Properties

Label 4304.2.a.j.1.7
Level 43044304
Weight 22
Character 4304.1
Self dual yes
Analytic conductor 34.36834.368
Analytic rank 11
Dimension 1313
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4304=24269 4304 = 2^{4} \cdot 269
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 34.367613030034.3676130300
Analytic rank: 11
Dimension: 1313
Coefficient field: Q[x]/(x13)\mathbb{Q}[x]/(x^{13} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x133x1215x11+45x10+82x9242x8201x7+574x6+200x5++4 x^{13} - 3 x^{12} - 15 x^{11} + 45 x^{10} + 82 x^{9} - 242 x^{8} - 201 x^{7} + 574 x^{6} + 200 x^{5} + \cdots + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 2152)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.7
Root 0.3260220.326022 of defining polynomial
Character χ\chi == 4304.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.326022q3+1.25336q53.69529q72.89371q9+5.00996q11+2.41345q13+0.408623q155.30028q170.886964q191.20475q21+7.57500q233.42909q251.92148q276.03262q29+7.35225q31+1.63336q334.63153q353.61677q37+0.786836q392.17395q4112.5138q433.62686q454.49061q47+6.65518q491.72801q51+0.796691q53+6.27929q550.289170q57+4.80584q59+0.838597q61+10.6931q63+3.02491q65+6.72297q67+2.46962q69+2.08679q71+1.21332q731.11796q7518.5133q7710.2032q79+8.05468q81+3.77744q836.64316q851.96677q8716.7296q898.91838q91+2.39700q931.11169q95+17.4798q9714.4974q99+O(q100)q+0.326022 q^{3} +1.25336 q^{5} -3.69529 q^{7} -2.89371 q^{9} +5.00996 q^{11} +2.41345 q^{13} +0.408623 q^{15} -5.30028 q^{17} -0.886964 q^{19} -1.20475 q^{21} +7.57500 q^{23} -3.42909 q^{25} -1.92148 q^{27} -6.03262 q^{29} +7.35225 q^{31} +1.63336 q^{33} -4.63153 q^{35} -3.61677 q^{37} +0.786836 q^{39} -2.17395 q^{41} -12.5138 q^{43} -3.62686 q^{45} -4.49061 q^{47} +6.65518 q^{49} -1.72801 q^{51} +0.796691 q^{53} +6.27929 q^{55} -0.289170 q^{57} +4.80584 q^{59} +0.838597 q^{61} +10.6931 q^{63} +3.02491 q^{65} +6.72297 q^{67} +2.46962 q^{69} +2.08679 q^{71} +1.21332 q^{73} -1.11796 q^{75} -18.5133 q^{77} -10.2032 q^{79} +8.05468 q^{81} +3.77744 q^{83} -6.64316 q^{85} -1.96677 q^{87} -16.7296 q^{89} -8.91838 q^{91} +2.39700 q^{93} -1.11169 q^{95} +17.4798 q^{97} -14.4974 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 13q+3q39q56q7+6q118q13+q1514q17+6q1913q21+11q232q25+9q2719q2914q3115q33+20q3523q378q39++7q99+O(q100) 13 q + 3 q^{3} - 9 q^{5} - 6 q^{7} + 6 q^{11} - 8 q^{13} + q^{15} - 14 q^{17} + 6 q^{19} - 13 q^{21} + 11 q^{23} - 2 q^{25} + 9 q^{27} - 19 q^{29} - 14 q^{31} - 15 q^{33} + 20 q^{35} - 23 q^{37} - 8 q^{39}+ \cdots + 7 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.326022 0.188229 0.0941144 0.995561i 0.469998π-0.469998\pi
0.0941144 + 0.995561i 0.469998π0.469998\pi
44 0 0
55 1.25336 0.560519 0.280260 0.959924i 0.409579π-0.409579\pi
0.280260 + 0.959924i 0.409579π0.409579\pi
66 0 0
77 −3.69529 −1.39669 −0.698344 0.715762i 0.746080π-0.746080\pi
−0.698344 + 0.715762i 0.746080π0.746080\pi
88 0 0
99 −2.89371 −0.964570
1010 0 0
1111 5.00996 1.51056 0.755280 0.655402i 0.227501π-0.227501\pi
0.755280 + 0.655402i 0.227501π0.227501\pi
1212 0 0
1313 2.41345 0.669369 0.334685 0.942330i 0.391370π-0.391370\pi
0.334685 + 0.942330i 0.391370π0.391370\pi
1414 0 0
1515 0.408623 0.105506
1616 0 0
1717 −5.30028 −1.28551 −0.642754 0.766073i 0.722208π-0.722208\pi
−0.642754 + 0.766073i 0.722208π0.722208\pi
1818 0 0
1919 −0.886964 −0.203484 −0.101742 0.994811i 0.532442π-0.532442\pi
−0.101742 + 0.994811i 0.532442π0.532442\pi
2020 0 0
2121 −1.20475 −0.262897
2222 0 0
2323 7.57500 1.57950 0.789748 0.613431i 0.210211π-0.210211\pi
0.789748 + 0.613431i 0.210211π0.210211\pi
2424 0 0
2525 −3.42909 −0.685818
2626 0 0
2727 −1.92148 −0.369789
2828 0 0
2929 −6.03262 −1.12023 −0.560115 0.828415i 0.689243π-0.689243\pi
−0.560115 + 0.828415i 0.689243π0.689243\pi
3030 0 0
3131 7.35225 1.32050 0.660252 0.751044i 0.270450π-0.270450\pi
0.660252 + 0.751044i 0.270450π0.270450\pi
3232 0 0
3333 1.63336 0.284331
3434 0 0
3535 −4.63153 −0.782871
3636 0 0
3737 −3.61677 −0.594593 −0.297296 0.954785i 0.596085π-0.596085\pi
−0.297296 + 0.954785i 0.596085π0.596085\pi
3838 0 0
3939 0.786836 0.125995
4040 0 0
4141 −2.17395 −0.339513 −0.169757 0.985486i 0.554298π-0.554298\pi
−0.169757 + 0.985486i 0.554298π0.554298\pi
4242 0 0
4343 −12.5138 −1.90834 −0.954168 0.299273i 0.903256π-0.903256\pi
−0.954168 + 0.299273i 0.903256π0.903256\pi
4444 0 0
4545 −3.62686 −0.540660
4646 0 0
4747 −4.49061 −0.655023 −0.327511 0.944847i 0.606210π-0.606210\pi
−0.327511 + 0.944847i 0.606210π0.606210\pi
4848 0 0
4949 6.65518 0.950740
5050 0 0
5151 −1.72801 −0.241970
5252 0 0
5353 0.796691 0.109434 0.0547170 0.998502i 0.482574π-0.482574\pi
0.0547170 + 0.998502i 0.482574π0.482574\pi
5454 0 0
5555 6.27929 0.846699
5656 0 0
5757 −0.289170 −0.0383015
5858 0 0
5959 4.80584 0.625667 0.312834 0.949808i 0.398722π-0.398722\pi
0.312834 + 0.949808i 0.398722π0.398722\pi
6060 0 0
6161 0.838597 0.107371 0.0536857 0.998558i 0.482903π-0.482903\pi
0.0536857 + 0.998558i 0.482903π0.482903\pi
6262 0 0
6363 10.6931 1.34720
6464 0 0
6565 3.02491 0.375195
6666 0 0
6767 6.72297 0.821341 0.410671 0.911784i 0.365295π-0.365295\pi
0.410671 + 0.911784i 0.365295π0.365295\pi
6868 0 0
6969 2.46962 0.297307
7070 0 0
7171 2.08679 0.247656 0.123828 0.992304i 0.460483π-0.460483\pi
0.123828 + 0.992304i 0.460483π0.460483\pi
7272 0 0
7373 1.21332 0.142009 0.0710043 0.997476i 0.477380π-0.477380\pi
0.0710043 + 0.997476i 0.477380π0.477380\pi
7474 0 0
7575 −1.11796 −0.129091
7676 0 0
7777 −18.5133 −2.10978
7878 0 0
7979 −10.2032 −1.14795 −0.573975 0.818873i 0.694599π-0.694599\pi
−0.573975 + 0.818873i 0.694599π0.694599\pi
8080 0 0
8181 8.05468 0.894965
8282 0 0
8383 3.77744 0.414628 0.207314 0.978274i 0.433528π-0.433528\pi
0.207314 + 0.978274i 0.433528π0.433528\pi
8484 0 0
8585 −6.64316 −0.720552
8686 0 0
8787 −1.96677 −0.210860
8888 0 0
8989 −16.7296 −1.77334 −0.886669 0.462405i 0.846987π-0.846987\pi
−0.886669 + 0.462405i 0.846987π0.846987\pi
9090 0 0
9191 −8.91838 −0.934901
9292 0 0
9393 2.39700 0.248557
9494 0 0
9595 −1.11169 −0.114056
9696 0 0
9797 17.4798 1.77481 0.887403 0.460995i 0.152507π-0.152507\pi
0.887403 + 0.460995i 0.152507π0.152507\pi
9898 0 0
9999 −14.4974 −1.45704
100100 0 0
101101 −15.3226 −1.52465 −0.762326 0.647193i 0.775943π-0.775943\pi
−0.762326 + 0.647193i 0.775943π0.775943\pi
102102 0 0
103103 −18.8960 −1.86188 −0.930938 0.365176i 0.881009π-0.881009\pi
−0.930938 + 0.365176i 0.881009π0.881009\pi
104104 0 0
105105 −1.50998 −0.147359
106106 0 0
107107 −7.56339 −0.731180 −0.365590 0.930776i 0.619133π-0.619133\pi
−0.365590 + 0.930776i 0.619133π0.619133\pi
108108 0 0
109109 −19.1055 −1.82998 −0.914988 0.403481i 0.867800π-0.867800\pi
−0.914988 + 0.403481i 0.867800π0.867800\pi
110110 0 0
111111 −1.17915 −0.111919
112112 0 0
113113 4.76999 0.448723 0.224362 0.974506i 0.427970π-0.427970\pi
0.224362 + 0.974506i 0.427970π0.427970\pi
114114 0 0
115115 9.49419 0.885338
116116 0 0
117117 −6.98381 −0.645654
118118 0 0
119119 19.5861 1.79545
120120 0 0
121121 14.0997 1.28179
122122 0 0
123123 −0.708754 −0.0639062
124124 0 0
125125 −10.5647 −0.944934
126126 0 0
127127 −0.363345 −0.0322417 −0.0161208 0.999870i 0.505132π-0.505132\pi
−0.0161208 + 0.999870i 0.505132π0.505132\pi
128128 0 0
129129 −4.07977 −0.359204
130130 0 0
131131 −22.4233 −1.95913 −0.979566 0.201122i 0.935541π-0.935541\pi
−0.979566 + 0.201122i 0.935541π0.935541\pi
132132 0 0
133133 3.27759 0.284203
134134 0 0
135135 −2.40830 −0.207274
136136 0 0
137137 10.8876 0.930191 0.465096 0.885260i 0.346020π-0.346020\pi
0.465096 + 0.885260i 0.346020π0.346020\pi
138138 0 0
139139 14.2991 1.21283 0.606417 0.795147i 0.292606π-0.292606\pi
0.606417 + 0.795147i 0.292606π0.292606\pi
140140 0 0
141141 −1.46404 −0.123294
142142 0 0
143143 12.0913 1.01112
144144 0 0
145145 −7.56104 −0.627911
146146 0 0
147147 2.16973 0.178957
148148 0 0
149149 −14.5630 −1.19305 −0.596525 0.802595i 0.703452π-0.703452\pi
−0.596525 + 0.802595i 0.703452π0.703452\pi
150150 0 0
151151 −0.354938 −0.0288845 −0.0144422 0.999896i 0.504597π-0.504597\pi
−0.0144422 + 0.999896i 0.504597π0.504597\pi
152152 0 0
153153 15.3375 1.23996
154154 0 0
155155 9.21502 0.740168
156156 0 0
157157 −4.96121 −0.395948 −0.197974 0.980207i 0.563436π-0.563436\pi
−0.197974 + 0.980207i 0.563436π0.563436\pi
158158 0 0
159159 0.259739 0.0205986
160160 0 0
161161 −27.9918 −2.20606
162162 0 0
163163 14.4104 1.12871 0.564357 0.825531i 0.309124π-0.309124\pi
0.564357 + 0.825531i 0.309124π0.309124\pi
164164 0 0
165165 2.04718 0.159373
166166 0 0
167167 −15.0597 −1.16535 −0.582676 0.812704i 0.697994π-0.697994\pi
−0.582676 + 0.812704i 0.697994π0.697994\pi
168168 0 0
169169 −7.17528 −0.551945
170170 0 0
171171 2.56662 0.196274
172172 0 0
173173 −2.07090 −0.157448 −0.0787240 0.996896i 0.525085π-0.525085\pi
−0.0787240 + 0.996896i 0.525085π0.525085\pi
174174 0 0
175175 12.6715 0.957874
176176 0 0
177177 1.56681 0.117769
178178 0 0
179179 −8.32293 −0.622085 −0.311042 0.950396i 0.600678π-0.600678\pi
−0.311042 + 0.950396i 0.600678π0.600678\pi
180180 0 0
181181 −7.53110 −0.559782 −0.279891 0.960032i 0.590298π-0.590298\pi
−0.279891 + 0.960032i 0.590298π0.590298\pi
182182 0 0
183183 0.273401 0.0202104
184184 0 0
185185 −4.53311 −0.333281
186186 0 0
187187 −26.5542 −1.94184
188188 0 0
189189 7.10042 0.516480
190190 0 0
191191 5.87599 0.425172 0.212586 0.977142i 0.431811π-0.431811\pi
0.212586 + 0.977142i 0.431811π0.431811\pi
192192 0 0
193193 −18.7956 −1.35293 −0.676467 0.736473i 0.736490π-0.736490\pi
−0.676467 + 0.736473i 0.736490π0.736490\pi
194194 0 0
195195 0.986189 0.0706224
196196 0 0
197197 −6.91975 −0.493012 −0.246506 0.969141i 0.579282π-0.579282\pi
−0.246506 + 0.969141i 0.579282π0.579282\pi
198198 0 0
199199 −19.1138 −1.35494 −0.677471 0.735550i 0.736924π-0.736924\pi
−0.677471 + 0.735550i 0.736924π0.736924\pi
200200 0 0
201201 2.19183 0.154600
202202 0 0
203203 22.2923 1.56461
204204 0 0
205205 −2.72473 −0.190304
206206 0 0
207207 −21.9198 −1.52353
208208 0 0
209209 −4.44366 −0.307374
210210 0 0
211211 27.5643 1.89760 0.948801 0.315875i 0.102298π-0.102298\pi
0.948801 + 0.315875i 0.102298π0.102298\pi
212212 0 0
213213 0.680339 0.0466161
214214 0 0
215215 −15.6843 −1.06966
216216 0 0
217217 −27.1687 −1.84433
218218 0 0
219219 0.395569 0.0267301
220220 0 0
221221 −12.7919 −0.860479
222222 0 0
223223 22.5228 1.50824 0.754121 0.656736i 0.228063π-0.228063\pi
0.754121 + 0.656736i 0.228063π0.228063\pi
224224 0 0
225225 9.92279 0.661519
226226 0 0
227227 5.19737 0.344962 0.172481 0.985013i 0.444822π-0.444822\pi
0.172481 + 0.985013i 0.444822π0.444822\pi
228228 0 0
229229 −17.2822 −1.14204 −0.571021 0.820935i 0.693453π-0.693453\pi
−0.571021 + 0.820935i 0.693453π0.693453\pi
230230 0 0
231231 −6.03573 −0.397122
232232 0 0
233233 9.67253 0.633669 0.316834 0.948481i 0.397380π-0.397380\pi
0.316834 + 0.948481i 0.397380π0.397380\pi
234234 0 0
235235 −5.62835 −0.367153
236236 0 0
237237 −3.32647 −0.216077
238238 0 0
239239 −24.9782 −1.61571 −0.807853 0.589383i 0.799371π-0.799371\pi
−0.807853 + 0.589383i 0.799371π0.799371\pi
240240 0 0
241241 −23.5977 −1.52006 −0.760032 0.649886i 0.774817π-0.774817\pi
−0.760032 + 0.649886i 0.774817π0.774817\pi
242242 0 0
243243 8.39044 0.538247
244244 0 0
245245 8.34133 0.532908
246246 0 0
247247 −2.14064 −0.136206
248248 0 0
249249 1.23153 0.0780450
250250 0 0
251251 8.55653 0.540083 0.270042 0.962849i 0.412962π-0.412962\pi
0.270042 + 0.962849i 0.412962π0.412962\pi
252252 0 0
253253 37.9505 2.38592
254254 0 0
255255 −2.16582 −0.135629
256256 0 0
257257 15.7949 0.985261 0.492630 0.870239i 0.336035π-0.336035\pi
0.492630 + 0.870239i 0.336035π0.336035\pi
258258 0 0
259259 13.3650 0.830461
260260 0 0
261261 17.4567 1.08054
262262 0 0
263263 −26.5167 −1.63509 −0.817545 0.575865i 0.804665π-0.804665\pi
−0.817545 + 0.575865i 0.804665π0.804665\pi
264264 0 0
265265 0.998540 0.0613398
266266 0 0
267267 −5.45423 −0.333793
268268 0 0
269269 −1.00000 −0.0609711
270270 0 0
271271 17.9669 1.09141 0.545707 0.837976i 0.316261π-0.316261\pi
0.545707 + 0.837976i 0.316261π0.316261\pi
272272 0 0
273273 −2.90759 −0.175975
274274 0 0
275275 −17.1796 −1.03597
276276 0 0
277277 25.1450 1.51082 0.755408 0.655254i 0.227438π-0.227438\pi
0.755408 + 0.655254i 0.227438π0.227438\pi
278278 0 0
279279 −21.2753 −1.27372
280280 0 0
281281 −4.30104 −0.256579 −0.128289 0.991737i 0.540949π-0.540949\pi
−0.128289 + 0.991737i 0.540949π0.540949\pi
282282 0 0
283283 11.5434 0.686185 0.343092 0.939302i 0.388526π-0.388526\pi
0.343092 + 0.939302i 0.388526π0.388526\pi
284284 0 0
285285 −0.362434 −0.0214687
286286 0 0
287287 8.03336 0.474194
288288 0 0
289289 11.0930 0.652529
290290 0 0
291291 5.69880 0.334070
292292 0 0
293293 −6.42354 −0.375267 −0.187633 0.982239i 0.560082π-0.560082\pi
−0.187633 + 0.982239i 0.560082π0.560082\pi
294294 0 0
295295 6.02344 0.350699
296296 0 0
297297 −9.62654 −0.558588
298298 0 0
299299 18.2818 1.05727
300300 0 0
301301 46.2421 2.66535
302302 0 0
303303 −4.99549 −0.286983
304304 0 0
305305 1.05106 0.0601837
306306 0 0
307307 −15.3186 −0.874278 −0.437139 0.899394i 0.644008π-0.644008\pi
−0.437139 + 0.899394i 0.644008π0.644008\pi
308308 0 0
309309 −6.16051 −0.350459
310310 0 0
311311 12.0076 0.680891 0.340445 0.940264i 0.389422π-0.389422\pi
0.340445 + 0.940264i 0.389422π0.389422\pi
312312 0 0
313313 22.9542 1.29745 0.648723 0.761025i 0.275303π-0.275303\pi
0.648723 + 0.761025i 0.275303π0.275303\pi
314314 0 0
315315 13.4023 0.755134
316316 0 0
317317 −0.469514 −0.0263706 −0.0131853 0.999913i 0.504197π-0.504197\pi
−0.0131853 + 0.999913i 0.504197π0.504197\pi
318318 0 0
319319 −30.2232 −1.69218
320320 0 0
321321 −2.46583 −0.137629
322322 0 0
323323 4.70116 0.261580
324324 0 0
325325 −8.27592 −0.459066
326326 0 0
327327 −6.22882 −0.344454
328328 0 0
329329 16.5941 0.914863
330330 0 0
331331 −15.4417 −0.848752 −0.424376 0.905486i 0.639506π-0.639506\pi
−0.424376 + 0.905486i 0.639506π0.639506\pi
332332 0 0
333333 10.4659 0.573526
334334 0 0
335335 8.42629 0.460378
336336 0 0
337337 20.1414 1.09717 0.548587 0.836093i 0.315166π-0.315166\pi
0.548587 + 0.836093i 0.315166π0.315166\pi
338338 0 0
339339 1.55512 0.0844627
340340 0 0
341341 36.8345 1.99470
342342 0 0
343343 1.27422 0.0688015
344344 0 0
345345 3.09532 0.166646
346346 0 0
347347 −24.9254 −1.33807 −0.669033 0.743232i 0.733292π-0.733292\pi
−0.669033 + 0.743232i 0.733292π0.733292\pi
348348 0 0
349349 −21.9372 −1.17427 −0.587137 0.809488i 0.699745π-0.699745\pi
−0.587137 + 0.809488i 0.699745π0.699745\pi
350350 0 0
351351 −4.63738 −0.247525
352352 0 0
353353 −4.04498 −0.215292 −0.107646 0.994189i 0.534331π-0.534331\pi
−0.107646 + 0.994189i 0.534331π0.534331\pi
354354 0 0
355355 2.61550 0.138816
356356 0 0
357357 6.38549 0.337956
358358 0 0
359359 −20.3192 −1.07241 −0.536203 0.844089i 0.680142π-0.680142\pi
−0.536203 + 0.844089i 0.680142π0.680142\pi
360360 0 0
361361 −18.2133 −0.958594
362362 0 0
363363 4.59682 0.241271
364364 0 0
365365 1.52073 0.0795985
366366 0 0
367367 7.44266 0.388504 0.194252 0.980952i 0.437772π-0.437772\pi
0.194252 + 0.980952i 0.437772π0.437772\pi
368368 0 0
369369 6.29077 0.327484
370370 0 0
371371 −2.94401 −0.152845
372372 0 0
373373 23.4596 1.21469 0.607346 0.794437i 0.292234π-0.292234\pi
0.607346 + 0.794437i 0.292234π0.292234\pi
374374 0 0
375375 −3.44432 −0.177864
376376 0 0
377377 −14.5594 −0.749848
378378 0 0
379379 −6.49048 −0.333393 −0.166697 0.986008i 0.553310π-0.553310\pi
−0.166697 + 0.986008i 0.553310π0.553310\pi
380380 0 0
381381 −0.118459 −0.00606881
382382 0 0
383383 −6.81379 −0.348169 −0.174084 0.984731i 0.555697π-0.555697\pi
−0.174084 + 0.984731i 0.555697π0.555697\pi
384384 0 0
385385 −23.2038 −1.18257
386386 0 0
387387 36.2113 1.84072
388388 0 0
389389 24.2209 1.22805 0.614024 0.789287i 0.289550π-0.289550\pi
0.614024 + 0.789287i 0.289550π0.289550\pi
390390 0 0
391391 −40.1496 −2.03045
392392 0 0
393393 −7.31049 −0.368765
394394 0 0
395395 −12.7883 −0.643448
396396 0 0
397397 −9.76461 −0.490072 −0.245036 0.969514i 0.578800π-0.578800\pi
−0.245036 + 0.969514i 0.578800π0.578800\pi
398398 0 0
399399 1.06857 0.0534952
400400 0 0
401401 26.5925 1.32796 0.663982 0.747748i 0.268865π-0.268865\pi
0.663982 + 0.747748i 0.268865π0.268865\pi
402402 0 0
403403 17.7443 0.883905
404404 0 0
405405 10.0954 0.501645
406406 0 0
407407 −18.1199 −0.898168
408408 0 0
409409 −13.4495 −0.665035 −0.332518 0.943097i 0.607898π-0.607898\pi
−0.332518 + 0.943097i 0.607898π0.607898\pi
410410 0 0
411411 3.54960 0.175089
412412 0 0
413413 −17.7590 −0.873862
414414 0 0
415415 4.73450 0.232407
416416 0 0
417417 4.66182 0.228290
418418 0 0
419419 3.54342 0.173108 0.0865538 0.996247i 0.472415π-0.472415\pi
0.0865538 + 0.996247i 0.472415π0.472415\pi
420420 0 0
421421 40.0980 1.95426 0.977129 0.212649i 0.0682090π-0.0682090\pi
0.977129 + 0.212649i 0.0682090π0.0682090\pi
422422 0 0
423423 12.9945 0.631815
424424 0 0
425425 18.1751 0.881624
426426 0 0
427427 −3.09886 −0.149964
428428 0 0
429429 3.94202 0.190323
430430 0 0
431431 −0.431537 −0.0207864 −0.0103932 0.999946i 0.503308π-0.503308\pi
−0.0103932 + 0.999946i 0.503308π0.503308\pi
432432 0 0
433433 −1.01440 −0.0487490 −0.0243745 0.999703i 0.507759π-0.507759\pi
−0.0243745 + 0.999703i 0.507759π0.507759\pi
434434 0 0
435435 −2.46507 −0.118191
436436 0 0
437437 −6.71875 −0.321402
438438 0 0
439439 12.1382 0.579324 0.289662 0.957129i 0.406457π-0.406457\pi
0.289662 + 0.957129i 0.406457π0.406457\pi
440440 0 0
441441 −19.2582 −0.917055
442442 0 0
443443 25.8786 1.22953 0.614764 0.788711i 0.289251π-0.289251\pi
0.614764 + 0.788711i 0.289251π0.289251\pi
444444 0 0
445445 −20.9682 −0.993990
446446 0 0
447447 −4.74787 −0.224566
448448 0 0
449449 17.2940 0.816153 0.408077 0.912948i 0.366200π-0.366200\pi
0.408077 + 0.912948i 0.366200π0.366200\pi
450450 0 0
451451 −10.8914 −0.512855
452452 0 0
453453 −0.115718 −0.00543689
454454 0 0
455455 −11.1779 −0.524030
456456 0 0
457457 −17.4083 −0.814324 −0.407162 0.913356i 0.633482π-0.633482\pi
−0.407162 + 0.913356i 0.633482π0.633482\pi
458458 0 0
459459 10.1844 0.475366
460460 0 0
461461 1.89558 0.0882858 0.0441429 0.999025i 0.485944π-0.485944\pi
0.0441429 + 0.999025i 0.485944π0.485944\pi
462462 0 0
463463 −9.59253 −0.445803 −0.222901 0.974841i 0.571553π-0.571553\pi
−0.222901 + 0.974841i 0.571553π0.571553\pi
464464 0 0
465465 3.00430 0.139321
466466 0 0
467467 −29.1818 −1.35037 −0.675186 0.737648i 0.735937π-0.735937\pi
−0.675186 + 0.737648i 0.735937π0.735937\pi
468468 0 0
469469 −24.8433 −1.14716
470470 0 0
471471 −1.61746 −0.0745288
472472 0 0
473473 −62.6936 −2.88266
474474 0 0
475475 3.04148 0.139553
476476 0 0
477477 −2.30539 −0.105557
478478 0 0
479479 40.9033 1.86892 0.934460 0.356068i 0.115883π-0.115883\pi
0.934460 + 0.356068i 0.115883π0.115883\pi
480480 0 0
481481 −8.72887 −0.398002
482482 0 0
483483 −9.12595 −0.415245
484484 0 0
485485 21.9085 0.994813
486486 0 0
487487 0.880098 0.0398810 0.0199405 0.999801i 0.493652π-0.493652\pi
0.0199405 + 0.999801i 0.493652π0.493652\pi
488488 0 0
489489 4.69812 0.212456
490490 0 0
491491 23.7235 1.07063 0.535313 0.844654i 0.320194π-0.320194\pi
0.535313 + 0.844654i 0.320194π0.320194\pi
492492 0 0
493493 31.9746 1.44006
494494 0 0
495495 −18.1704 −0.816700
496496 0 0
497497 −7.71129 −0.345899
498498 0 0
499499 −37.2473 −1.66742 −0.833709 0.552204i 0.813787π-0.813787\pi
−0.833709 + 0.552204i 0.813787π0.813787\pi
500500 0 0
501501 −4.90978 −0.219353
502502 0 0
503503 7.72236 0.344323 0.172161 0.985069i 0.444925π-0.444925\pi
0.172161 + 0.985069i 0.444925π0.444925\pi
504504 0 0
505505 −19.2047 −0.854597
506506 0 0
507507 −2.33930 −0.103892
508508 0 0
509509 −8.55860 −0.379353 −0.189677 0.981847i 0.560744π-0.560744\pi
−0.189677 + 0.981847i 0.560744π0.560744\pi
510510 0 0
511511 −4.48358 −0.198342
512512 0 0
513513 1.70428 0.0752459
514514 0 0
515515 −23.6835 −1.04362
516516 0 0
517517 −22.4978 −0.989452
518518 0 0
519519 −0.675160 −0.0296362
520520 0 0
521521 −21.7291 −0.951969 −0.475984 0.879454i 0.657908π-0.657908\pi
−0.475984 + 0.879454i 0.657908π0.657908\pi
522522 0 0
523523 0.142219 0.00621879 0.00310939 0.999995i 0.499010π-0.499010\pi
0.00310939 + 0.999995i 0.499010π0.499010\pi
524524 0 0
525525 4.13118 0.180300
526526 0 0
527527 −38.9690 −1.69752
528528 0 0
529529 34.3806 1.49481
530530 0 0
531531 −13.9067 −0.603500
532532 0 0
533533 −5.24670 −0.227260
534534 0 0
535535 −9.47964 −0.409841
536536 0 0
537537 −2.71346 −0.117094
538538 0 0
539539 33.3422 1.43615
540540 0 0
541541 −36.4213 −1.56587 −0.782936 0.622102i 0.786279π-0.786279\pi
−0.782936 + 0.622102i 0.786279π0.786279\pi
542542 0 0
543543 −2.45530 −0.105367
544544 0 0
545545 −23.9461 −1.02574
546546 0 0
547547 6.36581 0.272182 0.136091 0.990696i 0.456546π-0.456546\pi
0.136091 + 0.990696i 0.456546π0.456546\pi
548548 0 0
549549 −2.42666 −0.103567
550550 0 0
551551 5.35072 0.227948
552552 0 0
553553 37.7038 1.60333
554554 0 0
555555 −1.47789 −0.0627330
556556 0 0
557557 9.89776 0.419382 0.209691 0.977768i 0.432754π-0.432754\pi
0.209691 + 0.977768i 0.432754π0.432754\pi
558558 0 0
559559 −30.2014 −1.27738
560560 0 0
561561 −8.65726 −0.365510
562562 0 0
563563 −13.0240 −0.548897 −0.274449 0.961602i 0.588495π-0.588495\pi
−0.274449 + 0.961602i 0.588495π0.588495\pi
564564 0 0
565565 5.97852 0.251518
566566 0 0
567567 −29.7644 −1.24999
568568 0 0
569569 7.36726 0.308852 0.154426 0.988004i 0.450647π-0.450647\pi
0.154426 + 0.988004i 0.450647π0.450647\pi
570570 0 0
571571 43.5841 1.82394 0.911969 0.410258i 0.134561π-0.134561\pi
0.911969 + 0.410258i 0.134561π0.134561\pi
572572 0 0
573573 1.91570 0.0800296
574574 0 0
575575 −25.9753 −1.08325
576576 0 0
577577 31.6865 1.31913 0.659563 0.751650i 0.270742π-0.270742\pi
0.659563 + 0.751650i 0.270742π0.270742\pi
578578 0 0
579579 −6.12776 −0.254661
580580 0 0
581581 −13.9588 −0.579107
582582 0 0
583583 3.99139 0.165307
584584 0 0
585585 −8.75323 −0.361901
586586 0 0
587587 −12.3294 −0.508887 −0.254443 0.967088i 0.581892π-0.581892\pi
−0.254443 + 0.967088i 0.581892π0.581892\pi
588588 0 0
589589 −6.52119 −0.268701
590590 0 0
591591 −2.25599 −0.0927990
592592 0 0
593593 3.11572 0.127947 0.0639735 0.997952i 0.479623π-0.479623\pi
0.0639735 + 0.997952i 0.479623π0.479623\pi
594594 0 0
595595 24.5484 1.00639
596596 0 0
597597 −6.23152 −0.255039
598598 0 0
599599 14.7795 0.603875 0.301937 0.953328i 0.402367π-0.402367\pi
0.301937 + 0.953328i 0.402367π0.402367\pi
600600 0 0
601601 30.4492 1.24205 0.621024 0.783792i 0.286717π-0.286717\pi
0.621024 + 0.783792i 0.286717π0.286717\pi
602602 0 0
603603 −19.4543 −0.792241
604604 0 0
605605 17.6720 0.718471
606606 0 0
607607 8.80913 0.357552 0.178776 0.983890i 0.442786π-0.442786\pi
0.178776 + 0.983890i 0.442786π0.442786\pi
608608 0 0
609609 7.26778 0.294505
610610 0 0
611611 −10.8378 −0.438452
612612 0 0
613613 −9.85071 −0.397866 −0.198933 0.980013i 0.563748π-0.563748\pi
−0.198933 + 0.980013i 0.563748π0.563748\pi
614614 0 0
615615 −0.888323 −0.0358207
616616 0 0
617617 −26.3185 −1.05954 −0.529771 0.848141i 0.677722π-0.677722\pi
−0.529771 + 0.848141i 0.677722π0.677722\pi
618618 0 0
619619 −40.8536 −1.64205 −0.821023 0.570895i 0.806596π-0.806596\pi
−0.821023 + 0.570895i 0.806596π0.806596\pi
620620 0 0
621621 −14.5552 −0.584080
622622 0 0
623623 61.8209 2.47680
624624 0 0
625625 3.90411 0.156164
626626 0 0
627627 −1.44873 −0.0578567
628628 0 0
629629 19.1699 0.764353
630630 0 0
631631 −34.3064 −1.36572 −0.682858 0.730551i 0.739263π-0.739263\pi
−0.682858 + 0.730551i 0.739263π0.739263\pi
632632 0 0
633633 8.98655 0.357183
634634 0 0
635635 −0.455402 −0.0180721
636636 0 0
637637 16.0619 0.636396
638638 0 0
639639 −6.03856 −0.238882
640640 0 0
641641 −43.8934 −1.73369 −0.866843 0.498581i 0.833855π-0.833855\pi
−0.866843 + 0.498581i 0.833855π0.833855\pi
642642 0 0
643643 −10.1680 −0.400987 −0.200494 0.979695i 0.564255π-0.564255\pi
−0.200494 + 0.979695i 0.564255π0.564255\pi
644644 0 0
645645 −5.11342 −0.201341
646646 0 0
647647 −27.0736 −1.06437 −0.532186 0.846627i 0.678629π-0.678629\pi
−0.532186 + 0.846627i 0.678629π0.678629\pi
648648 0 0
649649 24.0771 0.945108
650650 0 0
651651 −8.85760 −0.347157
652652 0 0
653653 2.01231 0.0787477 0.0393738 0.999225i 0.487464π-0.487464\pi
0.0393738 + 0.999225i 0.487464π0.487464\pi
654654 0 0
655655 −28.1044 −1.09813
656656 0 0
657657 −3.51100 −0.136977
658658 0 0
659659 28.5071 1.11048 0.555240 0.831690i 0.312626π-0.312626\pi
0.555240 + 0.831690i 0.312626π0.312626\pi
660660 0 0
661661 −25.4035 −0.988081 −0.494040 0.869439i 0.664481π-0.664481\pi
−0.494040 + 0.869439i 0.664481π0.664481\pi
662662 0 0
663663 −4.17045 −0.161967
664664 0 0
665665 4.10800 0.159301
666666 0 0
667667 −45.6971 −1.76940
668668 0 0
669669 7.34294 0.283894
670670 0 0
671671 4.20134 0.162191
672672 0 0
673673 −12.6470 −0.487505 −0.243753 0.969837i 0.578378π-0.578378\pi
−0.243753 + 0.969837i 0.578378π0.578378\pi
674674 0 0
675675 6.58892 0.253608
676676 0 0
677677 24.1188 0.926961 0.463480 0.886107i 0.346600π-0.346600\pi
0.463480 + 0.886107i 0.346600π0.346600\pi
678678 0 0
679679 −64.5930 −2.47885
680680 0 0
681681 1.69446 0.0649317
682682 0 0
683683 10.9260 0.418074 0.209037 0.977908i 0.432967π-0.432967\pi
0.209037 + 0.977908i 0.432967π0.432967\pi
684684 0 0
685685 13.6461 0.521390
686686 0 0
687687 −5.63439 −0.214965
688688 0 0
689689 1.92277 0.0732517
690690 0 0
691691 32.4216 1.23338 0.616688 0.787208i 0.288474π-0.288474\pi
0.616688 + 0.787208i 0.288474π0.288474\pi
692692 0 0
693693 53.5720 2.03503
694694 0 0
695695 17.9219 0.679817
696696 0 0
697697 11.5225 0.436447
698698 0 0
699699 3.15346 0.119275
700700 0 0
701701 10.9234 0.412572 0.206286 0.978492i 0.433862π-0.433862\pi
0.206286 + 0.978492i 0.433862π0.433862\pi
702702 0 0
703703 3.20794 0.120990
704704 0 0
705705 −1.83496 −0.0691088
706706 0 0
707707 56.6213 2.12946
708708 0 0
709709 −23.9585 −0.899779 −0.449890 0.893084i 0.648537π-0.648537\pi
−0.449890 + 0.893084i 0.648537π0.648537\pi
710710 0 0
711711 29.5251 1.10728
712712 0 0
713713 55.6933 2.08573
714714 0 0
715715 15.1547 0.566754
716716 0 0
717717 −8.14345 −0.304123
718718 0 0
719719 41.3440 1.54187 0.770935 0.636914i 0.219789π-0.219789\pi
0.770935 + 0.636914i 0.219789π0.219789\pi
720720 0 0
721721 69.8262 2.60046
722722 0 0
723723 −7.69338 −0.286120
724724 0 0
725725 20.6864 0.768274
726726 0 0
727727 16.4022 0.608323 0.304161 0.952620i 0.401624π-0.401624\pi
0.304161 + 0.952620i 0.401624π0.401624\pi
728728 0 0
729729 −21.4286 −0.793651
730730 0 0
731731 66.3266 2.45318
732732 0 0
733733 −5.10118 −0.188416 −0.0942082 0.995553i 0.530032π-0.530032\pi
−0.0942082 + 0.995553i 0.530032π0.530032\pi
734734 0 0
735735 2.71946 0.100309
736736 0 0
737737 33.6818 1.24069
738738 0 0
739739 −10.9087 −0.401284 −0.200642 0.979665i 0.564303π-0.564303\pi
−0.200642 + 0.979665i 0.564303π0.564303\pi
740740 0 0
741741 −0.697896 −0.0256378
742742 0 0
743743 12.3861 0.454401 0.227200 0.973848i 0.427043π-0.427043\pi
0.227200 + 0.973848i 0.427043π0.427043\pi
744744 0 0
745745 −18.2527 −0.668728
746746 0 0
747747 −10.9308 −0.399938
748748 0 0
749749 27.9489 1.02123
750750 0 0
751751 −9.37979 −0.342273 −0.171137 0.985247i 0.554744π-0.554744\pi
−0.171137 + 0.985247i 0.554744π0.554744\pi
752752 0 0
753753 2.78962 0.101659
754754 0 0
755755 −0.444865 −0.0161903
756756 0 0
757757 7.55577 0.274619 0.137310 0.990528i 0.456154π-0.456154\pi
0.137310 + 0.990528i 0.456154π0.456154\pi
758758 0 0
759759 12.3727 0.449100
760760 0 0
761761 −32.6833 −1.18477 −0.592385 0.805655i 0.701813π-0.701813\pi
−0.592385 + 0.805655i 0.701813π0.701813\pi
762762 0 0
763763 70.6004 2.55591
764764 0 0
765765 19.2234 0.695023
766766 0 0
767767 11.5986 0.418802
768768 0 0
769769 5.17796 0.186722 0.0933611 0.995632i 0.470239π-0.470239\pi
0.0933611 + 0.995632i 0.470239π0.470239\pi
770770 0 0
771771 5.14949 0.185454
772772 0 0
773773 37.8283 1.36059 0.680295 0.732939i 0.261852π-0.261852\pi
0.680295 + 0.732939i 0.261852π0.261852\pi
774774 0 0
775775 −25.2115 −0.905625
776776 0 0
777777 4.35728 0.156317
778778 0 0
779779 1.92821 0.0690854
780780 0 0
781781 10.4547 0.374100
782782 0 0
783783 11.5916 0.414248
784784 0 0
785785 −6.21818 −0.221937
786786 0 0
787787 31.8773 1.13630 0.568152 0.822924i 0.307659π-0.307659\pi
0.568152 + 0.822924i 0.307659π0.307659\pi
788788 0 0
789789 −8.64502 −0.307771
790790 0 0
791791 −17.6265 −0.626727
792792 0 0
793793 2.02391 0.0718711
794794 0 0
795795 0.325546 0.0115459
796796 0 0
797797 −30.7449 −1.08904 −0.544520 0.838748i 0.683288π-0.683288\pi
−0.544520 + 0.838748i 0.683288π0.683288\pi
798798 0 0
799799 23.8015 0.842036
800800 0 0
801801 48.4107 1.71051
802802 0 0
803803 6.07870 0.214513
804804 0 0
805805 −35.0838 −1.23654
806806 0 0
807807 −0.326022 −0.0114765
808808 0 0
809809 39.5415 1.39021 0.695103 0.718910i 0.255359π-0.255359\pi
0.695103 + 0.718910i 0.255359π0.255359\pi
810810 0 0
811811 33.9458 1.19200 0.595999 0.802985i 0.296756π-0.296756\pi
0.595999 + 0.802985i 0.296756π0.296756\pi
812812 0 0
813813 5.85762 0.205436
814814 0 0
815815 18.0615 0.632666
816816 0 0
817817 11.0993 0.388315
818818 0 0
819819 25.8072 0.901777
820820 0 0
821821 −21.3102 −0.743730 −0.371865 0.928287i 0.621282π-0.621282\pi
−0.371865 + 0.928287i 0.621282π0.621282\pi
822822 0 0
823823 37.7609 1.31626 0.658131 0.752904i 0.271347π-0.271347\pi
0.658131 + 0.752904i 0.271347π0.271347\pi
824824 0 0
825825 −5.60093 −0.194999
826826 0 0
827827 12.0994 0.420737 0.210369 0.977622i 0.432534π-0.432534\pi
0.210369 + 0.977622i 0.432534π0.432534\pi
828828 0 0
829829 −41.8630 −1.45396 −0.726981 0.686658i 0.759077π-0.759077\pi
−0.726981 + 0.686658i 0.759077π0.759077\pi
830830 0 0
831831 8.19782 0.284379
832832 0 0
833833 −35.2743 −1.22218
834834 0 0
835835 −18.8752 −0.653203
836836 0 0
837837 −14.1272 −0.488307
838838 0 0
839839 37.8172 1.30560 0.652798 0.757532i 0.273595π-0.273595\pi
0.652798 + 0.757532i 0.273595π0.273595\pi
840840 0 0
841841 7.39253 0.254915
842842 0 0
843843 −1.40223 −0.0482955
844844 0 0
845845 −8.99320 −0.309376
846846 0 0
847847 −52.1026 −1.79027
848848 0 0
849849 3.76341 0.129160
850850 0 0
851851 −27.3970 −0.939157
852852 0 0
853853 −6.32008 −0.216395 −0.108198 0.994129i 0.534508π-0.534508\pi
−0.108198 + 0.994129i 0.534508π0.534508\pi
854854 0 0
855855 3.21689 0.110015
856856 0 0
857857 19.9518 0.681540 0.340770 0.940147i 0.389312π-0.389312\pi
0.340770 + 0.940147i 0.389312π0.389312\pi
858858 0 0
859859 43.7001 1.49103 0.745514 0.666490i 0.232204π-0.232204\pi
0.745514 + 0.666490i 0.232204π0.232204\pi
860860 0 0
861861 2.61905 0.0892570
862862 0 0
863863 30.8136 1.04891 0.524454 0.851439i 0.324269π-0.324269\pi
0.524454 + 0.851439i 0.324269π0.324269\pi
864864 0 0
865865 −2.59559 −0.0882526
866866 0 0
867867 3.61656 0.122825
868868 0 0
869869 −51.1177 −1.73405
870870 0 0
871871 16.2255 0.549781
872872 0 0
873873 −50.5815 −1.71192
874874 0 0
875875 39.0396 1.31978
876876 0 0
877877 2.64592 0.0893462 0.0446731 0.999002i 0.485775π-0.485775\pi
0.0446731 + 0.999002i 0.485775π0.485775\pi
878878 0 0
879879 −2.09421 −0.0706361
880880 0 0
881881 3.50336 0.118031 0.0590157 0.998257i 0.481204π-0.481204\pi
0.0590157 + 0.998257i 0.481204π0.481204\pi
882882 0 0
883883 38.9577 1.31103 0.655516 0.755181i 0.272451π-0.272451\pi
0.655516 + 0.755181i 0.272451π0.272451\pi
884884 0 0
885885 1.96377 0.0660116
886886 0 0
887887 37.4317 1.25683 0.628416 0.777877i 0.283703π-0.283703\pi
0.628416 + 0.777877i 0.283703π0.283703\pi
888888 0 0
889889 1.34267 0.0450316
890890 0 0
891891 40.3537 1.35190
892892 0 0
893893 3.98301 0.133286
894894 0 0
895895 −10.4316 −0.348691
896896 0 0
897897 5.96028 0.199008
898898 0 0
899899 −44.3534 −1.47927
900900 0 0
901901 −4.22269 −0.140678
902902 0 0
903903 15.0759 0.501696
904904 0 0
905905 −9.43917 −0.313769
906906 0 0
907907 −58.8154 −1.95293 −0.976467 0.215669i 0.930807π-0.930807\pi
−0.976467 + 0.215669i 0.930807π0.930807\pi
908908 0 0
909909 44.3390 1.47063
910910 0 0
911911 −46.4802 −1.53996 −0.769978 0.638070i 0.779733π-0.779733\pi
−0.769978 + 0.638070i 0.779733π0.779733\pi
912912 0 0
913913 18.9249 0.626322
914914 0 0
915915 0.342670 0.0113283
916916 0 0
917917 82.8606 2.73630
918918 0 0
919919 −24.1146 −0.795468 −0.397734 0.917501i 0.630203π-0.630203\pi
−0.397734 + 0.917501i 0.630203π0.630203\pi
920920 0 0
921921 −4.99419 −0.164564
922922 0 0
923923 5.03635 0.165774
924924 0 0
925925 12.4022 0.407782
926926 0 0
927927 54.6795 1.79591
928928 0 0
929929 27.5803 0.904881 0.452440 0.891795i 0.350553π-0.350553\pi
0.452440 + 0.891795i 0.350553π0.350553\pi
930930 0 0
931931 −5.90291 −0.193460
932932 0 0
933933 3.91475 0.128163
934934 0 0
935935 −33.2820 −1.08844
936936 0 0
937937 −55.9382 −1.82742 −0.913710 0.406366i 0.866796π-0.866796\pi
−0.913710 + 0.406366i 0.866796π0.866796\pi
938938 0 0
939939 7.48356 0.244217
940940 0 0
941941 −4.57223 −0.149051 −0.0745253 0.997219i 0.523744π-0.523744\pi
−0.0745253 + 0.997219i 0.523744π0.523744\pi
942942 0 0
943943 −16.4676 −0.536260
944944 0 0
945945 8.89938 0.289497
946946 0 0
947947 43.5393 1.41484 0.707419 0.706795i 0.249860π-0.249860\pi
0.707419 + 0.706795i 0.249860π0.249860\pi
948948 0 0
949949 2.92829 0.0950562
950950 0 0
951951 −0.153072 −0.00496370
952952 0 0
953953 −15.0276 −0.486791 −0.243395 0.969927i 0.578261π-0.578261\pi
−0.243395 + 0.969927i 0.578261π0.578261\pi
954954 0 0
955955 7.36473 0.238317
956956 0 0
957957 −9.85343 −0.318516
958958 0 0
959959 −40.2329 −1.29919
960960 0 0
961961 23.0556 0.743730
962962 0 0
963963 21.8862 0.705274
964964 0 0
965965 −23.5576 −0.758346
966966 0 0
967967 36.2094 1.16441 0.582207 0.813040i 0.302189π-0.302189\pi
0.582207 + 0.813040i 0.302189π0.302189\pi
968968 0 0
969969 1.53268 0.0492368
970970 0 0
971971 −16.8140 −0.539588 −0.269794 0.962918i 0.586956π-0.586956\pi
−0.269794 + 0.962918i 0.586956π0.586956\pi
972972 0 0
973973 −52.8393 −1.69395
974974 0 0
975975 −2.69813 −0.0864094
976976 0 0
977977 33.6418 1.07630 0.538148 0.842850i 0.319124π-0.319124\pi
0.538148 + 0.842850i 0.319124π0.319124\pi
978978 0 0
979979 −83.8149 −2.67873
980980 0 0
981981 55.2858 1.76514
982982 0 0
983983 −37.6528 −1.20094 −0.600469 0.799648i 0.705020π-0.705020\pi
−0.600469 + 0.799648i 0.705020π0.705020\pi
984984 0 0
985985 −8.67293 −0.276343
986986 0 0
987987 5.41004 0.172204
988988 0 0
989989 −94.7919 −3.01421
990990 0 0
991991 −28.2958 −0.898845 −0.449422 0.893319i 0.648370π-0.648370\pi
−0.449422 + 0.893319i 0.648370π0.648370\pi
992992 0 0
993993 −5.03433 −0.159760
994994 0 0
995995 −23.9565 −0.759471
996996 0 0
997997 13.7229 0.434610 0.217305 0.976104i 0.430273π-0.430273\pi
0.217305 + 0.976104i 0.430273π0.430273\pi
998998 0 0
999999 6.94954 0.219874
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.j.1.7 13
4.3 odd 2 2152.2.a.b.1.7 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2152.2.a.b.1.7 13 4.3 odd 2
4304.2.a.j.1.7 13 1.1 even 1 trivial