Properties

Label 431.2.a.f.1.17
Level $431$
Weight $2$
Character 431.1
Self dual yes
Analytic conductor $3.442$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [431,2,Mod(1,431)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("431.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 431.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.44155232712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 431.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.43862 q^{2} +2.31815 q^{3} +0.0696413 q^{4} +1.01873 q^{5} +3.33494 q^{6} +0.326151 q^{7} -2.77706 q^{8} +2.37380 q^{9} +1.46556 q^{10} -1.08039 q^{11} +0.161439 q^{12} +3.08765 q^{13} +0.469209 q^{14} +2.36155 q^{15} -4.13443 q^{16} +7.14719 q^{17} +3.41500 q^{18} +0.624685 q^{19} +0.0709454 q^{20} +0.756065 q^{21} -1.55427 q^{22} -8.86619 q^{23} -6.43763 q^{24} -3.96220 q^{25} +4.44197 q^{26} -1.45163 q^{27} +0.0227136 q^{28} -1.70194 q^{29} +3.39739 q^{30} -9.40429 q^{31} -0.393774 q^{32} -2.50449 q^{33} +10.2821 q^{34} +0.332258 q^{35} +0.165314 q^{36} +10.1698 q^{37} +0.898687 q^{38} +7.15762 q^{39} -2.82906 q^{40} -8.92892 q^{41} +1.08769 q^{42} +8.42056 q^{43} -0.0752396 q^{44} +2.41825 q^{45} -12.7551 q^{46} -10.4407 q^{47} -9.58422 q^{48} -6.89363 q^{49} -5.70012 q^{50} +16.5682 q^{51} +0.215028 q^{52} +7.05404 q^{53} -2.08835 q^{54} -1.10062 q^{55} -0.905741 q^{56} +1.44811 q^{57} -2.44845 q^{58} +4.59980 q^{59} +0.164462 q^{60} -0.252961 q^{61} -13.5293 q^{62} +0.774216 q^{63} +7.70237 q^{64} +3.14547 q^{65} -3.60303 q^{66} -4.69041 q^{67} +0.497740 q^{68} -20.5531 q^{69} +0.477995 q^{70} +9.47783 q^{71} -6.59218 q^{72} +11.5900 q^{73} +14.6305 q^{74} -9.18495 q^{75} +0.0435039 q^{76} -0.352369 q^{77} +10.2971 q^{78} -4.05934 q^{79} -4.21185 q^{80} -10.4865 q^{81} -12.8454 q^{82} +10.0605 q^{83} +0.0526534 q^{84} +7.28103 q^{85} +12.1140 q^{86} -3.94534 q^{87} +3.00030 q^{88} +6.53272 q^{89} +3.47895 q^{90} +1.00704 q^{91} -0.617453 q^{92} -21.8005 q^{93} -15.0202 q^{94} +0.636382 q^{95} -0.912825 q^{96} -11.1189 q^{97} -9.91734 q^{98} -2.56462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{3} + 33 q^{4} + 13 q^{5} + 17 q^{6} + 8 q^{7} - 3 q^{8} + 31 q^{9} - 6 q^{10} + 15 q^{11} - 12 q^{12} + 11 q^{13} + 16 q^{14} - 5 q^{15} + 43 q^{16} + 6 q^{17} - 8 q^{18} + 18 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43862 1.01726 0.508631 0.860985i \(-0.330152\pi\)
0.508631 + 0.860985i \(0.330152\pi\)
\(3\) 2.31815 1.33838 0.669191 0.743091i \(-0.266641\pi\)
0.669191 + 0.743091i \(0.266641\pi\)
\(4\) 0.0696413 0.0348207
\(5\) 1.01873 0.455588 0.227794 0.973709i \(-0.426849\pi\)
0.227794 + 0.973709i \(0.426849\pi\)
\(6\) 3.33494 1.36148
\(7\) 0.326151 0.123273 0.0616367 0.998099i \(-0.480368\pi\)
0.0616367 + 0.998099i \(0.480368\pi\)
\(8\) −2.77706 −0.981840
\(9\) 2.37380 0.791266
\(10\) 1.46556 0.463452
\(11\) −1.08039 −0.325749 −0.162875 0.986647i \(-0.552077\pi\)
−0.162875 + 0.986647i \(0.552077\pi\)
\(12\) 0.161439 0.0466034
\(13\) 3.08765 0.856360 0.428180 0.903693i \(-0.359155\pi\)
0.428180 + 0.903693i \(0.359155\pi\)
\(14\) 0.469209 0.125401
\(15\) 2.36155 0.609750
\(16\) −4.13443 −1.03361
\(17\) 7.14719 1.73345 0.866724 0.498787i \(-0.166221\pi\)
0.866724 + 0.498787i \(0.166221\pi\)
\(18\) 3.41500 0.804924
\(19\) 0.624685 0.143312 0.0716562 0.997429i \(-0.477172\pi\)
0.0716562 + 0.997429i \(0.477172\pi\)
\(20\) 0.0709454 0.0158639
\(21\) 0.756065 0.164987
\(22\) −1.55427 −0.331372
\(23\) −8.86619 −1.84873 −0.924364 0.381511i \(-0.875404\pi\)
−0.924364 + 0.381511i \(0.875404\pi\)
\(24\) −6.43763 −1.31408
\(25\) −3.96220 −0.792440
\(26\) 4.44197 0.871142
\(27\) −1.45163 −0.279366
\(28\) 0.0227136 0.00429246
\(29\) −1.70194 −0.316042 −0.158021 0.987436i \(-0.550511\pi\)
−0.158021 + 0.987436i \(0.550511\pi\)
\(30\) 3.39739 0.620276
\(31\) −9.40429 −1.68906 −0.844531 0.535507i \(-0.820120\pi\)
−0.844531 + 0.535507i \(0.820120\pi\)
\(32\) −0.393774 −0.0696100
\(33\) −2.50449 −0.435977
\(34\) 10.2821 1.76337
\(35\) 0.332258 0.0561619
\(36\) 0.165314 0.0275524
\(37\) 10.1698 1.67190 0.835950 0.548806i \(-0.184917\pi\)
0.835950 + 0.548806i \(0.184917\pi\)
\(38\) 0.898687 0.145786
\(39\) 7.15762 1.14614
\(40\) −2.82906 −0.447314
\(41\) −8.92892 −1.39446 −0.697232 0.716846i \(-0.745585\pi\)
−0.697232 + 0.716846i \(0.745585\pi\)
\(42\) 1.08769 0.167835
\(43\) 8.42056 1.28412 0.642062 0.766653i \(-0.278079\pi\)
0.642062 + 0.766653i \(0.278079\pi\)
\(44\) −0.0752396 −0.0113428
\(45\) 2.41825 0.360491
\(46\) −12.7551 −1.88064
\(47\) −10.4407 −1.52293 −0.761463 0.648208i \(-0.775519\pi\)
−0.761463 + 0.648208i \(0.775519\pi\)
\(48\) −9.58422 −1.38336
\(49\) −6.89363 −0.984804
\(50\) −5.70012 −0.806118
\(51\) 16.5682 2.32002
\(52\) 0.215028 0.0298190
\(53\) 7.05404 0.968947 0.484473 0.874806i \(-0.339011\pi\)
0.484473 + 0.874806i \(0.339011\pi\)
\(54\) −2.08835 −0.284188
\(55\) −1.10062 −0.148407
\(56\) −0.905741 −0.121035
\(57\) 1.44811 0.191807
\(58\) −2.44845 −0.321497
\(59\) 4.59980 0.598843 0.299421 0.954121i \(-0.403206\pi\)
0.299421 + 0.954121i \(0.403206\pi\)
\(60\) 0.164462 0.0212319
\(61\) −0.252961 −0.0323883 −0.0161942 0.999869i \(-0.505155\pi\)
−0.0161942 + 0.999869i \(0.505155\pi\)
\(62\) −13.5293 −1.71822
\(63\) 0.774216 0.0975420
\(64\) 7.70237 0.962797
\(65\) 3.14547 0.390147
\(66\) −3.60303 −0.443502
\(67\) −4.69041 −0.573024 −0.286512 0.958077i \(-0.592496\pi\)
−0.286512 + 0.958077i \(0.592496\pi\)
\(68\) 0.497740 0.0603598
\(69\) −20.5531 −2.47430
\(70\) 0.477995 0.0571313
\(71\) 9.47783 1.12481 0.562406 0.826861i \(-0.309876\pi\)
0.562406 + 0.826861i \(0.309876\pi\)
\(72\) −6.59218 −0.776896
\(73\) 11.5900 1.35651 0.678253 0.734828i \(-0.262737\pi\)
0.678253 + 0.734828i \(0.262737\pi\)
\(74\) 14.6305 1.70076
\(75\) −9.18495 −1.06059
\(76\) 0.0435039 0.00499024
\(77\) −0.352369 −0.0401562
\(78\) 10.2971 1.16592
\(79\) −4.05934 −0.456712 −0.228356 0.973578i \(-0.573335\pi\)
−0.228356 + 0.973578i \(0.573335\pi\)
\(80\) −4.21185 −0.470899
\(81\) −10.4865 −1.16516
\(82\) −12.8454 −1.41853
\(83\) 10.0605 1.10428 0.552141 0.833751i \(-0.313811\pi\)
0.552141 + 0.833751i \(0.313811\pi\)
\(84\) 0.0526534 0.00574495
\(85\) 7.28103 0.789738
\(86\) 12.1140 1.30629
\(87\) −3.94534 −0.422985
\(88\) 3.00030 0.319833
\(89\) 6.53272 0.692467 0.346234 0.938148i \(-0.387460\pi\)
0.346234 + 0.938148i \(0.387460\pi\)
\(90\) 3.47895 0.366714
\(91\) 1.00704 0.105566
\(92\) −0.617453 −0.0643740
\(93\) −21.8005 −2.26061
\(94\) −15.0202 −1.54921
\(95\) 0.636382 0.0652914
\(96\) −0.912825 −0.0931648
\(97\) −11.1189 −1.12895 −0.564474 0.825451i \(-0.690921\pi\)
−0.564474 + 0.825451i \(0.690921\pi\)
\(98\) −9.91734 −1.00180
\(99\) −2.56462 −0.257754
\(100\) −0.275933 −0.0275933
\(101\) −2.46775 −0.245551 −0.122775 0.992434i \(-0.539179\pi\)
−0.122775 + 0.992434i \(0.539179\pi\)
\(102\) 23.8355 2.36006
\(103\) 5.46494 0.538477 0.269238 0.963074i \(-0.413228\pi\)
0.269238 + 0.963074i \(0.413228\pi\)
\(104\) −8.57459 −0.840808
\(105\) 0.770222 0.0751660
\(106\) 10.1481 0.985672
\(107\) −2.33849 −0.226071 −0.113035 0.993591i \(-0.536057\pi\)
−0.113035 + 0.993591i \(0.536057\pi\)
\(108\) −0.101093 −0.00972772
\(109\) 5.54254 0.530879 0.265440 0.964127i \(-0.414483\pi\)
0.265440 + 0.964127i \(0.414483\pi\)
\(110\) −1.58338 −0.150969
\(111\) 23.5750 2.23764
\(112\) −1.34845 −0.127416
\(113\) 19.0918 1.79600 0.898002 0.439992i \(-0.145019\pi\)
0.898002 + 0.439992i \(0.145019\pi\)
\(114\) 2.08329 0.195118
\(115\) −9.03221 −0.842258
\(116\) −0.118525 −0.0110048
\(117\) 7.32945 0.677608
\(118\) 6.61739 0.609180
\(119\) 2.33106 0.213688
\(120\) −6.55818 −0.598677
\(121\) −9.83276 −0.893888
\(122\) −0.363916 −0.0329474
\(123\) −20.6985 −1.86632
\(124\) −0.654928 −0.0588142
\(125\) −9.13002 −0.816614
\(126\) 1.11381 0.0992257
\(127\) 4.70117 0.417161 0.208581 0.978005i \(-0.433116\pi\)
0.208581 + 0.978005i \(0.433116\pi\)
\(128\) 11.8684 1.04903
\(129\) 19.5201 1.71865
\(130\) 4.52515 0.396882
\(131\) −6.15951 −0.538159 −0.269079 0.963118i \(-0.586719\pi\)
−0.269079 + 0.963118i \(0.586719\pi\)
\(132\) −0.174416 −0.0151810
\(133\) 0.203741 0.0176666
\(134\) −6.74774 −0.582916
\(135\) −1.47881 −0.127276
\(136\) −19.8482 −1.70197
\(137\) 2.30414 0.196856 0.0984280 0.995144i \(-0.468619\pi\)
0.0984280 + 0.995144i \(0.468619\pi\)
\(138\) −29.5682 −2.51701
\(139\) 16.8924 1.43280 0.716399 0.697690i \(-0.245789\pi\)
0.716399 + 0.697690i \(0.245789\pi\)
\(140\) 0.0231389 0.00195559
\(141\) −24.2030 −2.03826
\(142\) 13.6350 1.14423
\(143\) −3.33586 −0.278958
\(144\) −9.81430 −0.817859
\(145\) −1.73381 −0.143985
\(146\) 16.6737 1.37992
\(147\) −15.9804 −1.31804
\(148\) 0.708236 0.0582167
\(149\) 1.76922 0.144940 0.0724699 0.997371i \(-0.476912\pi\)
0.0724699 + 0.997371i \(0.476912\pi\)
\(150\) −13.2137 −1.07889
\(151\) −7.74117 −0.629968 −0.314984 0.949097i \(-0.601999\pi\)
−0.314984 + 0.949097i \(0.601999\pi\)
\(152\) −1.73479 −0.140710
\(153\) 16.9660 1.37162
\(154\) −0.506927 −0.0408493
\(155\) −9.58039 −0.769516
\(156\) 0.498466 0.0399092
\(157\) 7.32976 0.584979 0.292489 0.956269i \(-0.405516\pi\)
0.292489 + 0.956269i \(0.405516\pi\)
\(158\) −5.83987 −0.464595
\(159\) 16.3523 1.29682
\(160\) −0.401147 −0.0317135
\(161\) −2.89171 −0.227899
\(162\) −15.0861 −1.18528
\(163\) 21.4421 1.67947 0.839736 0.542995i \(-0.182710\pi\)
0.839736 + 0.542995i \(0.182710\pi\)
\(164\) −0.621822 −0.0485562
\(165\) −2.55139 −0.198626
\(166\) 14.4733 1.12334
\(167\) −16.7125 −1.29325 −0.646627 0.762806i \(-0.723821\pi\)
−0.646627 + 0.762806i \(0.723821\pi\)
\(168\) −2.09964 −0.161991
\(169\) −3.46642 −0.266648
\(170\) 10.4747 0.803370
\(171\) 1.48287 0.113398
\(172\) 0.586419 0.0447141
\(173\) −3.83728 −0.291743 −0.145871 0.989304i \(-0.546599\pi\)
−0.145871 + 0.989304i \(0.546599\pi\)
\(174\) −5.67586 −0.430286
\(175\) −1.29227 −0.0976868
\(176\) 4.46679 0.336697
\(177\) 10.6630 0.801481
\(178\) 9.39814 0.704420
\(179\) −21.3060 −1.59249 −0.796244 0.604976i \(-0.793183\pi\)
−0.796244 + 0.604976i \(0.793183\pi\)
\(180\) 0.168410 0.0125525
\(181\) −2.59746 −0.193068 −0.0965339 0.995330i \(-0.530776\pi\)
−0.0965339 + 0.995330i \(0.530776\pi\)
\(182\) 1.44875 0.107389
\(183\) −0.586400 −0.0433479
\(184\) 24.6220 1.81515
\(185\) 10.3602 0.761697
\(186\) −31.3628 −2.29963
\(187\) −7.72174 −0.564669
\(188\) −0.727102 −0.0530293
\(189\) −0.473450 −0.0344384
\(190\) 0.915515 0.0664184
\(191\) 4.20693 0.304403 0.152201 0.988349i \(-0.451364\pi\)
0.152201 + 0.988349i \(0.451364\pi\)
\(192\) 17.8552 1.28859
\(193\) 20.3372 1.46390 0.731952 0.681357i \(-0.238610\pi\)
0.731952 + 0.681357i \(0.238610\pi\)
\(194\) −15.9959 −1.14844
\(195\) 7.29165 0.522166
\(196\) −0.480081 −0.0342915
\(197\) −16.2124 −1.15509 −0.577544 0.816360i \(-0.695989\pi\)
−0.577544 + 0.816360i \(0.695989\pi\)
\(198\) −3.68953 −0.262203
\(199\) 2.02312 0.143415 0.0717077 0.997426i \(-0.477155\pi\)
0.0717077 + 0.997426i \(0.477155\pi\)
\(200\) 11.0033 0.778049
\(201\) −10.8730 −0.766926
\(202\) −3.55017 −0.249789
\(203\) −0.555088 −0.0389596
\(204\) 1.15383 0.0807845
\(205\) −9.09612 −0.635301
\(206\) 7.86200 0.547772
\(207\) −21.0465 −1.46284
\(208\) −12.7657 −0.885141
\(209\) −0.674901 −0.0466839
\(210\) 1.10806 0.0764635
\(211\) 21.5719 1.48507 0.742536 0.669807i \(-0.233623\pi\)
0.742536 + 0.669807i \(0.233623\pi\)
\(212\) 0.491253 0.0337394
\(213\) 21.9710 1.50543
\(214\) −3.36422 −0.229973
\(215\) 8.57824 0.585031
\(216\) 4.03126 0.274293
\(217\) −3.06722 −0.208216
\(218\) 7.97364 0.540043
\(219\) 26.8673 1.81552
\(220\) −0.0766485 −0.00516764
\(221\) 22.0680 1.48446
\(222\) 33.9156 2.27626
\(223\) 18.6279 1.24742 0.623708 0.781657i \(-0.285625\pi\)
0.623708 + 0.781657i \(0.285625\pi\)
\(224\) −0.128430 −0.00858107
\(225\) −9.40546 −0.627030
\(226\) 27.4659 1.82701
\(227\) 28.5686 1.89617 0.948083 0.318022i \(-0.103019\pi\)
0.948083 + 0.318022i \(0.103019\pi\)
\(228\) 0.100848 0.00667884
\(229\) 18.8683 1.24686 0.623428 0.781881i \(-0.285740\pi\)
0.623428 + 0.781881i \(0.285740\pi\)
\(230\) −12.9940 −0.856797
\(231\) −0.816843 −0.0537443
\(232\) 4.72639 0.310302
\(233\) −2.97606 −0.194968 −0.0974839 0.995237i \(-0.531079\pi\)
−0.0974839 + 0.995237i \(0.531079\pi\)
\(234\) 10.5443 0.689305
\(235\) −10.6362 −0.693827
\(236\) 0.320336 0.0208521
\(237\) −9.41015 −0.611255
\(238\) 3.35352 0.217377
\(239\) −28.4068 −1.83748 −0.918741 0.394860i \(-0.870793\pi\)
−0.918741 + 0.394860i \(0.870793\pi\)
\(240\) −9.76368 −0.630243
\(241\) −10.7554 −0.692816 −0.346408 0.938084i \(-0.612599\pi\)
−0.346408 + 0.938084i \(0.612599\pi\)
\(242\) −14.1457 −0.909317
\(243\) −19.9543 −1.28007
\(244\) −0.0176165 −0.00112778
\(245\) −7.02271 −0.448665
\(246\) −29.7774 −1.89854
\(247\) 1.92881 0.122727
\(248\) 26.1163 1.65839
\(249\) 23.3217 1.47795
\(250\) −13.1347 −0.830710
\(251\) −9.63194 −0.607963 −0.303981 0.952678i \(-0.598316\pi\)
−0.303981 + 0.952678i \(0.598316\pi\)
\(252\) 0.0539174 0.00339648
\(253\) 9.57892 0.602221
\(254\) 6.76321 0.424362
\(255\) 16.8785 1.05697
\(256\) 1.66939 0.104337
\(257\) −1.50503 −0.0938813 −0.0469406 0.998898i \(-0.514947\pi\)
−0.0469406 + 0.998898i \(0.514947\pi\)
\(258\) 28.0821 1.74831
\(259\) 3.31688 0.206101
\(260\) 0.219055 0.0135852
\(261\) −4.04005 −0.250073
\(262\) −8.86122 −0.547448
\(263\) −20.5402 −1.26656 −0.633280 0.773923i \(-0.718292\pi\)
−0.633280 + 0.773923i \(0.718292\pi\)
\(264\) 6.95514 0.428059
\(265\) 7.18613 0.441440
\(266\) 0.293107 0.0179716
\(267\) 15.1438 0.926786
\(268\) −0.326646 −0.0199531
\(269\) −16.1641 −0.985540 −0.492770 0.870160i \(-0.664016\pi\)
−0.492770 + 0.870160i \(0.664016\pi\)
\(270\) −2.12746 −0.129473
\(271\) −5.93854 −0.360741 −0.180370 0.983599i \(-0.557730\pi\)
−0.180370 + 0.983599i \(0.557730\pi\)
\(272\) −29.5496 −1.79171
\(273\) 2.33446 0.141288
\(274\) 3.31479 0.200254
\(275\) 4.28071 0.258136
\(276\) −1.43135 −0.0861569
\(277\) 5.34856 0.321364 0.160682 0.987006i \(-0.448631\pi\)
0.160682 + 0.987006i \(0.448631\pi\)
\(278\) 24.3019 1.45753
\(279\) −22.3239 −1.33650
\(280\) −0.922701 −0.0551419
\(281\) 4.30380 0.256743 0.128372 0.991726i \(-0.459025\pi\)
0.128372 + 0.991726i \(0.459025\pi\)
\(282\) −34.8190 −2.07344
\(283\) 15.9059 0.945509 0.472754 0.881194i \(-0.343260\pi\)
0.472754 + 0.881194i \(0.343260\pi\)
\(284\) 0.660049 0.0391667
\(285\) 1.47523 0.0873848
\(286\) −4.79905 −0.283774
\(287\) −2.91218 −0.171900
\(288\) −0.934739 −0.0550800
\(289\) 34.0824 2.00484
\(290\) −2.49430 −0.146470
\(291\) −25.7751 −1.51096
\(292\) 0.807143 0.0472345
\(293\) −6.39472 −0.373583 −0.186792 0.982400i \(-0.559809\pi\)
−0.186792 + 0.982400i \(0.559809\pi\)
\(294\) −22.9898 −1.34079
\(295\) 4.68593 0.272826
\(296\) −28.2421 −1.64154
\(297\) 1.56832 0.0910033
\(298\) 2.54524 0.147442
\(299\) −27.3757 −1.58318
\(300\) −0.639652 −0.0369303
\(301\) 2.74637 0.158298
\(302\) −11.1366 −0.640842
\(303\) −5.72061 −0.328640
\(304\) −2.58272 −0.148129
\(305\) −0.257697 −0.0147557
\(306\) 24.4077 1.39529
\(307\) 14.5848 0.832397 0.416198 0.909274i \(-0.363362\pi\)
0.416198 + 0.909274i \(0.363362\pi\)
\(308\) −0.0245395 −0.00139827
\(309\) 12.6685 0.720688
\(310\) −13.7826 −0.782799
\(311\) −12.4793 −0.707634 −0.353817 0.935315i \(-0.615116\pi\)
−0.353817 + 0.935315i \(0.615116\pi\)
\(312\) −19.8772 −1.12532
\(313\) −14.0853 −0.796148 −0.398074 0.917353i \(-0.630321\pi\)
−0.398074 + 0.917353i \(0.630321\pi\)
\(314\) 10.5448 0.595076
\(315\) 0.788713 0.0444390
\(316\) −0.282698 −0.0159030
\(317\) 25.0164 1.40506 0.702530 0.711654i \(-0.252054\pi\)
0.702530 + 0.711654i \(0.252054\pi\)
\(318\) 23.5248 1.31921
\(319\) 1.83875 0.102950
\(320\) 7.84660 0.438638
\(321\) −5.42097 −0.302569
\(322\) −4.16009 −0.231833
\(323\) 4.46474 0.248425
\(324\) −0.730292 −0.0405718
\(325\) −12.2339 −0.678614
\(326\) 30.8471 1.70846
\(327\) 12.8484 0.710519
\(328\) 24.7962 1.36914
\(329\) −3.40523 −0.187736
\(330\) −3.67050 −0.202054
\(331\) −33.3448 −1.83280 −0.916398 0.400269i \(-0.868917\pi\)
−0.916398 + 0.400269i \(0.868917\pi\)
\(332\) 0.700626 0.0384518
\(333\) 24.1410 1.32292
\(334\) −24.0430 −1.31558
\(335\) −4.77824 −0.261063
\(336\) −3.12590 −0.170532
\(337\) 6.55685 0.357174 0.178587 0.983924i \(-0.442847\pi\)
0.178587 + 0.983924i \(0.442847\pi\)
\(338\) −4.98688 −0.271250
\(339\) 44.2575 2.40374
\(340\) 0.507060 0.0274992
\(341\) 10.1603 0.550210
\(342\) 2.13330 0.115356
\(343\) −4.53142 −0.244674
\(344\) −23.3844 −1.26080
\(345\) −20.9380 −1.12726
\(346\) −5.52040 −0.296779
\(347\) 28.5119 1.53060 0.765298 0.643676i \(-0.222591\pi\)
0.765298 + 0.643676i \(0.222591\pi\)
\(348\) −0.274759 −0.0147286
\(349\) 19.9621 1.06855 0.534274 0.845312i \(-0.320585\pi\)
0.534274 + 0.845312i \(0.320585\pi\)
\(350\) −1.85910 −0.0993730
\(351\) −4.48212 −0.239238
\(352\) 0.425428 0.0226754
\(353\) 3.95728 0.210625 0.105312 0.994439i \(-0.466416\pi\)
0.105312 + 0.994439i \(0.466416\pi\)
\(354\) 15.3401 0.815315
\(355\) 9.65531 0.512451
\(356\) 0.454948 0.0241122
\(357\) 5.40374 0.285996
\(358\) −30.6514 −1.61998
\(359\) −1.04479 −0.0551417 −0.0275708 0.999620i \(-0.508777\pi\)
−0.0275708 + 0.999620i \(0.508777\pi\)
\(360\) −6.71562 −0.353944
\(361\) −18.6098 −0.979462
\(362\) −3.73677 −0.196400
\(363\) −22.7938 −1.19636
\(364\) 0.0701316 0.00367589
\(365\) 11.8070 0.618008
\(366\) −0.843609 −0.0440962
\(367\) 6.58474 0.343720 0.171860 0.985121i \(-0.445022\pi\)
0.171860 + 0.985121i \(0.445022\pi\)
\(368\) 36.6567 1.91086
\(369\) −21.1955 −1.10339
\(370\) 14.9044 0.774845
\(371\) 2.30068 0.119445
\(372\) −1.51822 −0.0787159
\(373\) 11.8140 0.611704 0.305852 0.952079i \(-0.401059\pi\)
0.305852 + 0.952079i \(0.401059\pi\)
\(374\) −11.1087 −0.574416
\(375\) −21.1647 −1.09294
\(376\) 28.9944 1.49527
\(377\) −5.25499 −0.270646
\(378\) −0.681117 −0.0350329
\(379\) −36.7729 −1.88890 −0.944450 0.328656i \(-0.893404\pi\)
−0.944450 + 0.328656i \(0.893404\pi\)
\(380\) 0.0443185 0.00227349
\(381\) 10.8980 0.558321
\(382\) 6.05220 0.309657
\(383\) −19.6707 −1.00513 −0.502564 0.864540i \(-0.667610\pi\)
−0.502564 + 0.864540i \(0.667610\pi\)
\(384\) 27.5126 1.40400
\(385\) −0.358967 −0.0182947
\(386\) 29.2576 1.48917
\(387\) 19.9887 1.01608
\(388\) −0.774332 −0.0393107
\(389\) −15.8147 −0.801837 −0.400919 0.916114i \(-0.631309\pi\)
−0.400919 + 0.916114i \(0.631309\pi\)
\(390\) 10.4899 0.531179
\(391\) −63.3684 −3.20468
\(392\) 19.1440 0.966919
\(393\) −14.2786 −0.720262
\(394\) −23.3236 −1.17503
\(395\) −4.13536 −0.208072
\(396\) −0.178604 −0.00897517
\(397\) 1.94092 0.0974121 0.0487060 0.998813i \(-0.484490\pi\)
0.0487060 + 0.998813i \(0.484490\pi\)
\(398\) 2.91052 0.145891
\(399\) 0.472302 0.0236447
\(400\) 16.3814 0.819072
\(401\) −19.1816 −0.957883 −0.478942 0.877847i \(-0.658979\pi\)
−0.478942 + 0.877847i \(0.658979\pi\)
\(402\) −15.6422 −0.780164
\(403\) −29.0372 −1.44644
\(404\) −0.171858 −0.00855024
\(405\) −10.6828 −0.530835
\(406\) −0.798564 −0.0396321
\(407\) −10.9873 −0.544620
\(408\) −46.0110 −2.27788
\(409\) −8.60497 −0.425488 −0.212744 0.977108i \(-0.568240\pi\)
−0.212744 + 0.977108i \(0.568240\pi\)
\(410\) −13.0859 −0.646267
\(411\) 5.34133 0.263468
\(412\) 0.380586 0.0187501
\(413\) 1.50023 0.0738214
\(414\) −30.2781 −1.48809
\(415\) 10.2489 0.503097
\(416\) −1.21584 −0.0596112
\(417\) 39.1591 1.91763
\(418\) −0.970930 −0.0474897
\(419\) −34.1094 −1.66635 −0.833176 0.553008i \(-0.813480\pi\)
−0.833176 + 0.553008i \(0.813480\pi\)
\(420\) 0.0536393 0.00261733
\(421\) 9.64398 0.470019 0.235009 0.971993i \(-0.424488\pi\)
0.235009 + 0.971993i \(0.424488\pi\)
\(422\) 31.0339 1.51071
\(423\) −24.7840 −1.20504
\(424\) −19.5895 −0.951350
\(425\) −28.3186 −1.37365
\(426\) 31.6080 1.53141
\(427\) −0.0825033 −0.00399262
\(428\) −0.162856 −0.00787194
\(429\) −7.73300 −0.373353
\(430\) 12.3409 0.595130
\(431\) 1.00000 0.0481683
\(432\) 6.00166 0.288755
\(433\) 9.86132 0.473905 0.236952 0.971521i \(-0.423851\pi\)
0.236952 + 0.971521i \(0.423851\pi\)
\(434\) −4.41258 −0.211810
\(435\) −4.01922 −0.192707
\(436\) 0.385990 0.0184856
\(437\) −5.53857 −0.264946
\(438\) 38.6520 1.84686
\(439\) −16.9448 −0.808730 −0.404365 0.914598i \(-0.632508\pi\)
−0.404365 + 0.914598i \(0.632508\pi\)
\(440\) 3.05648 0.145712
\(441\) −16.3641 −0.779241
\(442\) 31.7476 1.51008
\(443\) 18.7700 0.891788 0.445894 0.895086i \(-0.352886\pi\)
0.445894 + 0.895086i \(0.352886\pi\)
\(444\) 1.64179 0.0779161
\(445\) 6.65505 0.315480
\(446\) 26.7986 1.26895
\(447\) 4.10130 0.193985
\(448\) 2.51214 0.118687
\(449\) 17.1910 0.811292 0.405646 0.914030i \(-0.367047\pi\)
0.405646 + 0.914030i \(0.367047\pi\)
\(450\) −13.5309 −0.637854
\(451\) 9.64670 0.454245
\(452\) 1.32958 0.0625381
\(453\) −17.9452 −0.843137
\(454\) 41.0995 1.92890
\(455\) 1.02590 0.0480948
\(456\) −4.02149 −0.188323
\(457\) −2.35330 −0.110083 −0.0550415 0.998484i \(-0.517529\pi\)
−0.0550415 + 0.998484i \(0.517529\pi\)
\(458\) 27.1445 1.26838
\(459\) −10.3751 −0.484267
\(460\) −0.629015 −0.0293280
\(461\) −28.9484 −1.34826 −0.674131 0.738611i \(-0.735482\pi\)
−0.674131 + 0.738611i \(0.735482\pi\)
\(462\) −1.17513 −0.0546720
\(463\) −17.2701 −0.802607 −0.401304 0.915945i \(-0.631443\pi\)
−0.401304 + 0.915945i \(0.631443\pi\)
\(464\) 7.03655 0.326663
\(465\) −22.2087 −1.02991
\(466\) −4.28143 −0.198333
\(467\) −16.4101 −0.759368 −0.379684 0.925116i \(-0.623967\pi\)
−0.379684 + 0.925116i \(0.623967\pi\)
\(468\) 0.510433 0.0235948
\(469\) −1.52978 −0.0706387
\(470\) −15.3014 −0.705803
\(471\) 16.9915 0.782925
\(472\) −12.7739 −0.587968
\(473\) −9.09747 −0.418302
\(474\) −13.5377 −0.621806
\(475\) −2.47512 −0.113566
\(476\) 0.162338 0.00744076
\(477\) 16.7449 0.766694
\(478\) −40.8667 −1.86920
\(479\) −28.4166 −1.29839 −0.649193 0.760624i \(-0.724893\pi\)
−0.649193 + 0.760624i \(0.724893\pi\)
\(480\) −0.929918 −0.0424447
\(481\) 31.4007 1.43175
\(482\) −15.4730 −0.704775
\(483\) −6.70341 −0.305016
\(484\) −0.684767 −0.0311258
\(485\) −11.3271 −0.514335
\(486\) −28.7067 −1.30216
\(487\) 3.06565 0.138918 0.0694589 0.997585i \(-0.477873\pi\)
0.0694589 + 0.997585i \(0.477873\pi\)
\(488\) 0.702488 0.0318001
\(489\) 49.7058 2.24777
\(490\) −10.1030 −0.456409
\(491\) −17.5739 −0.793098 −0.396549 0.918014i \(-0.629792\pi\)
−0.396549 + 0.918014i \(0.629792\pi\)
\(492\) −1.44147 −0.0649867
\(493\) −12.1641 −0.547842
\(494\) 2.77483 0.124845
\(495\) −2.61264 −0.117430
\(496\) 38.8814 1.74583
\(497\) 3.09120 0.138659
\(498\) 33.5511 1.50346
\(499\) 37.4409 1.67609 0.838043 0.545605i \(-0.183700\pi\)
0.838043 + 0.545605i \(0.183700\pi\)
\(500\) −0.635827 −0.0284350
\(501\) −38.7420 −1.73087
\(502\) −13.8567 −0.618457
\(503\) −0.167059 −0.00744878 −0.00372439 0.999993i \(-0.501186\pi\)
−0.00372439 + 0.999993i \(0.501186\pi\)
\(504\) −2.15005 −0.0957706
\(505\) −2.51396 −0.111870
\(506\) 13.7805 0.612617
\(507\) −8.03566 −0.356876
\(508\) 0.327396 0.0145258
\(509\) −6.72523 −0.298091 −0.149045 0.988830i \(-0.547620\pi\)
−0.149045 + 0.988830i \(0.547620\pi\)
\(510\) 24.2818 1.07522
\(511\) 3.78009 0.167221
\(512\) −21.3351 −0.942888
\(513\) −0.906810 −0.0400367
\(514\) −2.16518 −0.0955018
\(515\) 5.56728 0.245323
\(516\) 1.35941 0.0598445
\(517\) 11.2800 0.496092
\(518\) 4.77174 0.209658
\(519\) −8.89537 −0.390463
\(520\) −8.73516 −0.383062
\(521\) −6.51176 −0.285285 −0.142643 0.989774i \(-0.545560\pi\)
−0.142643 + 0.989774i \(0.545560\pi\)
\(522\) −5.81212 −0.254390
\(523\) 11.2692 0.492766 0.246383 0.969173i \(-0.420758\pi\)
0.246383 + 0.969173i \(0.420758\pi\)
\(524\) −0.428957 −0.0187391
\(525\) −2.99568 −0.130742
\(526\) −29.5496 −1.28842
\(527\) −67.2143 −2.92790
\(528\) 10.3547 0.450629
\(529\) 55.6093 2.41780
\(530\) 10.3381 0.449060
\(531\) 10.9190 0.473844
\(532\) 0.0141888 0.000615163 0
\(533\) −27.5694 −1.19416
\(534\) 21.7862 0.942783
\(535\) −2.38228 −0.102995
\(536\) 13.0256 0.562618
\(537\) −49.3905 −2.13136
\(538\) −23.2540 −1.00255
\(539\) 7.44779 0.320799
\(540\) −0.102986 −0.00443183
\(541\) 8.12108 0.349152 0.174576 0.984644i \(-0.444144\pi\)
0.174576 + 0.984644i \(0.444144\pi\)
\(542\) −8.54334 −0.366968
\(543\) −6.02129 −0.258398
\(544\) −2.81438 −0.120665
\(545\) 5.64633 0.241862
\(546\) 3.35842 0.143727
\(547\) −23.9265 −1.02302 −0.511512 0.859276i \(-0.670914\pi\)
−0.511512 + 0.859276i \(0.670914\pi\)
\(548\) 0.160463 0.00685466
\(549\) −0.600477 −0.0256278
\(550\) 6.15833 0.262592
\(551\) −1.06317 −0.0452927
\(552\) 57.0773 2.42937
\(553\) −1.32396 −0.0563004
\(554\) 7.69457 0.326911
\(555\) 24.0164 1.01944
\(556\) 1.17641 0.0498910
\(557\) −14.1560 −0.599807 −0.299903 0.953970i \(-0.596954\pi\)
−0.299903 + 0.953970i \(0.596954\pi\)
\(558\) −32.1157 −1.35957
\(559\) 25.9997 1.09967
\(560\) −1.37370 −0.0580494
\(561\) −17.9001 −0.755743
\(562\) 6.19155 0.261175
\(563\) −27.2173 −1.14707 −0.573536 0.819180i \(-0.694429\pi\)
−0.573536 + 0.819180i \(0.694429\pi\)
\(564\) −1.68553 −0.0709735
\(565\) 19.4493 0.818237
\(566\) 22.8827 0.961830
\(567\) −3.42017 −0.143634
\(568\) −26.3205 −1.10438
\(569\) 19.1424 0.802489 0.401245 0.915971i \(-0.368578\pi\)
0.401245 + 0.915971i \(0.368578\pi\)
\(570\) 2.12230 0.0888932
\(571\) −13.4624 −0.563385 −0.281693 0.959505i \(-0.590896\pi\)
−0.281693 + 0.959505i \(0.590896\pi\)
\(572\) −0.232314 −0.00971352
\(573\) 9.75228 0.407407
\(574\) −4.18953 −0.174868
\(575\) 35.1296 1.46501
\(576\) 18.2839 0.761828
\(577\) 44.3284 1.84541 0.922707 0.385502i \(-0.125972\pi\)
0.922707 + 0.385502i \(0.125972\pi\)
\(578\) 49.0317 2.03945
\(579\) 47.1446 1.95926
\(580\) −0.120745 −0.00501365
\(581\) 3.28124 0.136129
\(582\) −37.0807 −1.53705
\(583\) −7.62109 −0.315633
\(584\) −32.1861 −1.33187
\(585\) 7.46670 0.308710
\(586\) −9.19960 −0.380032
\(587\) 7.24535 0.299048 0.149524 0.988758i \(-0.452226\pi\)
0.149524 + 0.988758i \(0.452226\pi\)
\(588\) −1.11290 −0.0458952
\(589\) −5.87472 −0.242064
\(590\) 6.74130 0.277535
\(591\) −37.5828 −1.54595
\(592\) −42.0462 −1.72809
\(593\) 7.45718 0.306230 0.153115 0.988208i \(-0.451070\pi\)
0.153115 + 0.988208i \(0.451070\pi\)
\(594\) 2.25623 0.0925741
\(595\) 2.37471 0.0973537
\(596\) 0.123211 0.00504690
\(597\) 4.68989 0.191945
\(598\) −39.3833 −1.61050
\(599\) 11.6897 0.477627 0.238814 0.971065i \(-0.423242\pi\)
0.238814 + 0.971065i \(0.423242\pi\)
\(600\) 25.5072 1.04133
\(601\) 15.2410 0.621692 0.310846 0.950460i \(-0.399388\pi\)
0.310846 + 0.950460i \(0.399388\pi\)
\(602\) 3.95100 0.161031
\(603\) −11.1341 −0.453415
\(604\) −0.539106 −0.0219359
\(605\) −10.0169 −0.407244
\(606\) −8.22981 −0.334313
\(607\) −15.4309 −0.626323 −0.313161 0.949700i \(-0.601388\pi\)
−0.313161 + 0.949700i \(0.601388\pi\)
\(608\) −0.245984 −0.00997599
\(609\) −1.28678 −0.0521428
\(610\) −0.370730 −0.0150104
\(611\) −32.2371 −1.30417
\(612\) 1.18153 0.0477607
\(613\) −33.7895 −1.36474 −0.682372 0.731005i \(-0.739052\pi\)
−0.682372 + 0.731005i \(0.739052\pi\)
\(614\) 20.9820 0.846765
\(615\) −21.0861 −0.850275
\(616\) 0.978551 0.0394269
\(617\) 8.87856 0.357438 0.178719 0.983900i \(-0.442805\pi\)
0.178719 + 0.983900i \(0.442805\pi\)
\(618\) 18.2253 0.733128
\(619\) 25.9511 1.04306 0.521532 0.853232i \(-0.325361\pi\)
0.521532 + 0.853232i \(0.325361\pi\)
\(620\) −0.667191 −0.0267951
\(621\) 12.8704 0.516472
\(622\) −17.9530 −0.719848
\(623\) 2.13065 0.0853628
\(624\) −29.5927 −1.18466
\(625\) 10.5100 0.420401
\(626\) −20.2635 −0.809891
\(627\) −1.56452 −0.0624809
\(628\) 0.510455 0.0203694
\(629\) 72.6853 2.89815
\(630\) 1.13466 0.0452060
\(631\) 25.1431 1.00093 0.500466 0.865756i \(-0.333162\pi\)
0.500466 + 0.865756i \(0.333162\pi\)
\(632\) 11.2731 0.448418
\(633\) 50.0068 1.98759
\(634\) 35.9892 1.42931
\(635\) 4.78920 0.190053
\(636\) 1.13880 0.0451562
\(637\) −21.2851 −0.843346
\(638\) 2.64527 0.104727
\(639\) 22.4985 0.890025
\(640\) 12.0906 0.477923
\(641\) 25.9517 1.02503 0.512514 0.858679i \(-0.328714\pi\)
0.512514 + 0.858679i \(0.328714\pi\)
\(642\) −7.79874 −0.307792
\(643\) −20.1346 −0.794031 −0.397015 0.917812i \(-0.629954\pi\)
−0.397015 + 0.917812i \(0.629954\pi\)
\(644\) −0.201383 −0.00793560
\(645\) 19.8856 0.782995
\(646\) 6.42309 0.252713
\(647\) −29.7747 −1.17056 −0.585282 0.810830i \(-0.699016\pi\)
−0.585282 + 0.810830i \(0.699016\pi\)
\(648\) 29.1216 1.14400
\(649\) −4.96957 −0.195073
\(650\) −17.6000 −0.690327
\(651\) −7.11026 −0.278673
\(652\) 1.49325 0.0584803
\(653\) −26.8913 −1.05234 −0.526169 0.850380i \(-0.676372\pi\)
−0.526169 + 0.850380i \(0.676372\pi\)
\(654\) 18.4841 0.722784
\(655\) −6.27485 −0.245179
\(656\) 36.9160 1.44133
\(657\) 27.5123 1.07336
\(658\) −4.89885 −0.190977
\(659\) 25.7643 1.00363 0.501816 0.864974i \(-0.332665\pi\)
0.501816 + 0.864974i \(0.332665\pi\)
\(660\) −0.177682 −0.00691628
\(661\) 30.4913 1.18597 0.592987 0.805212i \(-0.297949\pi\)
0.592987 + 0.805212i \(0.297949\pi\)
\(662\) −47.9706 −1.86443
\(663\) 51.1569 1.98677
\(664\) −27.9386 −1.08423
\(665\) 0.207556 0.00804869
\(666\) 34.7298 1.34575
\(667\) 15.0897 0.584275
\(668\) −1.16388 −0.0450320
\(669\) 43.1822 1.66952
\(670\) −6.87409 −0.265569
\(671\) 0.273296 0.0105505
\(672\) −0.297719 −0.0114847
\(673\) −8.45445 −0.325895 −0.162948 0.986635i \(-0.552100\pi\)
−0.162948 + 0.986635i \(0.552100\pi\)
\(674\) 9.43285 0.363340
\(675\) 5.75164 0.221381
\(676\) −0.241406 −0.00928485
\(677\) −33.1288 −1.27324 −0.636622 0.771176i \(-0.719669\pi\)
−0.636622 + 0.771176i \(0.719669\pi\)
\(678\) 63.6700 2.44523
\(679\) −3.62642 −0.139169
\(680\) −20.2199 −0.775396
\(681\) 66.2262 2.53779
\(682\) 14.6168 0.559707
\(683\) 32.2944 1.23571 0.617856 0.786291i \(-0.288001\pi\)
0.617856 + 0.786291i \(0.288001\pi\)
\(684\) 0.103269 0.00394860
\(685\) 2.34729 0.0896852
\(686\) −6.51901 −0.248897
\(687\) 43.7396 1.66877
\(688\) −34.8143 −1.32728
\(689\) 21.7804 0.829767
\(690\) −30.1219 −1.14672
\(691\) −13.8209 −0.525771 −0.262885 0.964827i \(-0.584674\pi\)
−0.262885 + 0.964827i \(0.584674\pi\)
\(692\) −0.267233 −0.0101587
\(693\) −0.836453 −0.0317742
\(694\) 41.0179 1.55702
\(695\) 17.2088 0.652766
\(696\) 10.9564 0.415303
\(697\) −63.8167 −2.41723
\(698\) 28.7180 1.08699
\(699\) −6.89893 −0.260941
\(700\) −0.0899957 −0.00340152
\(701\) −35.8917 −1.35561 −0.677805 0.735241i \(-0.737069\pi\)
−0.677805 + 0.735241i \(0.737069\pi\)
\(702\) −6.44809 −0.243368
\(703\) 6.35290 0.239604
\(704\) −8.32155 −0.313630
\(705\) −24.6562 −0.928605
\(706\) 5.69305 0.214261
\(707\) −0.804860 −0.0302699
\(708\) 0.742586 0.0279081
\(709\) −35.2159 −1.32256 −0.661281 0.750138i \(-0.729987\pi\)
−0.661281 + 0.750138i \(0.729987\pi\)
\(710\) 13.8904 0.521296
\(711\) −9.63606 −0.361380
\(712\) −18.1418 −0.679892
\(713\) 83.3803 3.12262
\(714\) 7.77396 0.290933
\(715\) −3.39832 −0.127090
\(716\) −1.48378 −0.0554515
\(717\) −65.8511 −2.45925
\(718\) −1.50305 −0.0560935
\(719\) 4.34475 0.162032 0.0810159 0.996713i \(-0.474184\pi\)
0.0810159 + 0.996713i \(0.474184\pi\)
\(720\) −9.99808 −0.372606
\(721\) 1.78240 0.0663799
\(722\) −26.7725 −0.996368
\(723\) −24.9326 −0.927252
\(724\) −0.180891 −0.00672275
\(725\) 6.74341 0.250444
\(726\) −32.7917 −1.21701
\(727\) −29.0267 −1.07654 −0.538270 0.842773i \(-0.680922\pi\)
−0.538270 + 0.842773i \(0.680922\pi\)
\(728\) −2.79661 −0.103649
\(729\) −14.7975 −0.548056
\(730\) 16.9859 0.628676
\(731\) 60.1834 2.22596
\(732\) −0.0408377 −0.00150940
\(733\) −14.1267 −0.521781 −0.260890 0.965368i \(-0.584016\pi\)
−0.260890 + 0.965368i \(0.584016\pi\)
\(734\) 9.47296 0.349653
\(735\) −16.2797 −0.600484
\(736\) 3.49127 0.128690
\(737\) 5.06746 0.186662
\(738\) −30.4923 −1.12244
\(739\) 1.46866 0.0540257 0.0270128 0.999635i \(-0.491400\pi\)
0.0270128 + 0.999635i \(0.491400\pi\)
\(740\) 0.721498 0.0265228
\(741\) 4.47125 0.164256
\(742\) 3.30982 0.121507
\(743\) 26.5034 0.972314 0.486157 0.873871i \(-0.338398\pi\)
0.486157 + 0.873871i \(0.338398\pi\)
\(744\) 60.5414 2.21956
\(745\) 1.80235 0.0660328
\(746\) 16.9959 0.622263
\(747\) 23.8816 0.873780
\(748\) −0.537752 −0.0196622
\(749\) −0.762702 −0.0278685
\(750\) −30.4481 −1.11181
\(751\) −23.9023 −0.872208 −0.436104 0.899896i \(-0.643642\pi\)
−0.436104 + 0.899896i \(0.643642\pi\)
\(752\) 43.1662 1.57411
\(753\) −22.3282 −0.813686
\(754\) −7.55995 −0.275317
\(755\) −7.88613 −0.287006
\(756\) −0.0329717 −0.00119917
\(757\) 30.0435 1.09195 0.545975 0.837801i \(-0.316159\pi\)
0.545975 + 0.837801i \(0.316159\pi\)
\(758\) −52.9025 −1.92150
\(759\) 22.2053 0.806002
\(760\) −1.76727 −0.0641057
\(761\) −18.6862 −0.677373 −0.338686 0.940899i \(-0.609983\pi\)
−0.338686 + 0.940899i \(0.609983\pi\)
\(762\) 15.6781 0.567958
\(763\) 1.80771 0.0654433
\(764\) 0.292976 0.0105995
\(765\) 17.2837 0.624893
\(766\) −28.2988 −1.02248
\(767\) 14.2026 0.512825
\(768\) 3.86989 0.139643
\(769\) 40.0310 1.44355 0.721777 0.692126i \(-0.243326\pi\)
0.721777 + 0.692126i \(0.243326\pi\)
\(770\) −0.516419 −0.0186105
\(771\) −3.48888 −0.125649
\(772\) 1.41631 0.0509741
\(773\) −0.862526 −0.0310229 −0.0155115 0.999880i \(-0.504938\pi\)
−0.0155115 + 0.999880i \(0.504938\pi\)
\(774\) 28.7563 1.03362
\(775\) 37.2617 1.33848
\(776\) 30.8777 1.10845
\(777\) 7.68900 0.275841
\(778\) −22.7514 −0.815678
\(779\) −5.57776 −0.199844
\(780\) 0.507800 0.0181822
\(781\) −10.2397 −0.366406
\(782\) −91.1633 −3.25999
\(783\) 2.47058 0.0882914
\(784\) 28.5012 1.01790
\(785\) 7.46702 0.266509
\(786\) −20.5416 −0.732695
\(787\) 36.6867 1.30774 0.653869 0.756608i \(-0.273145\pi\)
0.653869 + 0.756608i \(0.273145\pi\)
\(788\) −1.12906 −0.0402209
\(789\) −47.6151 −1.69514
\(790\) −5.94923 −0.211664
\(791\) 6.22680 0.221400
\(792\) 7.12211 0.253073
\(793\) −0.781054 −0.0277360
\(794\) 2.79226 0.0990935
\(795\) 16.6585 0.590816
\(796\) 0.140893 0.00499382
\(797\) 9.44101 0.334418 0.167209 0.985921i \(-0.446525\pi\)
0.167209 + 0.985921i \(0.446525\pi\)
\(798\) 0.679465 0.0240528
\(799\) −74.6214 −2.63992
\(800\) 1.56021 0.0551618
\(801\) 15.5074 0.547926
\(802\) −27.5951 −0.974418
\(803\) −12.5217 −0.441881
\(804\) −0.757214 −0.0267049
\(805\) −2.94586 −0.103828
\(806\) −41.7736 −1.47141
\(807\) −37.4706 −1.31903
\(808\) 6.85310 0.241091
\(809\) −23.9366 −0.841565 −0.420783 0.907161i \(-0.638245\pi\)
−0.420783 + 0.907161i \(0.638245\pi\)
\(810\) −15.3686 −0.539998
\(811\) −1.77926 −0.0624783 −0.0312392 0.999512i \(-0.509945\pi\)
−0.0312392 + 0.999512i \(0.509945\pi\)
\(812\) −0.0386571 −0.00135660
\(813\) −13.7664 −0.482809
\(814\) −15.8066 −0.554021
\(815\) 21.8436 0.765147
\(816\) −68.5002 −2.39799
\(817\) 5.26020 0.184031
\(818\) −12.3793 −0.432833
\(819\) 2.39051 0.0835311
\(820\) −0.633466 −0.0221216
\(821\) 9.62802 0.336020 0.168010 0.985785i \(-0.446266\pi\)
0.168010 + 0.985785i \(0.446266\pi\)
\(822\) 7.68417 0.268016
\(823\) −12.9874 −0.452711 −0.226356 0.974045i \(-0.572681\pi\)
−0.226356 + 0.974045i \(0.572681\pi\)
\(824\) −15.1765 −0.528698
\(825\) 9.92331 0.345485
\(826\) 2.15827 0.0750957
\(827\) 25.3943 0.883045 0.441522 0.897250i \(-0.354439\pi\)
0.441522 + 0.897250i \(0.354439\pi\)
\(828\) −1.46571 −0.0509369
\(829\) 35.8474 1.24503 0.622515 0.782608i \(-0.286111\pi\)
0.622515 + 0.782608i \(0.286111\pi\)
\(830\) 14.7443 0.511782
\(831\) 12.3987 0.430107
\(832\) 23.7822 0.824500
\(833\) −49.2701 −1.70711
\(834\) 56.3353 1.95073
\(835\) −17.0255 −0.589191
\(836\) −0.0470010 −0.00162556
\(837\) 13.6516 0.471867
\(838\) −49.0706 −1.69512
\(839\) 57.1095 1.97164 0.985819 0.167810i \(-0.0536695\pi\)
0.985819 + 0.167810i \(0.0536695\pi\)
\(840\) −2.13896 −0.0738010
\(841\) −26.1034 −0.900118
\(842\) 13.8741 0.478132
\(843\) 9.97683 0.343620
\(844\) 1.50230 0.0517112
\(845\) −3.53133 −0.121481
\(846\) −35.6549 −1.22584
\(847\) −3.20696 −0.110193
\(848\) −29.1644 −1.00151
\(849\) 36.8722 1.26545
\(850\) −40.7398 −1.39736
\(851\) −90.1671 −3.09089
\(852\) 1.53009 0.0524200
\(853\) 0.277200 0.00949113 0.00474557 0.999989i \(-0.498489\pi\)
0.00474557 + 0.999989i \(0.498489\pi\)
\(854\) −0.118691 −0.00406153
\(855\) 1.51064 0.0516628
\(856\) 6.49414 0.221965
\(857\) −48.8638 −1.66916 −0.834578 0.550890i \(-0.814288\pi\)
−0.834578 + 0.550890i \(0.814288\pi\)
\(858\) −11.1249 −0.379797
\(859\) 7.43773 0.253772 0.126886 0.991917i \(-0.459502\pi\)
0.126886 + 0.991917i \(0.459502\pi\)
\(860\) 0.597400 0.0203712
\(861\) −6.75085 −0.230068
\(862\) 1.43862 0.0489998
\(863\) −31.7148 −1.07958 −0.539792 0.841799i \(-0.681497\pi\)
−0.539792 + 0.841799i \(0.681497\pi\)
\(864\) 0.571614 0.0194467
\(865\) −3.90913 −0.132914
\(866\) 14.1867 0.482085
\(867\) 79.0078 2.68325
\(868\) −0.213605 −0.00725023
\(869\) 4.38566 0.148773
\(870\) −5.78214 −0.196033
\(871\) −14.4823 −0.490715
\(872\) −15.3920 −0.521238
\(873\) −26.3939 −0.893298
\(874\) −7.96793 −0.269519
\(875\) −2.97776 −0.100667
\(876\) 1.87108 0.0632178
\(877\) −25.9726 −0.877033 −0.438517 0.898723i \(-0.644496\pi\)
−0.438517 + 0.898723i \(0.644496\pi\)
\(878\) −24.3772 −0.822690
\(879\) −14.8239 −0.499997
\(880\) 4.55043 0.153395
\(881\) 13.1590 0.443338 0.221669 0.975122i \(-0.428850\pi\)
0.221669 + 0.975122i \(0.428850\pi\)
\(882\) −23.5418 −0.792692
\(883\) 14.2968 0.481125 0.240563 0.970634i \(-0.422668\pi\)
0.240563 + 0.970634i \(0.422668\pi\)
\(884\) 1.53685 0.0516898
\(885\) 10.8627 0.365145
\(886\) 27.0029 0.907181
\(887\) −51.0373 −1.71367 −0.856833 0.515595i \(-0.827571\pi\)
−0.856833 + 0.515595i \(0.827571\pi\)
\(888\) −65.4692 −2.19700
\(889\) 1.53329 0.0514249
\(890\) 9.57412 0.320925
\(891\) 11.3295 0.379551
\(892\) 1.29727 0.0434359
\(893\) −6.52212 −0.218254
\(894\) 5.90023 0.197333
\(895\) −21.7050 −0.725518
\(896\) 3.87088 0.129317
\(897\) −63.4608 −2.11890
\(898\) 24.7314 0.825296
\(899\) 16.0055 0.533814
\(900\) −0.655009 −0.0218336
\(901\) 50.4166 1.67962
\(902\) 13.8780 0.462086
\(903\) 6.36649 0.211864
\(904\) −53.0191 −1.76339
\(905\) −2.64610 −0.0879593
\(906\) −25.8164 −0.857691
\(907\) 0.440127 0.0146142 0.00730708 0.999973i \(-0.497674\pi\)
0.00730708 + 0.999973i \(0.497674\pi\)
\(908\) 1.98956 0.0660258
\(909\) −5.85794 −0.194296
\(910\) 1.47588 0.0489250
\(911\) 23.7372 0.786448 0.393224 0.919443i \(-0.371360\pi\)
0.393224 + 0.919443i \(0.371360\pi\)
\(912\) −5.98711 −0.198253
\(913\) −10.8692 −0.359719
\(914\) −3.38552 −0.111983
\(915\) −0.597380 −0.0197488
\(916\) 1.31402 0.0434163
\(917\) −2.00893 −0.0663407
\(918\) −14.9258 −0.492626
\(919\) −56.0191 −1.84790 −0.923950 0.382513i \(-0.875059\pi\)
−0.923950 + 0.382513i \(0.875059\pi\)
\(920\) 25.0830 0.826962
\(921\) 33.8096 1.11406
\(922\) −41.6459 −1.37154
\(923\) 29.2642 0.963244
\(924\) −0.0568860 −0.00187141
\(925\) −40.2946 −1.32488
\(926\) −24.8451 −0.816462
\(927\) 12.9727 0.426078
\(928\) 0.670178 0.0219997
\(929\) 20.9799 0.688328 0.344164 0.938910i \(-0.388162\pi\)
0.344164 + 0.938910i \(0.388162\pi\)
\(930\) −31.9500 −1.04768
\(931\) −4.30634 −0.141135
\(932\) −0.207256 −0.00678891
\(933\) −28.9287 −0.947084
\(934\) −23.6079 −0.772475
\(935\) −7.86633 −0.257256
\(936\) −20.3543 −0.665303
\(937\) −39.1285 −1.27827 −0.639137 0.769093i \(-0.720708\pi\)
−0.639137 + 0.769093i \(0.720708\pi\)
\(938\) −2.20078 −0.0718580
\(939\) −32.6518 −1.06555
\(940\) −0.740717 −0.0241595
\(941\) 9.05841 0.295296 0.147648 0.989040i \(-0.452830\pi\)
0.147648 + 0.989040i \(0.452830\pi\)
\(942\) 24.4443 0.796439
\(943\) 79.1655 2.57798
\(944\) −19.0176 −0.618969
\(945\) −0.482316 −0.0156897
\(946\) −13.0878 −0.425523
\(947\) 4.02287 0.130726 0.0653629 0.997862i \(-0.479180\pi\)
0.0653629 + 0.997862i \(0.479180\pi\)
\(948\) −0.655335 −0.0212843
\(949\) 35.7859 1.16166
\(950\) −3.56078 −0.115527
\(951\) 57.9916 1.88051
\(952\) −6.47350 −0.209807
\(953\) −19.6804 −0.637511 −0.318756 0.947837i \(-0.603265\pi\)
−0.318756 + 0.947837i \(0.603265\pi\)
\(954\) 24.0896 0.779928
\(955\) 4.28571 0.138682
\(956\) −1.97829 −0.0639824
\(957\) 4.26249 0.137787
\(958\) −40.8808 −1.32080
\(959\) 0.751497 0.0242671
\(960\) 18.1896 0.587066
\(961\) 57.4408 1.85293
\(962\) 45.1738 1.45646
\(963\) −5.55111 −0.178882
\(964\) −0.749020 −0.0241243
\(965\) 20.7180 0.666936
\(966\) −9.64370 −0.310281
\(967\) −30.2562 −0.972973 −0.486486 0.873688i \(-0.661722\pi\)
−0.486486 + 0.873688i \(0.661722\pi\)
\(968\) 27.3062 0.877654
\(969\) 10.3499 0.332487
\(970\) −16.2954 −0.523213
\(971\) 6.41013 0.205711 0.102855 0.994696i \(-0.467202\pi\)
0.102855 + 0.994696i \(0.467202\pi\)
\(972\) −1.38964 −0.0445728
\(973\) 5.50949 0.176626
\(974\) 4.41032 0.141316
\(975\) −28.3599 −0.908244
\(976\) 1.04585 0.0334768
\(977\) 55.7983 1.78515 0.892573 0.450903i \(-0.148898\pi\)
0.892573 + 0.450903i \(0.148898\pi\)
\(978\) 71.5080 2.28657
\(979\) −7.05787 −0.225571
\(980\) −0.489071 −0.0156228
\(981\) 13.1569 0.420067
\(982\) −25.2822 −0.806788
\(983\) −8.26764 −0.263697 −0.131848 0.991270i \(-0.542091\pi\)
−0.131848 + 0.991270i \(0.542091\pi\)
\(984\) 57.4811 1.83243
\(985\) −16.5160 −0.526244
\(986\) −17.4995 −0.557299
\(987\) −7.89382 −0.251263
\(988\) 0.134325 0.00427344
\(989\) −74.6583 −2.37400
\(990\) −3.75861 −0.119457
\(991\) −9.02386 −0.286652 −0.143326 0.989676i \(-0.545780\pi\)
−0.143326 + 0.989676i \(0.545780\pi\)
\(992\) 3.70317 0.117576
\(993\) −77.2981 −2.45298
\(994\) 4.44708 0.141053
\(995\) 2.06101 0.0653383
\(996\) 1.62415 0.0514632
\(997\) 45.0871 1.42792 0.713962 0.700185i \(-0.246899\pi\)
0.713962 + 0.700185i \(0.246899\pi\)
\(998\) 53.8634 1.70502
\(999\) −14.7627 −0.467072
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 431.2.a.f.1.17 24
3.2 odd 2 3879.2.a.r.1.8 24
4.3 odd 2 6896.2.a.w.1.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.f.1.17 24 1.1 even 1 trivial
3879.2.a.r.1.8 24 3.2 odd 2
6896.2.a.w.1.5 24 4.3 odd 2