Properties

Label 4304.2.a.j.1.7
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $1$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(1\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 3 x^{12} - 15 x^{11} + 45 x^{10} + 82 x^{9} - 242 x^{8} - 201 x^{7} + 574 x^{6} + 200 x^{5} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.326022\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.326022 q^{3} +1.25336 q^{5} -3.69529 q^{7} -2.89371 q^{9} +5.00996 q^{11} +2.41345 q^{13} +0.408623 q^{15} -5.30028 q^{17} -0.886964 q^{19} -1.20475 q^{21} +7.57500 q^{23} -3.42909 q^{25} -1.92148 q^{27} -6.03262 q^{29} +7.35225 q^{31} +1.63336 q^{33} -4.63153 q^{35} -3.61677 q^{37} +0.786836 q^{39} -2.17395 q^{41} -12.5138 q^{43} -3.62686 q^{45} -4.49061 q^{47} +6.65518 q^{49} -1.72801 q^{51} +0.796691 q^{53} +6.27929 q^{55} -0.289170 q^{57} +4.80584 q^{59} +0.838597 q^{61} +10.6931 q^{63} +3.02491 q^{65} +6.72297 q^{67} +2.46962 q^{69} +2.08679 q^{71} +1.21332 q^{73} -1.11796 q^{75} -18.5133 q^{77} -10.2032 q^{79} +8.05468 q^{81} +3.77744 q^{83} -6.64316 q^{85} -1.96677 q^{87} -16.7296 q^{89} -8.91838 q^{91} +2.39700 q^{93} -1.11169 q^{95} +17.4798 q^{97} -14.4974 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q + 3 q^{3} - 9 q^{5} - 6 q^{7} + 6 q^{11} - 8 q^{13} + q^{15} - 14 q^{17} + 6 q^{19} - 13 q^{21} + 11 q^{23} - 2 q^{25} + 9 q^{27} - 19 q^{29} - 14 q^{31} - 15 q^{33} + 20 q^{35} - 23 q^{37} - 8 q^{39}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.326022 0.188229 0.0941144 0.995561i \(-0.469998\pi\)
0.0941144 + 0.995561i \(0.469998\pi\)
\(4\) 0 0
\(5\) 1.25336 0.560519 0.280260 0.959924i \(-0.409579\pi\)
0.280260 + 0.959924i \(0.409579\pi\)
\(6\) 0 0
\(7\) −3.69529 −1.39669 −0.698344 0.715762i \(-0.746080\pi\)
−0.698344 + 0.715762i \(0.746080\pi\)
\(8\) 0 0
\(9\) −2.89371 −0.964570
\(10\) 0 0
\(11\) 5.00996 1.51056 0.755280 0.655402i \(-0.227501\pi\)
0.755280 + 0.655402i \(0.227501\pi\)
\(12\) 0 0
\(13\) 2.41345 0.669369 0.334685 0.942330i \(-0.391370\pi\)
0.334685 + 0.942330i \(0.391370\pi\)
\(14\) 0 0
\(15\) 0.408623 0.105506
\(16\) 0 0
\(17\) −5.30028 −1.28551 −0.642754 0.766073i \(-0.722208\pi\)
−0.642754 + 0.766073i \(0.722208\pi\)
\(18\) 0 0
\(19\) −0.886964 −0.203484 −0.101742 0.994811i \(-0.532442\pi\)
−0.101742 + 0.994811i \(0.532442\pi\)
\(20\) 0 0
\(21\) −1.20475 −0.262897
\(22\) 0 0
\(23\) 7.57500 1.57950 0.789748 0.613431i \(-0.210211\pi\)
0.789748 + 0.613431i \(0.210211\pi\)
\(24\) 0 0
\(25\) −3.42909 −0.685818
\(26\) 0 0
\(27\) −1.92148 −0.369789
\(28\) 0 0
\(29\) −6.03262 −1.12023 −0.560115 0.828415i \(-0.689243\pi\)
−0.560115 + 0.828415i \(0.689243\pi\)
\(30\) 0 0
\(31\) 7.35225 1.32050 0.660252 0.751044i \(-0.270450\pi\)
0.660252 + 0.751044i \(0.270450\pi\)
\(32\) 0 0
\(33\) 1.63336 0.284331
\(34\) 0 0
\(35\) −4.63153 −0.782871
\(36\) 0 0
\(37\) −3.61677 −0.594593 −0.297296 0.954785i \(-0.596085\pi\)
−0.297296 + 0.954785i \(0.596085\pi\)
\(38\) 0 0
\(39\) 0.786836 0.125995
\(40\) 0 0
\(41\) −2.17395 −0.339513 −0.169757 0.985486i \(-0.554298\pi\)
−0.169757 + 0.985486i \(0.554298\pi\)
\(42\) 0 0
\(43\) −12.5138 −1.90834 −0.954168 0.299273i \(-0.903256\pi\)
−0.954168 + 0.299273i \(0.903256\pi\)
\(44\) 0 0
\(45\) −3.62686 −0.540660
\(46\) 0 0
\(47\) −4.49061 −0.655023 −0.327511 0.944847i \(-0.606210\pi\)
−0.327511 + 0.944847i \(0.606210\pi\)
\(48\) 0 0
\(49\) 6.65518 0.950740
\(50\) 0 0
\(51\) −1.72801 −0.241970
\(52\) 0 0
\(53\) 0.796691 0.109434 0.0547170 0.998502i \(-0.482574\pi\)
0.0547170 + 0.998502i \(0.482574\pi\)
\(54\) 0 0
\(55\) 6.27929 0.846699
\(56\) 0 0
\(57\) −0.289170 −0.0383015
\(58\) 0 0
\(59\) 4.80584 0.625667 0.312834 0.949808i \(-0.398722\pi\)
0.312834 + 0.949808i \(0.398722\pi\)
\(60\) 0 0
\(61\) 0.838597 0.107371 0.0536857 0.998558i \(-0.482903\pi\)
0.0536857 + 0.998558i \(0.482903\pi\)
\(62\) 0 0
\(63\) 10.6931 1.34720
\(64\) 0 0
\(65\) 3.02491 0.375195
\(66\) 0 0
\(67\) 6.72297 0.821341 0.410671 0.911784i \(-0.365295\pi\)
0.410671 + 0.911784i \(0.365295\pi\)
\(68\) 0 0
\(69\) 2.46962 0.297307
\(70\) 0 0
\(71\) 2.08679 0.247656 0.123828 0.992304i \(-0.460483\pi\)
0.123828 + 0.992304i \(0.460483\pi\)
\(72\) 0 0
\(73\) 1.21332 0.142009 0.0710043 0.997476i \(-0.477380\pi\)
0.0710043 + 0.997476i \(0.477380\pi\)
\(74\) 0 0
\(75\) −1.11796 −0.129091
\(76\) 0 0
\(77\) −18.5133 −2.10978
\(78\) 0 0
\(79\) −10.2032 −1.14795 −0.573975 0.818873i \(-0.694599\pi\)
−0.573975 + 0.818873i \(0.694599\pi\)
\(80\) 0 0
\(81\) 8.05468 0.894965
\(82\) 0 0
\(83\) 3.77744 0.414628 0.207314 0.978274i \(-0.433528\pi\)
0.207314 + 0.978274i \(0.433528\pi\)
\(84\) 0 0
\(85\) −6.64316 −0.720552
\(86\) 0 0
\(87\) −1.96677 −0.210860
\(88\) 0 0
\(89\) −16.7296 −1.77334 −0.886669 0.462405i \(-0.846987\pi\)
−0.886669 + 0.462405i \(0.846987\pi\)
\(90\) 0 0
\(91\) −8.91838 −0.934901
\(92\) 0 0
\(93\) 2.39700 0.248557
\(94\) 0 0
\(95\) −1.11169 −0.114056
\(96\) 0 0
\(97\) 17.4798 1.77481 0.887403 0.460995i \(-0.152507\pi\)
0.887403 + 0.460995i \(0.152507\pi\)
\(98\) 0 0
\(99\) −14.4974 −1.45704
\(100\) 0 0
\(101\) −15.3226 −1.52465 −0.762326 0.647193i \(-0.775943\pi\)
−0.762326 + 0.647193i \(0.775943\pi\)
\(102\) 0 0
\(103\) −18.8960 −1.86188 −0.930938 0.365176i \(-0.881009\pi\)
−0.930938 + 0.365176i \(0.881009\pi\)
\(104\) 0 0
\(105\) −1.50998 −0.147359
\(106\) 0 0
\(107\) −7.56339 −0.731180 −0.365590 0.930776i \(-0.619133\pi\)
−0.365590 + 0.930776i \(0.619133\pi\)
\(108\) 0 0
\(109\) −19.1055 −1.82998 −0.914988 0.403481i \(-0.867800\pi\)
−0.914988 + 0.403481i \(0.867800\pi\)
\(110\) 0 0
\(111\) −1.17915 −0.111919
\(112\) 0 0
\(113\) 4.76999 0.448723 0.224362 0.974506i \(-0.427970\pi\)
0.224362 + 0.974506i \(0.427970\pi\)
\(114\) 0 0
\(115\) 9.49419 0.885338
\(116\) 0 0
\(117\) −6.98381 −0.645654
\(118\) 0 0
\(119\) 19.5861 1.79545
\(120\) 0 0
\(121\) 14.0997 1.28179
\(122\) 0 0
\(123\) −0.708754 −0.0639062
\(124\) 0 0
\(125\) −10.5647 −0.944934
\(126\) 0 0
\(127\) −0.363345 −0.0322417 −0.0161208 0.999870i \(-0.505132\pi\)
−0.0161208 + 0.999870i \(0.505132\pi\)
\(128\) 0 0
\(129\) −4.07977 −0.359204
\(130\) 0 0
\(131\) −22.4233 −1.95913 −0.979566 0.201122i \(-0.935541\pi\)
−0.979566 + 0.201122i \(0.935541\pi\)
\(132\) 0 0
\(133\) 3.27759 0.284203
\(134\) 0 0
\(135\) −2.40830 −0.207274
\(136\) 0 0
\(137\) 10.8876 0.930191 0.465096 0.885260i \(-0.346020\pi\)
0.465096 + 0.885260i \(0.346020\pi\)
\(138\) 0 0
\(139\) 14.2991 1.21283 0.606417 0.795147i \(-0.292606\pi\)
0.606417 + 0.795147i \(0.292606\pi\)
\(140\) 0 0
\(141\) −1.46404 −0.123294
\(142\) 0 0
\(143\) 12.0913 1.01112
\(144\) 0 0
\(145\) −7.56104 −0.627911
\(146\) 0 0
\(147\) 2.16973 0.178957
\(148\) 0 0
\(149\) −14.5630 −1.19305 −0.596525 0.802595i \(-0.703452\pi\)
−0.596525 + 0.802595i \(0.703452\pi\)
\(150\) 0 0
\(151\) −0.354938 −0.0288845 −0.0144422 0.999896i \(-0.504597\pi\)
−0.0144422 + 0.999896i \(0.504597\pi\)
\(152\) 0 0
\(153\) 15.3375 1.23996
\(154\) 0 0
\(155\) 9.21502 0.740168
\(156\) 0 0
\(157\) −4.96121 −0.395948 −0.197974 0.980207i \(-0.563436\pi\)
−0.197974 + 0.980207i \(0.563436\pi\)
\(158\) 0 0
\(159\) 0.259739 0.0205986
\(160\) 0 0
\(161\) −27.9918 −2.20606
\(162\) 0 0
\(163\) 14.4104 1.12871 0.564357 0.825531i \(-0.309124\pi\)
0.564357 + 0.825531i \(0.309124\pi\)
\(164\) 0 0
\(165\) 2.04718 0.159373
\(166\) 0 0
\(167\) −15.0597 −1.16535 −0.582676 0.812704i \(-0.697994\pi\)
−0.582676 + 0.812704i \(0.697994\pi\)
\(168\) 0 0
\(169\) −7.17528 −0.551945
\(170\) 0 0
\(171\) 2.56662 0.196274
\(172\) 0 0
\(173\) −2.07090 −0.157448 −0.0787240 0.996896i \(-0.525085\pi\)
−0.0787240 + 0.996896i \(0.525085\pi\)
\(174\) 0 0
\(175\) 12.6715 0.957874
\(176\) 0 0
\(177\) 1.56681 0.117769
\(178\) 0 0
\(179\) −8.32293 −0.622085 −0.311042 0.950396i \(-0.600678\pi\)
−0.311042 + 0.950396i \(0.600678\pi\)
\(180\) 0 0
\(181\) −7.53110 −0.559782 −0.279891 0.960032i \(-0.590298\pi\)
−0.279891 + 0.960032i \(0.590298\pi\)
\(182\) 0 0
\(183\) 0.273401 0.0202104
\(184\) 0 0
\(185\) −4.53311 −0.333281
\(186\) 0 0
\(187\) −26.5542 −1.94184
\(188\) 0 0
\(189\) 7.10042 0.516480
\(190\) 0 0
\(191\) 5.87599 0.425172 0.212586 0.977142i \(-0.431811\pi\)
0.212586 + 0.977142i \(0.431811\pi\)
\(192\) 0 0
\(193\) −18.7956 −1.35293 −0.676467 0.736473i \(-0.736490\pi\)
−0.676467 + 0.736473i \(0.736490\pi\)
\(194\) 0 0
\(195\) 0.986189 0.0706224
\(196\) 0 0
\(197\) −6.91975 −0.493012 −0.246506 0.969141i \(-0.579282\pi\)
−0.246506 + 0.969141i \(0.579282\pi\)
\(198\) 0 0
\(199\) −19.1138 −1.35494 −0.677471 0.735550i \(-0.736924\pi\)
−0.677471 + 0.735550i \(0.736924\pi\)
\(200\) 0 0
\(201\) 2.19183 0.154600
\(202\) 0 0
\(203\) 22.2923 1.56461
\(204\) 0 0
\(205\) −2.72473 −0.190304
\(206\) 0 0
\(207\) −21.9198 −1.52353
\(208\) 0 0
\(209\) −4.44366 −0.307374
\(210\) 0 0
\(211\) 27.5643 1.89760 0.948801 0.315875i \(-0.102298\pi\)
0.948801 + 0.315875i \(0.102298\pi\)
\(212\) 0 0
\(213\) 0.680339 0.0466161
\(214\) 0 0
\(215\) −15.6843 −1.06966
\(216\) 0 0
\(217\) −27.1687 −1.84433
\(218\) 0 0
\(219\) 0.395569 0.0267301
\(220\) 0 0
\(221\) −12.7919 −0.860479
\(222\) 0 0
\(223\) 22.5228 1.50824 0.754121 0.656736i \(-0.228063\pi\)
0.754121 + 0.656736i \(0.228063\pi\)
\(224\) 0 0
\(225\) 9.92279 0.661519
\(226\) 0 0
\(227\) 5.19737 0.344962 0.172481 0.985013i \(-0.444822\pi\)
0.172481 + 0.985013i \(0.444822\pi\)
\(228\) 0 0
\(229\) −17.2822 −1.14204 −0.571021 0.820935i \(-0.693453\pi\)
−0.571021 + 0.820935i \(0.693453\pi\)
\(230\) 0 0
\(231\) −6.03573 −0.397122
\(232\) 0 0
\(233\) 9.67253 0.633669 0.316834 0.948481i \(-0.397380\pi\)
0.316834 + 0.948481i \(0.397380\pi\)
\(234\) 0 0
\(235\) −5.62835 −0.367153
\(236\) 0 0
\(237\) −3.32647 −0.216077
\(238\) 0 0
\(239\) −24.9782 −1.61571 −0.807853 0.589383i \(-0.799371\pi\)
−0.807853 + 0.589383i \(0.799371\pi\)
\(240\) 0 0
\(241\) −23.5977 −1.52006 −0.760032 0.649886i \(-0.774817\pi\)
−0.760032 + 0.649886i \(0.774817\pi\)
\(242\) 0 0
\(243\) 8.39044 0.538247
\(244\) 0 0
\(245\) 8.34133 0.532908
\(246\) 0 0
\(247\) −2.14064 −0.136206
\(248\) 0 0
\(249\) 1.23153 0.0780450
\(250\) 0 0
\(251\) 8.55653 0.540083 0.270042 0.962849i \(-0.412962\pi\)
0.270042 + 0.962849i \(0.412962\pi\)
\(252\) 0 0
\(253\) 37.9505 2.38592
\(254\) 0 0
\(255\) −2.16582 −0.135629
\(256\) 0 0
\(257\) 15.7949 0.985261 0.492630 0.870239i \(-0.336035\pi\)
0.492630 + 0.870239i \(0.336035\pi\)
\(258\) 0 0
\(259\) 13.3650 0.830461
\(260\) 0 0
\(261\) 17.4567 1.08054
\(262\) 0 0
\(263\) −26.5167 −1.63509 −0.817545 0.575865i \(-0.804665\pi\)
−0.817545 + 0.575865i \(0.804665\pi\)
\(264\) 0 0
\(265\) 0.998540 0.0613398
\(266\) 0 0
\(267\) −5.45423 −0.333793
\(268\) 0 0
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) 17.9669 1.09141 0.545707 0.837976i \(-0.316261\pi\)
0.545707 + 0.837976i \(0.316261\pi\)
\(272\) 0 0
\(273\) −2.90759 −0.175975
\(274\) 0 0
\(275\) −17.1796 −1.03597
\(276\) 0 0
\(277\) 25.1450 1.51082 0.755408 0.655254i \(-0.227438\pi\)
0.755408 + 0.655254i \(0.227438\pi\)
\(278\) 0 0
\(279\) −21.2753 −1.27372
\(280\) 0 0
\(281\) −4.30104 −0.256579 −0.128289 0.991737i \(-0.540949\pi\)
−0.128289 + 0.991737i \(0.540949\pi\)
\(282\) 0 0
\(283\) 11.5434 0.686185 0.343092 0.939302i \(-0.388526\pi\)
0.343092 + 0.939302i \(0.388526\pi\)
\(284\) 0 0
\(285\) −0.362434 −0.0214687
\(286\) 0 0
\(287\) 8.03336 0.474194
\(288\) 0 0
\(289\) 11.0930 0.652529
\(290\) 0 0
\(291\) 5.69880 0.334070
\(292\) 0 0
\(293\) −6.42354 −0.375267 −0.187633 0.982239i \(-0.560082\pi\)
−0.187633 + 0.982239i \(0.560082\pi\)
\(294\) 0 0
\(295\) 6.02344 0.350699
\(296\) 0 0
\(297\) −9.62654 −0.558588
\(298\) 0 0
\(299\) 18.2818 1.05727
\(300\) 0 0
\(301\) 46.2421 2.66535
\(302\) 0 0
\(303\) −4.99549 −0.286983
\(304\) 0 0
\(305\) 1.05106 0.0601837
\(306\) 0 0
\(307\) −15.3186 −0.874278 −0.437139 0.899394i \(-0.644008\pi\)
−0.437139 + 0.899394i \(0.644008\pi\)
\(308\) 0 0
\(309\) −6.16051 −0.350459
\(310\) 0 0
\(311\) 12.0076 0.680891 0.340445 0.940264i \(-0.389422\pi\)
0.340445 + 0.940264i \(0.389422\pi\)
\(312\) 0 0
\(313\) 22.9542 1.29745 0.648723 0.761025i \(-0.275303\pi\)
0.648723 + 0.761025i \(0.275303\pi\)
\(314\) 0 0
\(315\) 13.4023 0.755134
\(316\) 0 0
\(317\) −0.469514 −0.0263706 −0.0131853 0.999913i \(-0.504197\pi\)
−0.0131853 + 0.999913i \(0.504197\pi\)
\(318\) 0 0
\(319\) −30.2232 −1.69218
\(320\) 0 0
\(321\) −2.46583 −0.137629
\(322\) 0 0
\(323\) 4.70116 0.261580
\(324\) 0 0
\(325\) −8.27592 −0.459066
\(326\) 0 0
\(327\) −6.22882 −0.344454
\(328\) 0 0
\(329\) 16.5941 0.914863
\(330\) 0 0
\(331\) −15.4417 −0.848752 −0.424376 0.905486i \(-0.639506\pi\)
−0.424376 + 0.905486i \(0.639506\pi\)
\(332\) 0 0
\(333\) 10.4659 0.573526
\(334\) 0 0
\(335\) 8.42629 0.460378
\(336\) 0 0
\(337\) 20.1414 1.09717 0.548587 0.836093i \(-0.315166\pi\)
0.548587 + 0.836093i \(0.315166\pi\)
\(338\) 0 0
\(339\) 1.55512 0.0844627
\(340\) 0 0
\(341\) 36.8345 1.99470
\(342\) 0 0
\(343\) 1.27422 0.0688015
\(344\) 0 0
\(345\) 3.09532 0.166646
\(346\) 0 0
\(347\) −24.9254 −1.33807 −0.669033 0.743232i \(-0.733292\pi\)
−0.669033 + 0.743232i \(0.733292\pi\)
\(348\) 0 0
\(349\) −21.9372 −1.17427 −0.587137 0.809488i \(-0.699745\pi\)
−0.587137 + 0.809488i \(0.699745\pi\)
\(350\) 0 0
\(351\) −4.63738 −0.247525
\(352\) 0 0
\(353\) −4.04498 −0.215292 −0.107646 0.994189i \(-0.534331\pi\)
−0.107646 + 0.994189i \(0.534331\pi\)
\(354\) 0 0
\(355\) 2.61550 0.138816
\(356\) 0 0
\(357\) 6.38549 0.337956
\(358\) 0 0
\(359\) −20.3192 −1.07241 −0.536203 0.844089i \(-0.680142\pi\)
−0.536203 + 0.844089i \(0.680142\pi\)
\(360\) 0 0
\(361\) −18.2133 −0.958594
\(362\) 0 0
\(363\) 4.59682 0.241271
\(364\) 0 0
\(365\) 1.52073 0.0795985
\(366\) 0 0
\(367\) 7.44266 0.388504 0.194252 0.980952i \(-0.437772\pi\)
0.194252 + 0.980952i \(0.437772\pi\)
\(368\) 0 0
\(369\) 6.29077 0.327484
\(370\) 0 0
\(371\) −2.94401 −0.152845
\(372\) 0 0
\(373\) 23.4596 1.21469 0.607346 0.794437i \(-0.292234\pi\)
0.607346 + 0.794437i \(0.292234\pi\)
\(374\) 0 0
\(375\) −3.44432 −0.177864
\(376\) 0 0
\(377\) −14.5594 −0.749848
\(378\) 0 0
\(379\) −6.49048 −0.333393 −0.166697 0.986008i \(-0.553310\pi\)
−0.166697 + 0.986008i \(0.553310\pi\)
\(380\) 0 0
\(381\) −0.118459 −0.00606881
\(382\) 0 0
\(383\) −6.81379 −0.348169 −0.174084 0.984731i \(-0.555697\pi\)
−0.174084 + 0.984731i \(0.555697\pi\)
\(384\) 0 0
\(385\) −23.2038 −1.18257
\(386\) 0 0
\(387\) 36.2113 1.84072
\(388\) 0 0
\(389\) 24.2209 1.22805 0.614024 0.789287i \(-0.289550\pi\)
0.614024 + 0.789287i \(0.289550\pi\)
\(390\) 0 0
\(391\) −40.1496 −2.03045
\(392\) 0 0
\(393\) −7.31049 −0.368765
\(394\) 0 0
\(395\) −12.7883 −0.643448
\(396\) 0 0
\(397\) −9.76461 −0.490072 −0.245036 0.969514i \(-0.578800\pi\)
−0.245036 + 0.969514i \(0.578800\pi\)
\(398\) 0 0
\(399\) 1.06857 0.0534952
\(400\) 0 0
\(401\) 26.5925 1.32796 0.663982 0.747748i \(-0.268865\pi\)
0.663982 + 0.747748i \(0.268865\pi\)
\(402\) 0 0
\(403\) 17.7443 0.883905
\(404\) 0 0
\(405\) 10.0954 0.501645
\(406\) 0 0
\(407\) −18.1199 −0.898168
\(408\) 0 0
\(409\) −13.4495 −0.665035 −0.332518 0.943097i \(-0.607898\pi\)
−0.332518 + 0.943097i \(0.607898\pi\)
\(410\) 0 0
\(411\) 3.54960 0.175089
\(412\) 0 0
\(413\) −17.7590 −0.873862
\(414\) 0 0
\(415\) 4.73450 0.232407
\(416\) 0 0
\(417\) 4.66182 0.228290
\(418\) 0 0
\(419\) 3.54342 0.173108 0.0865538 0.996247i \(-0.472415\pi\)
0.0865538 + 0.996247i \(0.472415\pi\)
\(420\) 0 0
\(421\) 40.0980 1.95426 0.977129 0.212649i \(-0.0682090\pi\)
0.977129 + 0.212649i \(0.0682090\pi\)
\(422\) 0 0
\(423\) 12.9945 0.631815
\(424\) 0 0
\(425\) 18.1751 0.881624
\(426\) 0 0
\(427\) −3.09886 −0.149964
\(428\) 0 0
\(429\) 3.94202 0.190323
\(430\) 0 0
\(431\) −0.431537 −0.0207864 −0.0103932 0.999946i \(-0.503308\pi\)
−0.0103932 + 0.999946i \(0.503308\pi\)
\(432\) 0 0
\(433\) −1.01440 −0.0487490 −0.0243745 0.999703i \(-0.507759\pi\)
−0.0243745 + 0.999703i \(0.507759\pi\)
\(434\) 0 0
\(435\) −2.46507 −0.118191
\(436\) 0 0
\(437\) −6.71875 −0.321402
\(438\) 0 0
\(439\) 12.1382 0.579324 0.289662 0.957129i \(-0.406457\pi\)
0.289662 + 0.957129i \(0.406457\pi\)
\(440\) 0 0
\(441\) −19.2582 −0.917055
\(442\) 0 0
\(443\) 25.8786 1.22953 0.614764 0.788711i \(-0.289251\pi\)
0.614764 + 0.788711i \(0.289251\pi\)
\(444\) 0 0
\(445\) −20.9682 −0.993990
\(446\) 0 0
\(447\) −4.74787 −0.224566
\(448\) 0 0
\(449\) 17.2940 0.816153 0.408077 0.912948i \(-0.366200\pi\)
0.408077 + 0.912948i \(0.366200\pi\)
\(450\) 0 0
\(451\) −10.8914 −0.512855
\(452\) 0 0
\(453\) −0.115718 −0.00543689
\(454\) 0 0
\(455\) −11.1779 −0.524030
\(456\) 0 0
\(457\) −17.4083 −0.814324 −0.407162 0.913356i \(-0.633482\pi\)
−0.407162 + 0.913356i \(0.633482\pi\)
\(458\) 0 0
\(459\) 10.1844 0.475366
\(460\) 0 0
\(461\) 1.89558 0.0882858 0.0441429 0.999025i \(-0.485944\pi\)
0.0441429 + 0.999025i \(0.485944\pi\)
\(462\) 0 0
\(463\) −9.59253 −0.445803 −0.222901 0.974841i \(-0.571553\pi\)
−0.222901 + 0.974841i \(0.571553\pi\)
\(464\) 0 0
\(465\) 3.00430 0.139321
\(466\) 0 0
\(467\) −29.1818 −1.35037 −0.675186 0.737648i \(-0.735937\pi\)
−0.675186 + 0.737648i \(0.735937\pi\)
\(468\) 0 0
\(469\) −24.8433 −1.14716
\(470\) 0 0
\(471\) −1.61746 −0.0745288
\(472\) 0 0
\(473\) −62.6936 −2.88266
\(474\) 0 0
\(475\) 3.04148 0.139553
\(476\) 0 0
\(477\) −2.30539 −0.105557
\(478\) 0 0
\(479\) 40.9033 1.86892 0.934460 0.356068i \(-0.115883\pi\)
0.934460 + 0.356068i \(0.115883\pi\)
\(480\) 0 0
\(481\) −8.72887 −0.398002
\(482\) 0 0
\(483\) −9.12595 −0.415245
\(484\) 0 0
\(485\) 21.9085 0.994813
\(486\) 0 0
\(487\) 0.880098 0.0398810 0.0199405 0.999801i \(-0.493652\pi\)
0.0199405 + 0.999801i \(0.493652\pi\)
\(488\) 0 0
\(489\) 4.69812 0.212456
\(490\) 0 0
\(491\) 23.7235 1.07063 0.535313 0.844654i \(-0.320194\pi\)
0.535313 + 0.844654i \(0.320194\pi\)
\(492\) 0 0
\(493\) 31.9746 1.44006
\(494\) 0 0
\(495\) −18.1704 −0.816700
\(496\) 0 0
\(497\) −7.71129 −0.345899
\(498\) 0 0
\(499\) −37.2473 −1.66742 −0.833709 0.552204i \(-0.813787\pi\)
−0.833709 + 0.552204i \(0.813787\pi\)
\(500\) 0 0
\(501\) −4.90978 −0.219353
\(502\) 0 0
\(503\) 7.72236 0.344323 0.172161 0.985069i \(-0.444925\pi\)
0.172161 + 0.985069i \(0.444925\pi\)
\(504\) 0 0
\(505\) −19.2047 −0.854597
\(506\) 0 0
\(507\) −2.33930 −0.103892
\(508\) 0 0
\(509\) −8.55860 −0.379353 −0.189677 0.981847i \(-0.560744\pi\)
−0.189677 + 0.981847i \(0.560744\pi\)
\(510\) 0 0
\(511\) −4.48358 −0.198342
\(512\) 0 0
\(513\) 1.70428 0.0752459
\(514\) 0 0
\(515\) −23.6835 −1.04362
\(516\) 0 0
\(517\) −22.4978 −0.989452
\(518\) 0 0
\(519\) −0.675160 −0.0296362
\(520\) 0 0
\(521\) −21.7291 −0.951969 −0.475984 0.879454i \(-0.657908\pi\)
−0.475984 + 0.879454i \(0.657908\pi\)
\(522\) 0 0
\(523\) 0.142219 0.00621879 0.00310939 0.999995i \(-0.499010\pi\)
0.00310939 + 0.999995i \(0.499010\pi\)
\(524\) 0 0
\(525\) 4.13118 0.180300
\(526\) 0 0
\(527\) −38.9690 −1.69752
\(528\) 0 0
\(529\) 34.3806 1.49481
\(530\) 0 0
\(531\) −13.9067 −0.603500
\(532\) 0 0
\(533\) −5.24670 −0.227260
\(534\) 0 0
\(535\) −9.47964 −0.409841
\(536\) 0 0
\(537\) −2.71346 −0.117094
\(538\) 0 0
\(539\) 33.3422 1.43615
\(540\) 0 0
\(541\) −36.4213 −1.56587 −0.782936 0.622102i \(-0.786279\pi\)
−0.782936 + 0.622102i \(0.786279\pi\)
\(542\) 0 0
\(543\) −2.45530 −0.105367
\(544\) 0 0
\(545\) −23.9461 −1.02574
\(546\) 0 0
\(547\) 6.36581 0.272182 0.136091 0.990696i \(-0.456546\pi\)
0.136091 + 0.990696i \(0.456546\pi\)
\(548\) 0 0
\(549\) −2.42666 −0.103567
\(550\) 0 0
\(551\) 5.35072 0.227948
\(552\) 0 0
\(553\) 37.7038 1.60333
\(554\) 0 0
\(555\) −1.47789 −0.0627330
\(556\) 0 0
\(557\) 9.89776 0.419382 0.209691 0.977768i \(-0.432754\pi\)
0.209691 + 0.977768i \(0.432754\pi\)
\(558\) 0 0
\(559\) −30.2014 −1.27738
\(560\) 0 0
\(561\) −8.65726 −0.365510
\(562\) 0 0
\(563\) −13.0240 −0.548897 −0.274449 0.961602i \(-0.588495\pi\)
−0.274449 + 0.961602i \(0.588495\pi\)
\(564\) 0 0
\(565\) 5.97852 0.251518
\(566\) 0 0
\(567\) −29.7644 −1.24999
\(568\) 0 0
\(569\) 7.36726 0.308852 0.154426 0.988004i \(-0.450647\pi\)
0.154426 + 0.988004i \(0.450647\pi\)
\(570\) 0 0
\(571\) 43.5841 1.82394 0.911969 0.410258i \(-0.134561\pi\)
0.911969 + 0.410258i \(0.134561\pi\)
\(572\) 0 0
\(573\) 1.91570 0.0800296
\(574\) 0 0
\(575\) −25.9753 −1.08325
\(576\) 0 0
\(577\) 31.6865 1.31913 0.659563 0.751650i \(-0.270742\pi\)
0.659563 + 0.751650i \(0.270742\pi\)
\(578\) 0 0
\(579\) −6.12776 −0.254661
\(580\) 0 0
\(581\) −13.9588 −0.579107
\(582\) 0 0
\(583\) 3.99139 0.165307
\(584\) 0 0
\(585\) −8.75323 −0.361901
\(586\) 0 0
\(587\) −12.3294 −0.508887 −0.254443 0.967088i \(-0.581892\pi\)
−0.254443 + 0.967088i \(0.581892\pi\)
\(588\) 0 0
\(589\) −6.52119 −0.268701
\(590\) 0 0
\(591\) −2.25599 −0.0927990
\(592\) 0 0
\(593\) 3.11572 0.127947 0.0639735 0.997952i \(-0.479623\pi\)
0.0639735 + 0.997952i \(0.479623\pi\)
\(594\) 0 0
\(595\) 24.5484 1.00639
\(596\) 0 0
\(597\) −6.23152 −0.255039
\(598\) 0 0
\(599\) 14.7795 0.603875 0.301937 0.953328i \(-0.402367\pi\)
0.301937 + 0.953328i \(0.402367\pi\)
\(600\) 0 0
\(601\) 30.4492 1.24205 0.621024 0.783792i \(-0.286717\pi\)
0.621024 + 0.783792i \(0.286717\pi\)
\(602\) 0 0
\(603\) −19.4543 −0.792241
\(604\) 0 0
\(605\) 17.6720 0.718471
\(606\) 0 0
\(607\) 8.80913 0.357552 0.178776 0.983890i \(-0.442786\pi\)
0.178776 + 0.983890i \(0.442786\pi\)
\(608\) 0 0
\(609\) 7.26778 0.294505
\(610\) 0 0
\(611\) −10.8378 −0.438452
\(612\) 0 0
\(613\) −9.85071 −0.397866 −0.198933 0.980013i \(-0.563748\pi\)
−0.198933 + 0.980013i \(0.563748\pi\)
\(614\) 0 0
\(615\) −0.888323 −0.0358207
\(616\) 0 0
\(617\) −26.3185 −1.05954 −0.529771 0.848141i \(-0.677722\pi\)
−0.529771 + 0.848141i \(0.677722\pi\)
\(618\) 0 0
\(619\) −40.8536 −1.64205 −0.821023 0.570895i \(-0.806596\pi\)
−0.821023 + 0.570895i \(0.806596\pi\)
\(620\) 0 0
\(621\) −14.5552 −0.584080
\(622\) 0 0
\(623\) 61.8209 2.47680
\(624\) 0 0
\(625\) 3.90411 0.156164
\(626\) 0 0
\(627\) −1.44873 −0.0578567
\(628\) 0 0
\(629\) 19.1699 0.764353
\(630\) 0 0
\(631\) −34.3064 −1.36572 −0.682858 0.730551i \(-0.739263\pi\)
−0.682858 + 0.730551i \(0.739263\pi\)
\(632\) 0 0
\(633\) 8.98655 0.357183
\(634\) 0 0
\(635\) −0.455402 −0.0180721
\(636\) 0 0
\(637\) 16.0619 0.636396
\(638\) 0 0
\(639\) −6.03856 −0.238882
\(640\) 0 0
\(641\) −43.8934 −1.73369 −0.866843 0.498581i \(-0.833855\pi\)
−0.866843 + 0.498581i \(0.833855\pi\)
\(642\) 0 0
\(643\) −10.1680 −0.400987 −0.200494 0.979695i \(-0.564255\pi\)
−0.200494 + 0.979695i \(0.564255\pi\)
\(644\) 0 0
\(645\) −5.11342 −0.201341
\(646\) 0 0
\(647\) −27.0736 −1.06437 −0.532186 0.846627i \(-0.678629\pi\)
−0.532186 + 0.846627i \(0.678629\pi\)
\(648\) 0 0
\(649\) 24.0771 0.945108
\(650\) 0 0
\(651\) −8.85760 −0.347157
\(652\) 0 0
\(653\) 2.01231 0.0787477 0.0393738 0.999225i \(-0.487464\pi\)
0.0393738 + 0.999225i \(0.487464\pi\)
\(654\) 0 0
\(655\) −28.1044 −1.09813
\(656\) 0 0
\(657\) −3.51100 −0.136977
\(658\) 0 0
\(659\) 28.5071 1.11048 0.555240 0.831690i \(-0.312626\pi\)
0.555240 + 0.831690i \(0.312626\pi\)
\(660\) 0 0
\(661\) −25.4035 −0.988081 −0.494040 0.869439i \(-0.664481\pi\)
−0.494040 + 0.869439i \(0.664481\pi\)
\(662\) 0 0
\(663\) −4.17045 −0.161967
\(664\) 0 0
\(665\) 4.10800 0.159301
\(666\) 0 0
\(667\) −45.6971 −1.76940
\(668\) 0 0
\(669\) 7.34294 0.283894
\(670\) 0 0
\(671\) 4.20134 0.162191
\(672\) 0 0
\(673\) −12.6470 −0.487505 −0.243753 0.969837i \(-0.578378\pi\)
−0.243753 + 0.969837i \(0.578378\pi\)
\(674\) 0 0
\(675\) 6.58892 0.253608
\(676\) 0 0
\(677\) 24.1188 0.926961 0.463480 0.886107i \(-0.346600\pi\)
0.463480 + 0.886107i \(0.346600\pi\)
\(678\) 0 0
\(679\) −64.5930 −2.47885
\(680\) 0 0
\(681\) 1.69446 0.0649317
\(682\) 0 0
\(683\) 10.9260 0.418074 0.209037 0.977908i \(-0.432967\pi\)
0.209037 + 0.977908i \(0.432967\pi\)
\(684\) 0 0
\(685\) 13.6461 0.521390
\(686\) 0 0
\(687\) −5.63439 −0.214965
\(688\) 0 0
\(689\) 1.92277 0.0732517
\(690\) 0 0
\(691\) 32.4216 1.23338 0.616688 0.787208i \(-0.288474\pi\)
0.616688 + 0.787208i \(0.288474\pi\)
\(692\) 0 0
\(693\) 53.5720 2.03503
\(694\) 0 0
\(695\) 17.9219 0.679817
\(696\) 0 0
\(697\) 11.5225 0.436447
\(698\) 0 0
\(699\) 3.15346 0.119275
\(700\) 0 0
\(701\) 10.9234 0.412572 0.206286 0.978492i \(-0.433862\pi\)
0.206286 + 0.978492i \(0.433862\pi\)
\(702\) 0 0
\(703\) 3.20794 0.120990
\(704\) 0 0
\(705\) −1.83496 −0.0691088
\(706\) 0 0
\(707\) 56.6213 2.12946
\(708\) 0 0
\(709\) −23.9585 −0.899779 −0.449890 0.893084i \(-0.648537\pi\)
−0.449890 + 0.893084i \(0.648537\pi\)
\(710\) 0 0
\(711\) 29.5251 1.10728
\(712\) 0 0
\(713\) 55.6933 2.08573
\(714\) 0 0
\(715\) 15.1547 0.566754
\(716\) 0 0
\(717\) −8.14345 −0.304123
\(718\) 0 0
\(719\) 41.3440 1.54187 0.770935 0.636914i \(-0.219789\pi\)
0.770935 + 0.636914i \(0.219789\pi\)
\(720\) 0 0
\(721\) 69.8262 2.60046
\(722\) 0 0
\(723\) −7.69338 −0.286120
\(724\) 0 0
\(725\) 20.6864 0.768274
\(726\) 0 0
\(727\) 16.4022 0.608323 0.304161 0.952620i \(-0.401624\pi\)
0.304161 + 0.952620i \(0.401624\pi\)
\(728\) 0 0
\(729\) −21.4286 −0.793651
\(730\) 0 0
\(731\) 66.3266 2.45318
\(732\) 0 0
\(733\) −5.10118 −0.188416 −0.0942082 0.995553i \(-0.530032\pi\)
−0.0942082 + 0.995553i \(0.530032\pi\)
\(734\) 0 0
\(735\) 2.71946 0.100309
\(736\) 0 0
\(737\) 33.6818 1.24069
\(738\) 0 0
\(739\) −10.9087 −0.401284 −0.200642 0.979665i \(-0.564303\pi\)
−0.200642 + 0.979665i \(0.564303\pi\)
\(740\) 0 0
\(741\) −0.697896 −0.0256378
\(742\) 0 0
\(743\) 12.3861 0.454401 0.227200 0.973848i \(-0.427043\pi\)
0.227200 + 0.973848i \(0.427043\pi\)
\(744\) 0 0
\(745\) −18.2527 −0.668728
\(746\) 0 0
\(747\) −10.9308 −0.399938
\(748\) 0 0
\(749\) 27.9489 1.02123
\(750\) 0 0
\(751\) −9.37979 −0.342273 −0.171137 0.985247i \(-0.554744\pi\)
−0.171137 + 0.985247i \(0.554744\pi\)
\(752\) 0 0
\(753\) 2.78962 0.101659
\(754\) 0 0
\(755\) −0.444865 −0.0161903
\(756\) 0 0
\(757\) 7.55577 0.274619 0.137310 0.990528i \(-0.456154\pi\)
0.137310 + 0.990528i \(0.456154\pi\)
\(758\) 0 0
\(759\) 12.3727 0.449100
\(760\) 0 0
\(761\) −32.6833 −1.18477 −0.592385 0.805655i \(-0.701813\pi\)
−0.592385 + 0.805655i \(0.701813\pi\)
\(762\) 0 0
\(763\) 70.6004 2.55591
\(764\) 0 0
\(765\) 19.2234 0.695023
\(766\) 0 0
\(767\) 11.5986 0.418802
\(768\) 0 0
\(769\) 5.17796 0.186722 0.0933611 0.995632i \(-0.470239\pi\)
0.0933611 + 0.995632i \(0.470239\pi\)
\(770\) 0 0
\(771\) 5.14949 0.185454
\(772\) 0 0
\(773\) 37.8283 1.36059 0.680295 0.732939i \(-0.261852\pi\)
0.680295 + 0.732939i \(0.261852\pi\)
\(774\) 0 0
\(775\) −25.2115 −0.905625
\(776\) 0 0
\(777\) 4.35728 0.156317
\(778\) 0 0
\(779\) 1.92821 0.0690854
\(780\) 0 0
\(781\) 10.4547 0.374100
\(782\) 0 0
\(783\) 11.5916 0.414248
\(784\) 0 0
\(785\) −6.21818 −0.221937
\(786\) 0 0
\(787\) 31.8773 1.13630 0.568152 0.822924i \(-0.307659\pi\)
0.568152 + 0.822924i \(0.307659\pi\)
\(788\) 0 0
\(789\) −8.64502 −0.307771
\(790\) 0 0
\(791\) −17.6265 −0.626727
\(792\) 0 0
\(793\) 2.02391 0.0718711
\(794\) 0 0
\(795\) 0.325546 0.0115459
\(796\) 0 0
\(797\) −30.7449 −1.08904 −0.544520 0.838748i \(-0.683288\pi\)
−0.544520 + 0.838748i \(0.683288\pi\)
\(798\) 0 0
\(799\) 23.8015 0.842036
\(800\) 0 0
\(801\) 48.4107 1.71051
\(802\) 0 0
\(803\) 6.07870 0.214513
\(804\) 0 0
\(805\) −35.0838 −1.23654
\(806\) 0 0
\(807\) −0.326022 −0.0114765
\(808\) 0 0
\(809\) 39.5415 1.39021 0.695103 0.718910i \(-0.255359\pi\)
0.695103 + 0.718910i \(0.255359\pi\)
\(810\) 0 0
\(811\) 33.9458 1.19200 0.595999 0.802985i \(-0.296756\pi\)
0.595999 + 0.802985i \(0.296756\pi\)
\(812\) 0 0
\(813\) 5.85762 0.205436
\(814\) 0 0
\(815\) 18.0615 0.632666
\(816\) 0 0
\(817\) 11.0993 0.388315
\(818\) 0 0
\(819\) 25.8072 0.901777
\(820\) 0 0
\(821\) −21.3102 −0.743730 −0.371865 0.928287i \(-0.621282\pi\)
−0.371865 + 0.928287i \(0.621282\pi\)
\(822\) 0 0
\(823\) 37.7609 1.31626 0.658131 0.752904i \(-0.271347\pi\)
0.658131 + 0.752904i \(0.271347\pi\)
\(824\) 0 0
\(825\) −5.60093 −0.194999
\(826\) 0 0
\(827\) 12.0994 0.420737 0.210369 0.977622i \(-0.432534\pi\)
0.210369 + 0.977622i \(0.432534\pi\)
\(828\) 0 0
\(829\) −41.8630 −1.45396 −0.726981 0.686658i \(-0.759077\pi\)
−0.726981 + 0.686658i \(0.759077\pi\)
\(830\) 0 0
\(831\) 8.19782 0.284379
\(832\) 0 0
\(833\) −35.2743 −1.22218
\(834\) 0 0
\(835\) −18.8752 −0.653203
\(836\) 0 0
\(837\) −14.1272 −0.488307
\(838\) 0 0
\(839\) 37.8172 1.30560 0.652798 0.757532i \(-0.273595\pi\)
0.652798 + 0.757532i \(0.273595\pi\)
\(840\) 0 0
\(841\) 7.39253 0.254915
\(842\) 0 0
\(843\) −1.40223 −0.0482955
\(844\) 0 0
\(845\) −8.99320 −0.309376
\(846\) 0 0
\(847\) −52.1026 −1.79027
\(848\) 0 0
\(849\) 3.76341 0.129160
\(850\) 0 0
\(851\) −27.3970 −0.939157
\(852\) 0 0
\(853\) −6.32008 −0.216395 −0.108198 0.994129i \(-0.534508\pi\)
−0.108198 + 0.994129i \(0.534508\pi\)
\(854\) 0 0
\(855\) 3.21689 0.110015
\(856\) 0 0
\(857\) 19.9518 0.681540 0.340770 0.940147i \(-0.389312\pi\)
0.340770 + 0.940147i \(0.389312\pi\)
\(858\) 0 0
\(859\) 43.7001 1.49103 0.745514 0.666490i \(-0.232204\pi\)
0.745514 + 0.666490i \(0.232204\pi\)
\(860\) 0 0
\(861\) 2.61905 0.0892570
\(862\) 0 0
\(863\) 30.8136 1.04891 0.524454 0.851439i \(-0.324269\pi\)
0.524454 + 0.851439i \(0.324269\pi\)
\(864\) 0 0
\(865\) −2.59559 −0.0882526
\(866\) 0 0
\(867\) 3.61656 0.122825
\(868\) 0 0
\(869\) −51.1177 −1.73405
\(870\) 0 0
\(871\) 16.2255 0.549781
\(872\) 0 0
\(873\) −50.5815 −1.71192
\(874\) 0 0
\(875\) 39.0396 1.31978
\(876\) 0 0
\(877\) 2.64592 0.0893462 0.0446731 0.999002i \(-0.485775\pi\)
0.0446731 + 0.999002i \(0.485775\pi\)
\(878\) 0 0
\(879\) −2.09421 −0.0706361
\(880\) 0 0
\(881\) 3.50336 0.118031 0.0590157 0.998257i \(-0.481204\pi\)
0.0590157 + 0.998257i \(0.481204\pi\)
\(882\) 0 0
\(883\) 38.9577 1.31103 0.655516 0.755181i \(-0.272451\pi\)
0.655516 + 0.755181i \(0.272451\pi\)
\(884\) 0 0
\(885\) 1.96377 0.0660116
\(886\) 0 0
\(887\) 37.4317 1.25683 0.628416 0.777877i \(-0.283703\pi\)
0.628416 + 0.777877i \(0.283703\pi\)
\(888\) 0 0
\(889\) 1.34267 0.0450316
\(890\) 0 0
\(891\) 40.3537 1.35190
\(892\) 0 0
\(893\) 3.98301 0.133286
\(894\) 0 0
\(895\) −10.4316 −0.348691
\(896\) 0 0
\(897\) 5.96028 0.199008
\(898\) 0 0
\(899\) −44.3534 −1.47927
\(900\) 0 0
\(901\) −4.22269 −0.140678
\(902\) 0 0
\(903\) 15.0759 0.501696
\(904\) 0 0
\(905\) −9.43917 −0.313769
\(906\) 0 0
\(907\) −58.8154 −1.95293 −0.976467 0.215669i \(-0.930807\pi\)
−0.976467 + 0.215669i \(0.930807\pi\)
\(908\) 0 0
\(909\) 44.3390 1.47063
\(910\) 0 0
\(911\) −46.4802 −1.53996 −0.769978 0.638070i \(-0.779733\pi\)
−0.769978 + 0.638070i \(0.779733\pi\)
\(912\) 0 0
\(913\) 18.9249 0.626322
\(914\) 0 0
\(915\) 0.342670 0.0113283
\(916\) 0 0
\(917\) 82.8606 2.73630
\(918\) 0 0
\(919\) −24.1146 −0.795468 −0.397734 0.917501i \(-0.630203\pi\)
−0.397734 + 0.917501i \(0.630203\pi\)
\(920\) 0 0
\(921\) −4.99419 −0.164564
\(922\) 0 0
\(923\) 5.03635 0.165774
\(924\) 0 0
\(925\) 12.4022 0.407782
\(926\) 0 0
\(927\) 54.6795 1.79591
\(928\) 0 0
\(929\) 27.5803 0.904881 0.452440 0.891795i \(-0.350553\pi\)
0.452440 + 0.891795i \(0.350553\pi\)
\(930\) 0 0
\(931\) −5.90291 −0.193460
\(932\) 0 0
\(933\) 3.91475 0.128163
\(934\) 0 0
\(935\) −33.2820 −1.08844
\(936\) 0 0
\(937\) −55.9382 −1.82742 −0.913710 0.406366i \(-0.866796\pi\)
−0.913710 + 0.406366i \(0.866796\pi\)
\(938\) 0 0
\(939\) 7.48356 0.244217
\(940\) 0 0
\(941\) −4.57223 −0.149051 −0.0745253 0.997219i \(-0.523744\pi\)
−0.0745253 + 0.997219i \(0.523744\pi\)
\(942\) 0 0
\(943\) −16.4676 −0.536260
\(944\) 0 0
\(945\) 8.89938 0.289497
\(946\) 0 0
\(947\) 43.5393 1.41484 0.707419 0.706795i \(-0.249860\pi\)
0.707419 + 0.706795i \(0.249860\pi\)
\(948\) 0 0
\(949\) 2.92829 0.0950562
\(950\) 0 0
\(951\) −0.153072 −0.00496370
\(952\) 0 0
\(953\) −15.0276 −0.486791 −0.243395 0.969927i \(-0.578261\pi\)
−0.243395 + 0.969927i \(0.578261\pi\)
\(954\) 0 0
\(955\) 7.36473 0.238317
\(956\) 0 0
\(957\) −9.85343 −0.318516
\(958\) 0 0
\(959\) −40.2329 −1.29919
\(960\) 0 0
\(961\) 23.0556 0.743730
\(962\) 0 0
\(963\) 21.8862 0.705274
\(964\) 0 0
\(965\) −23.5576 −0.758346
\(966\) 0 0
\(967\) 36.2094 1.16441 0.582207 0.813040i \(-0.302189\pi\)
0.582207 + 0.813040i \(0.302189\pi\)
\(968\) 0 0
\(969\) 1.53268 0.0492368
\(970\) 0 0
\(971\) −16.8140 −0.539588 −0.269794 0.962918i \(-0.586956\pi\)
−0.269794 + 0.962918i \(0.586956\pi\)
\(972\) 0 0
\(973\) −52.8393 −1.69395
\(974\) 0 0
\(975\) −2.69813 −0.0864094
\(976\) 0 0
\(977\) 33.6418 1.07630 0.538148 0.842850i \(-0.319124\pi\)
0.538148 + 0.842850i \(0.319124\pi\)
\(978\) 0 0
\(979\) −83.8149 −2.67873
\(980\) 0 0
\(981\) 55.2858 1.76514
\(982\) 0 0
\(983\) −37.6528 −1.20094 −0.600469 0.799648i \(-0.705020\pi\)
−0.600469 + 0.799648i \(0.705020\pi\)
\(984\) 0 0
\(985\) −8.67293 −0.276343
\(986\) 0 0
\(987\) 5.41004 0.172204
\(988\) 0 0
\(989\) −94.7919 −3.01421
\(990\) 0 0
\(991\) −28.2958 −0.898845 −0.449422 0.893319i \(-0.648370\pi\)
−0.449422 + 0.893319i \(0.648370\pi\)
\(992\) 0 0
\(993\) −5.03433 −0.159760
\(994\) 0 0
\(995\) −23.9565 −0.759471
\(996\) 0 0
\(997\) 13.7229 0.434610 0.217305 0.976104i \(-0.430273\pi\)
0.217305 + 0.976104i \(0.430273\pi\)
\(998\) 0 0
\(999\) 6.94954 0.219874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.j.1.7 13
4.3 odd 2 2152.2.a.b.1.7 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2152.2.a.b.1.7 13 4.3 odd 2
4304.2.a.j.1.7 13 1.1 even 1 trivial