4 14 5.2 odd 4
855.2.c.g.514.11 14 5.3 odd 4
1425.2.a.y.1.6 7 3.2 odd 2
1425.2.a.z.1.2 7 15.14 odd 2
4275.2.a.bv.1.6 7 5.4 even 2
4275.2.a.bw.1.2 7 1.1 even 1 trivial