Properties

Label 431.2.a.f.1.23
Level $431$
Weight $2$
Character 431.1
Self dual yes
Analytic conductor $3.442$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [431,2,Mod(1,431)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("431.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 431.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.44155232712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.23
Character \(\chi\) \(=\) 431.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.57370 q^{2} -2.57511 q^{3} +4.62395 q^{4} +2.28360 q^{5} -6.62758 q^{6} +0.357026 q^{7} +6.75328 q^{8} +3.63121 q^{9} +5.87731 q^{10} -3.46937 q^{11} -11.9072 q^{12} +3.92837 q^{13} +0.918878 q^{14} -5.88053 q^{15} +8.13303 q^{16} +6.75219 q^{17} +9.34567 q^{18} -7.25447 q^{19} +10.5593 q^{20} -0.919381 q^{21} -8.92912 q^{22} +2.04539 q^{23} -17.3905 q^{24} +0.214828 q^{25} +10.1105 q^{26} -1.62544 q^{27} +1.65087 q^{28} -5.43464 q^{29} -15.1347 q^{30} +5.78498 q^{31} +7.42547 q^{32} +8.93401 q^{33} +17.3781 q^{34} +0.815303 q^{35} +16.7906 q^{36} -4.94633 q^{37} -18.6709 q^{38} -10.1160 q^{39} +15.4218 q^{40} -1.78711 q^{41} -2.36622 q^{42} -3.93078 q^{43} -16.0422 q^{44} +8.29223 q^{45} +5.26423 q^{46} -5.17162 q^{47} -20.9435 q^{48} -6.87253 q^{49} +0.552903 q^{50} -17.3876 q^{51} +18.1646 q^{52} -14.1387 q^{53} -4.18341 q^{54} -7.92264 q^{55} +2.41109 q^{56} +18.6811 q^{57} -13.9872 q^{58} -8.33307 q^{59} -27.1913 q^{60} +9.86026 q^{61} +14.8888 q^{62} +1.29644 q^{63} +2.84489 q^{64} +8.97083 q^{65} +22.9935 q^{66} -4.19720 q^{67} +31.2218 q^{68} -5.26712 q^{69} +2.09835 q^{70} +11.5581 q^{71} +24.5226 q^{72} +4.14078 q^{73} -12.7304 q^{74} -0.553206 q^{75} -33.5443 q^{76} -1.23865 q^{77} -26.0356 q^{78} +4.16693 q^{79} +18.5726 q^{80} -6.70794 q^{81} -4.59949 q^{82} +8.38331 q^{83} -4.25118 q^{84} +15.4193 q^{85} -10.1167 q^{86} +13.9948 q^{87} -23.4296 q^{88} +0.930759 q^{89} +21.3418 q^{90} +1.40253 q^{91} +9.45779 q^{92} -14.8970 q^{93} -13.3102 q^{94} -16.5663 q^{95} -19.1214 q^{96} -13.8575 q^{97} -17.6879 q^{98} -12.5980 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{3} + 33 q^{4} + 13 q^{5} + 17 q^{6} + 8 q^{7} - 3 q^{8} + 31 q^{9} - 6 q^{10} + 15 q^{11} - 12 q^{12} + 11 q^{13} + 16 q^{14} - 5 q^{15} + 43 q^{16} + 6 q^{17} - 8 q^{18} + 18 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57370 1.81988 0.909942 0.414736i \(-0.136126\pi\)
0.909942 + 0.414736i \(0.136126\pi\)
\(3\) −2.57511 −1.48674 −0.743371 0.668879i \(-0.766774\pi\)
−0.743371 + 0.668879i \(0.766774\pi\)
\(4\) 4.62395 2.31198
\(5\) 2.28360 1.02126 0.510628 0.859801i \(-0.329413\pi\)
0.510628 + 0.859801i \(0.329413\pi\)
\(6\) −6.62758 −2.70570
\(7\) 0.357026 0.134943 0.0674715 0.997721i \(-0.478507\pi\)
0.0674715 + 0.997721i \(0.478507\pi\)
\(8\) 6.75328 2.38764
\(9\) 3.63121 1.21040
\(10\) 5.87731 1.85857
\(11\) −3.46937 −1.04605 −0.523026 0.852316i \(-0.675197\pi\)
−0.523026 + 0.852316i \(0.675197\pi\)
\(12\) −11.9072 −3.43731
\(13\) 3.92837 1.08953 0.544767 0.838587i \(-0.316618\pi\)
0.544767 + 0.838587i \(0.316618\pi\)
\(14\) 0.918878 0.245580
\(15\) −5.88053 −1.51835
\(16\) 8.13303 2.03326
\(17\) 6.75219 1.63765 0.818823 0.574046i \(-0.194627\pi\)
0.818823 + 0.574046i \(0.194627\pi\)
\(18\) 9.34567 2.20279
\(19\) −7.25447 −1.66429 −0.832144 0.554559i \(-0.812887\pi\)
−0.832144 + 0.554559i \(0.812887\pi\)
\(20\) 10.5593 2.36112
\(21\) −0.919381 −0.200625
\(22\) −8.92912 −1.90369
\(23\) 2.04539 0.426494 0.213247 0.976998i \(-0.431596\pi\)
0.213247 + 0.976998i \(0.431596\pi\)
\(24\) −17.3905 −3.54981
\(25\) 0.214828 0.0429656
\(26\) 10.1105 1.98283
\(27\) −1.62544 −0.312817
\(28\) 1.65087 0.311985
\(29\) −5.43464 −1.00919 −0.504594 0.863357i \(-0.668358\pi\)
−0.504594 + 0.863357i \(0.668358\pi\)
\(30\) −15.1347 −2.76321
\(31\) 5.78498 1.03901 0.519507 0.854466i \(-0.326116\pi\)
0.519507 + 0.854466i \(0.326116\pi\)
\(32\) 7.42547 1.31265
\(33\) 8.93401 1.55521
\(34\) 17.3781 2.98032
\(35\) 0.815303 0.137811
\(36\) 16.7906 2.79843
\(37\) −4.94633 −0.813172 −0.406586 0.913613i \(-0.633281\pi\)
−0.406586 + 0.913613i \(0.633281\pi\)
\(38\) −18.6709 −3.02881
\(39\) −10.1160 −1.61986
\(40\) 15.4218 2.43840
\(41\) −1.78711 −0.279099 −0.139550 0.990215i \(-0.544566\pi\)
−0.139550 + 0.990215i \(0.544566\pi\)
\(42\) −2.36622 −0.365115
\(43\) −3.93078 −0.599438 −0.299719 0.954028i \(-0.596893\pi\)
−0.299719 + 0.954028i \(0.596893\pi\)
\(44\) −16.0422 −2.41845
\(45\) 8.29223 1.23613
\(46\) 5.26423 0.776169
\(47\) −5.17162 −0.754358 −0.377179 0.926140i \(-0.623106\pi\)
−0.377179 + 0.926140i \(0.623106\pi\)
\(48\) −20.9435 −3.02293
\(49\) −6.87253 −0.981790
\(50\) 0.552903 0.0781923
\(51\) −17.3876 −2.43476
\(52\) 18.1646 2.51898
\(53\) −14.1387 −1.94210 −0.971051 0.238871i \(-0.923223\pi\)
−0.971051 + 0.238871i \(0.923223\pi\)
\(54\) −4.18341 −0.569290
\(55\) −7.92264 −1.06829
\(56\) 2.41109 0.322196
\(57\) 18.6811 2.47437
\(58\) −13.9872 −1.83660
\(59\) −8.33307 −1.08487 −0.542437 0.840097i \(-0.682498\pi\)
−0.542437 + 0.840097i \(0.682498\pi\)
\(60\) −27.1913 −3.51038
\(61\) 9.86026 1.26248 0.631239 0.775589i \(-0.282547\pi\)
0.631239 + 0.775589i \(0.282547\pi\)
\(62\) 14.8888 1.89088
\(63\) 1.29644 0.163335
\(64\) 2.84489 0.355611
\(65\) 8.97083 1.11269
\(66\) 22.9935 2.83030
\(67\) −4.19720 −0.512770 −0.256385 0.966575i \(-0.582532\pi\)
−0.256385 + 0.966575i \(0.582532\pi\)
\(68\) 31.2218 3.78620
\(69\) −5.26712 −0.634086
\(70\) 2.09835 0.250801
\(71\) 11.5581 1.37169 0.685847 0.727746i \(-0.259432\pi\)
0.685847 + 0.727746i \(0.259432\pi\)
\(72\) 24.5226 2.89001
\(73\) 4.14078 0.484641 0.242321 0.970196i \(-0.422091\pi\)
0.242321 + 0.970196i \(0.422091\pi\)
\(74\) −12.7304 −1.47988
\(75\) −0.553206 −0.0638787
\(76\) −33.5443 −3.84780
\(77\) −1.23865 −0.141157
\(78\) −26.0356 −2.94795
\(79\) 4.16693 0.468816 0.234408 0.972138i \(-0.424685\pi\)
0.234408 + 0.972138i \(0.424685\pi\)
\(80\) 18.5726 2.07648
\(81\) −6.70794 −0.745326
\(82\) −4.59949 −0.507928
\(83\) 8.38331 0.920187 0.460094 0.887870i \(-0.347816\pi\)
0.460094 + 0.887870i \(0.347816\pi\)
\(84\) −4.25118 −0.463841
\(85\) 15.4193 1.67246
\(86\) −10.1167 −1.09091
\(87\) 13.9948 1.50040
\(88\) −23.4296 −2.49760
\(89\) 0.930759 0.0986602 0.0493301 0.998783i \(-0.484291\pi\)
0.0493301 + 0.998783i \(0.484291\pi\)
\(90\) 21.3418 2.24962
\(91\) 1.40253 0.147025
\(92\) 9.45779 0.986043
\(93\) −14.8970 −1.54475
\(94\) −13.3102 −1.37284
\(95\) −16.5663 −1.69967
\(96\) −19.1214 −1.95157
\(97\) −13.8575 −1.40701 −0.703507 0.710688i \(-0.748384\pi\)
−0.703507 + 0.710688i \(0.748384\pi\)
\(98\) −17.6879 −1.78674
\(99\) −12.5980 −1.26615
\(100\) 0.993353 0.0993353
\(101\) 6.91545 0.688113 0.344056 0.938949i \(-0.388199\pi\)
0.344056 + 0.938949i \(0.388199\pi\)
\(102\) −44.7507 −4.43098
\(103\) −2.27419 −0.224082 −0.112041 0.993704i \(-0.535739\pi\)
−0.112041 + 0.993704i \(0.535739\pi\)
\(104\) 26.5294 2.60142
\(105\) −2.09950 −0.204890
\(106\) −36.3889 −3.53440
\(107\) 17.3862 1.68079 0.840394 0.541976i \(-0.182323\pi\)
0.840394 + 0.541976i \(0.182323\pi\)
\(108\) −7.51597 −0.723225
\(109\) 10.6882 1.02374 0.511871 0.859062i \(-0.328953\pi\)
0.511871 + 0.859062i \(0.328953\pi\)
\(110\) −20.3905 −1.94416
\(111\) 12.7374 1.20898
\(112\) 2.90370 0.274374
\(113\) −8.62652 −0.811515 −0.405757 0.913981i \(-0.632992\pi\)
−0.405757 + 0.913981i \(0.632992\pi\)
\(114\) 48.0796 4.50306
\(115\) 4.67086 0.435560
\(116\) −25.1295 −2.33322
\(117\) 14.2648 1.31878
\(118\) −21.4469 −1.97434
\(119\) 2.41070 0.220989
\(120\) −39.7129 −3.62527
\(121\) 1.03649 0.0942268
\(122\) 25.3774 2.29756
\(123\) 4.60201 0.414949
\(124\) 26.7495 2.40217
\(125\) −10.9274 −0.977378
\(126\) 3.33664 0.297252
\(127\) 14.9387 1.32559 0.662796 0.748800i \(-0.269370\pi\)
0.662796 + 0.748800i \(0.269370\pi\)
\(128\) −7.52904 −0.665479
\(129\) 10.1222 0.891210
\(130\) 23.0883 2.02497
\(131\) 6.20221 0.541889 0.270945 0.962595i \(-0.412664\pi\)
0.270945 + 0.962595i \(0.412664\pi\)
\(132\) 41.3104 3.59561
\(133\) −2.59003 −0.224584
\(134\) −10.8024 −0.933182
\(135\) −3.71186 −0.319466
\(136\) 45.5994 3.91012
\(137\) 5.11007 0.436583 0.218291 0.975884i \(-0.429952\pi\)
0.218291 + 0.975884i \(0.429952\pi\)
\(138\) −13.5560 −1.15396
\(139\) 12.4468 1.05572 0.527860 0.849331i \(-0.322995\pi\)
0.527860 + 0.849331i \(0.322995\pi\)
\(140\) 3.76992 0.318617
\(141\) 13.3175 1.12154
\(142\) 29.7471 2.49632
\(143\) −13.6290 −1.13971
\(144\) 29.5328 2.46106
\(145\) −12.4105 −1.03064
\(146\) 10.6571 0.881990
\(147\) 17.6976 1.45967
\(148\) −22.8716 −1.88003
\(149\) −1.92002 −0.157294 −0.0786469 0.996903i \(-0.525060\pi\)
−0.0786469 + 0.996903i \(0.525060\pi\)
\(150\) −1.42379 −0.116252
\(151\) 11.0283 0.897468 0.448734 0.893665i \(-0.351875\pi\)
0.448734 + 0.893665i \(0.351875\pi\)
\(152\) −48.9914 −3.97373
\(153\) 24.5186 1.98221
\(154\) −3.18792 −0.256890
\(155\) 13.2106 1.06110
\(156\) −46.7759 −3.74507
\(157\) −6.15407 −0.491148 −0.245574 0.969378i \(-0.578976\pi\)
−0.245574 + 0.969378i \(0.578976\pi\)
\(158\) 10.7244 0.853190
\(159\) 36.4088 2.88741
\(160\) 16.9568 1.34055
\(161\) 0.730257 0.0575523
\(162\) −17.2642 −1.35641
\(163\) 6.77561 0.530706 0.265353 0.964151i \(-0.414511\pi\)
0.265353 + 0.964151i \(0.414511\pi\)
\(164\) −8.26350 −0.645271
\(165\) 20.4017 1.58827
\(166\) 21.5761 1.67463
\(167\) −18.1364 −1.40344 −0.701718 0.712455i \(-0.747583\pi\)
−0.701718 + 0.712455i \(0.747583\pi\)
\(168\) −6.20884 −0.479022
\(169\) 2.43211 0.187086
\(170\) 39.6847 3.04368
\(171\) −26.3425 −2.01446
\(172\) −18.1757 −1.38589
\(173\) 22.1208 1.68181 0.840906 0.541182i \(-0.182023\pi\)
0.840906 + 0.541182i \(0.182023\pi\)
\(174\) 36.0185 2.73056
\(175\) 0.0766990 0.00579790
\(176\) −28.2165 −2.12690
\(177\) 21.4586 1.61293
\(178\) 2.39550 0.179550
\(179\) −23.5578 −1.76079 −0.880396 0.474239i \(-0.842723\pi\)
−0.880396 + 0.474239i \(0.842723\pi\)
\(180\) 38.3429 2.85791
\(181\) 18.3718 1.36556 0.682782 0.730623i \(-0.260770\pi\)
0.682782 + 0.730623i \(0.260770\pi\)
\(182\) 3.60970 0.267568
\(183\) −25.3913 −1.87698
\(184\) 13.8131 1.01832
\(185\) −11.2954 −0.830457
\(186\) −38.3404 −2.81126
\(187\) −23.4258 −1.71306
\(188\) −23.9133 −1.74406
\(189\) −0.580325 −0.0422124
\(190\) −42.6368 −3.09320
\(191\) 22.4901 1.62732 0.813662 0.581338i \(-0.197470\pi\)
0.813662 + 0.581338i \(0.197470\pi\)
\(192\) −7.32591 −0.528702
\(193\) −20.9215 −1.50596 −0.752982 0.658041i \(-0.771385\pi\)
−0.752982 + 0.658041i \(0.771385\pi\)
\(194\) −35.6651 −2.56060
\(195\) −23.1009 −1.65429
\(196\) −31.7783 −2.26988
\(197\) 14.8504 1.05805 0.529023 0.848608i \(-0.322559\pi\)
0.529023 + 0.848608i \(0.322559\pi\)
\(198\) −32.4235 −2.30424
\(199\) 5.65028 0.400538 0.200269 0.979741i \(-0.435818\pi\)
0.200269 + 0.979741i \(0.435818\pi\)
\(200\) 1.45079 0.102586
\(201\) 10.8083 0.762357
\(202\) 17.7983 1.25228
\(203\) −1.94030 −0.136183
\(204\) −80.3997 −5.62910
\(205\) −4.08104 −0.285032
\(206\) −5.85308 −0.407804
\(207\) 7.42725 0.516230
\(208\) 31.9496 2.21531
\(209\) 25.1684 1.74093
\(210\) −5.40349 −0.372876
\(211\) −18.5688 −1.27833 −0.639163 0.769071i \(-0.720719\pi\)
−0.639163 + 0.769071i \(0.720719\pi\)
\(212\) −65.3768 −4.49010
\(213\) −29.7634 −2.03936
\(214\) 44.7470 3.05884
\(215\) −8.97632 −0.612180
\(216\) −10.9771 −0.746895
\(217\) 2.06539 0.140208
\(218\) 27.5082 1.86309
\(219\) −10.6630 −0.720537
\(220\) −36.6339 −2.46986
\(221\) 26.5251 1.78427
\(222\) 32.7822 2.20020
\(223\) 26.1851 1.75348 0.876741 0.480963i \(-0.159713\pi\)
0.876741 + 0.480963i \(0.159713\pi\)
\(224\) 2.65108 0.177133
\(225\) 0.780085 0.0520057
\(226\) −22.2021 −1.47686
\(227\) −10.2752 −0.681991 −0.340995 0.940065i \(-0.610764\pi\)
−0.340995 + 0.940065i \(0.610764\pi\)
\(228\) 86.3804 5.72068
\(229\) −2.60508 −0.172149 −0.0860743 0.996289i \(-0.527432\pi\)
−0.0860743 + 0.996289i \(0.527432\pi\)
\(230\) 12.0214 0.792668
\(231\) 3.18967 0.209865
\(232\) −36.7016 −2.40958
\(233\) 10.1213 0.663069 0.331535 0.943443i \(-0.392434\pi\)
0.331535 + 0.943443i \(0.392434\pi\)
\(234\) 36.7133 2.40002
\(235\) −11.8099 −0.770393
\(236\) −38.5317 −2.50820
\(237\) −10.7303 −0.697009
\(238\) 6.20443 0.402174
\(239\) 0.429477 0.0277805 0.0138903 0.999904i \(-0.495578\pi\)
0.0138903 + 0.999904i \(0.495578\pi\)
\(240\) −47.8266 −3.08719
\(241\) 11.7589 0.757460 0.378730 0.925507i \(-0.376361\pi\)
0.378730 + 0.925507i \(0.376361\pi\)
\(242\) 2.66763 0.171482
\(243\) 22.1500 1.42092
\(244\) 45.5934 2.91882
\(245\) −15.6941 −1.00266
\(246\) 11.8442 0.755159
\(247\) −28.4983 −1.81330
\(248\) 39.0676 2.48079
\(249\) −21.5880 −1.36808
\(250\) −28.1239 −1.77871
\(251\) −20.5272 −1.29566 −0.647831 0.761784i \(-0.724324\pi\)
−0.647831 + 0.761784i \(0.724324\pi\)
\(252\) 5.99466 0.377628
\(253\) −7.09621 −0.446135
\(254\) 38.4477 2.41242
\(255\) −39.7064 −2.48651
\(256\) −25.0673 −1.56671
\(257\) −8.29241 −0.517267 −0.258633 0.965976i \(-0.583272\pi\)
−0.258633 + 0.965976i \(0.583272\pi\)
\(258\) 26.0515 1.62190
\(259\) −1.76597 −0.109732
\(260\) 41.4807 2.57252
\(261\) −19.7343 −1.22152
\(262\) 15.9626 0.986175
\(263\) −9.09964 −0.561108 −0.280554 0.959838i \(-0.590518\pi\)
−0.280554 + 0.959838i \(0.590518\pi\)
\(264\) 60.3339 3.71329
\(265\) −32.2872 −1.98339
\(266\) −6.66597 −0.408717
\(267\) −2.39681 −0.146682
\(268\) −19.4077 −1.18551
\(269\) −16.7574 −1.02172 −0.510859 0.859665i \(-0.670672\pi\)
−0.510859 + 0.859665i \(0.670672\pi\)
\(270\) −9.55323 −0.581391
\(271\) 3.42966 0.208337 0.104169 0.994560i \(-0.466782\pi\)
0.104169 + 0.994560i \(0.466782\pi\)
\(272\) 54.9158 3.32976
\(273\) −3.61167 −0.218588
\(274\) 13.1518 0.794530
\(275\) −0.745316 −0.0449442
\(276\) −24.3549 −1.46599
\(277\) 27.9036 1.67656 0.838281 0.545238i \(-0.183561\pi\)
0.838281 + 0.545238i \(0.183561\pi\)
\(278\) 32.0343 1.92129
\(279\) 21.0065 1.25763
\(280\) 5.50597 0.329045
\(281\) −0.416804 −0.0248644 −0.0124322 0.999923i \(-0.503957\pi\)
−0.0124322 + 0.999923i \(0.503957\pi\)
\(282\) 34.2753 2.04107
\(283\) −20.2605 −1.20436 −0.602180 0.798360i \(-0.705701\pi\)
−0.602180 + 0.798360i \(0.705701\pi\)
\(284\) 53.4441 3.17132
\(285\) 42.6601 2.52697
\(286\) −35.0769 −2.07414
\(287\) −0.638043 −0.0376625
\(288\) 26.9634 1.58884
\(289\) 28.5920 1.68188
\(290\) −31.9411 −1.87564
\(291\) 35.6846 2.09187
\(292\) 19.1468 1.12048
\(293\) −22.9900 −1.34309 −0.671544 0.740965i \(-0.734368\pi\)
−0.671544 + 0.740965i \(0.734368\pi\)
\(294\) 45.5483 2.65643
\(295\) −19.0294 −1.10793
\(296\) −33.4039 −1.94156
\(297\) 5.63925 0.327223
\(298\) −4.94155 −0.286256
\(299\) 8.03506 0.464680
\(300\) −2.55800 −0.147686
\(301\) −1.40339 −0.0808899
\(302\) 28.3835 1.63329
\(303\) −17.8081 −1.02305
\(304\) −59.0008 −3.38393
\(305\) 22.5169 1.28931
\(306\) 63.1037 3.60740
\(307\) 0.973601 0.0555663 0.0277832 0.999614i \(-0.491155\pi\)
0.0277832 + 0.999614i \(0.491155\pi\)
\(308\) −5.72747 −0.326353
\(309\) 5.85629 0.333153
\(310\) 34.0001 1.93108
\(311\) 9.31814 0.528383 0.264192 0.964470i \(-0.414895\pi\)
0.264192 + 0.964470i \(0.414895\pi\)
\(312\) −68.3162 −3.86764
\(313\) 7.32414 0.413985 0.206992 0.978343i \(-0.433632\pi\)
0.206992 + 0.978343i \(0.433632\pi\)
\(314\) −15.8387 −0.893832
\(315\) 2.96054 0.166807
\(316\) 19.2677 1.08389
\(317\) −24.9725 −1.40260 −0.701299 0.712867i \(-0.747396\pi\)
−0.701299 + 0.712867i \(0.747396\pi\)
\(318\) 93.7055 5.25475
\(319\) 18.8547 1.05566
\(320\) 6.49659 0.363170
\(321\) −44.7715 −2.49890
\(322\) 1.87947 0.104739
\(323\) −48.9835 −2.72552
\(324\) −31.0172 −1.72318
\(325\) 0.843924 0.0468125
\(326\) 17.4384 0.965824
\(327\) −27.5233 −1.52204
\(328\) −12.0688 −0.666390
\(329\) −1.84640 −0.101795
\(330\) 52.5080 2.89047
\(331\) 20.9861 1.15350 0.576750 0.816921i \(-0.304321\pi\)
0.576750 + 0.816921i \(0.304321\pi\)
\(332\) 38.7640 2.12745
\(333\) −17.9612 −0.984266
\(334\) −46.6777 −2.55409
\(335\) −9.58474 −0.523670
\(336\) −7.47736 −0.407923
\(337\) −22.9966 −1.25270 −0.626352 0.779541i \(-0.715453\pi\)
−0.626352 + 0.779541i \(0.715453\pi\)
\(338\) 6.25954 0.340474
\(339\) 22.2143 1.20651
\(340\) 71.2981 3.86668
\(341\) −20.0702 −1.08686
\(342\) −67.7978 −3.66609
\(343\) −4.95285 −0.267429
\(344\) −26.5456 −1.43124
\(345\) −12.0280 −0.647565
\(346\) 56.9323 3.06070
\(347\) −28.4604 −1.52784 −0.763918 0.645314i \(-0.776727\pi\)
−0.763918 + 0.645314i \(0.776727\pi\)
\(348\) 64.7114 3.46889
\(349\) 15.7762 0.844483 0.422242 0.906483i \(-0.361243\pi\)
0.422242 + 0.906483i \(0.361243\pi\)
\(350\) 0.197401 0.0105515
\(351\) −6.38535 −0.340825
\(352\) −25.7617 −1.37310
\(353\) 14.0908 0.749976 0.374988 0.927030i \(-0.377647\pi\)
0.374988 + 0.927030i \(0.377647\pi\)
\(354\) 55.2281 2.93534
\(355\) 26.3941 1.40085
\(356\) 4.30379 0.228100
\(357\) −6.20783 −0.328553
\(358\) −60.6308 −3.20444
\(359\) 19.9187 1.05127 0.525635 0.850710i \(-0.323828\pi\)
0.525635 + 0.850710i \(0.323828\pi\)
\(360\) 55.9998 2.95145
\(361\) 33.6273 1.76986
\(362\) 47.2835 2.48517
\(363\) −2.66909 −0.140091
\(364\) 6.48523 0.339918
\(365\) 9.45587 0.494943
\(366\) −65.3497 −3.41588
\(367\) −23.8968 −1.24740 −0.623701 0.781663i \(-0.714372\pi\)
−0.623701 + 0.781663i \(0.714372\pi\)
\(368\) 16.6352 0.867172
\(369\) −6.48937 −0.337823
\(370\) −29.0711 −1.51134
\(371\) −5.04788 −0.262073
\(372\) −68.8830 −3.57141
\(373\) 11.8632 0.614252 0.307126 0.951669i \(-0.400633\pi\)
0.307126 + 0.951669i \(0.400633\pi\)
\(374\) −60.2911 −3.11758
\(375\) 28.1393 1.45311
\(376\) −34.9254 −1.80114
\(377\) −21.3493 −1.09954
\(378\) −1.49358 −0.0768217
\(379\) −0.367424 −0.0188733 −0.00943666 0.999955i \(-0.503004\pi\)
−0.00943666 + 0.999955i \(0.503004\pi\)
\(380\) −76.6018 −3.92959
\(381\) −38.4687 −1.97081
\(382\) 57.8828 2.96154
\(383\) 8.56628 0.437717 0.218858 0.975757i \(-0.429767\pi\)
0.218858 + 0.975757i \(0.429767\pi\)
\(384\) 19.3881 0.989396
\(385\) −2.82859 −0.144158
\(386\) −53.8458 −2.74068
\(387\) −14.2735 −0.725562
\(388\) −64.0764 −3.25298
\(389\) 8.98279 0.455445 0.227723 0.973726i \(-0.426872\pi\)
0.227723 + 0.973726i \(0.426872\pi\)
\(390\) −59.4549 −3.01062
\(391\) 13.8109 0.698445
\(392\) −46.4121 −2.34417
\(393\) −15.9714 −0.805650
\(394\) 38.2205 1.92552
\(395\) 9.51559 0.478781
\(396\) −58.2526 −2.92730
\(397\) 17.3868 0.872619 0.436309 0.899797i \(-0.356285\pi\)
0.436309 + 0.899797i \(0.356285\pi\)
\(398\) 14.5422 0.728932
\(399\) 6.66962 0.333899
\(400\) 1.74720 0.0873601
\(401\) 0.584876 0.0292073 0.0146036 0.999893i \(-0.495351\pi\)
0.0146036 + 0.999893i \(0.495351\pi\)
\(402\) 27.8173 1.38740
\(403\) 22.7256 1.13204
\(404\) 31.9767 1.59090
\(405\) −15.3182 −0.761169
\(406\) −4.99377 −0.247837
\(407\) 17.1606 0.850621
\(408\) −117.424 −5.81334
\(409\) 39.3068 1.94360 0.971798 0.235814i \(-0.0757756\pi\)
0.971798 + 0.235814i \(0.0757756\pi\)
\(410\) −10.5034 −0.518725
\(411\) −13.1590 −0.649086
\(412\) −10.5157 −0.518073
\(413\) −2.97512 −0.146396
\(414\) 19.1155 0.939478
\(415\) 19.1441 0.939748
\(416\) 29.1700 1.43018
\(417\) −32.0518 −1.56958
\(418\) 64.7760 3.16830
\(419\) −32.5887 −1.59206 −0.796032 0.605254i \(-0.793071\pi\)
−0.796032 + 0.605254i \(0.793071\pi\)
\(420\) −9.70799 −0.473701
\(421\) 21.1968 1.03307 0.516534 0.856267i \(-0.327222\pi\)
0.516534 + 0.856267i \(0.327222\pi\)
\(422\) −47.7905 −2.32641
\(423\) −18.7792 −0.913078
\(424\) −95.4827 −4.63705
\(425\) 1.45056 0.0703623
\(426\) −76.6022 −3.71139
\(427\) 3.52037 0.170362
\(428\) 80.3930 3.88594
\(429\) 35.0961 1.69446
\(430\) −23.1024 −1.11410
\(431\) 1.00000 0.0481683
\(432\) −13.2198 −0.636037
\(433\) 20.5332 0.986762 0.493381 0.869813i \(-0.335761\pi\)
0.493381 + 0.869813i \(0.335761\pi\)
\(434\) 5.31569 0.255161
\(435\) 31.9586 1.53230
\(436\) 49.4217 2.36687
\(437\) −14.8382 −0.709809
\(438\) −27.4433 −1.31129
\(439\) 36.3028 1.73264 0.866319 0.499491i \(-0.166480\pi\)
0.866319 + 0.499491i \(0.166480\pi\)
\(440\) −53.5038 −2.55069
\(441\) −24.9556 −1.18836
\(442\) 68.2678 3.24717
\(443\) −15.4351 −0.733344 −0.366672 0.930350i \(-0.619503\pi\)
−0.366672 + 0.930350i \(0.619503\pi\)
\(444\) 58.8970 2.79513
\(445\) 2.12548 0.100757
\(446\) 67.3926 3.19113
\(447\) 4.94426 0.233855
\(448\) 1.01570 0.0479872
\(449\) −41.4986 −1.95844 −0.979221 0.202796i \(-0.934997\pi\)
−0.979221 + 0.202796i \(0.934997\pi\)
\(450\) 2.00771 0.0946443
\(451\) 6.20013 0.291953
\(452\) −39.8886 −1.87620
\(453\) −28.3990 −1.33430
\(454\) −26.4454 −1.24114
\(455\) 3.20282 0.150150
\(456\) 126.159 5.90791
\(457\) −7.90474 −0.369768 −0.184884 0.982760i \(-0.559191\pi\)
−0.184884 + 0.982760i \(0.559191\pi\)
\(458\) −6.70471 −0.313290
\(459\) −10.9753 −0.512283
\(460\) 21.5978 1.00700
\(461\) −2.00122 −0.0932062 −0.0466031 0.998913i \(-0.514840\pi\)
−0.0466031 + 0.998913i \(0.514840\pi\)
\(462\) 8.20927 0.381930
\(463\) −18.9604 −0.881164 −0.440582 0.897712i \(-0.645228\pi\)
−0.440582 + 0.897712i \(0.645228\pi\)
\(464\) −44.2001 −2.05194
\(465\) −34.0188 −1.57758
\(466\) 26.0493 1.20671
\(467\) 6.42774 0.297440 0.148720 0.988879i \(-0.452485\pi\)
0.148720 + 0.988879i \(0.452485\pi\)
\(468\) 65.9596 3.04898
\(469\) −1.49851 −0.0691947
\(470\) −30.3952 −1.40203
\(471\) 15.8474 0.730211
\(472\) −56.2755 −2.59029
\(473\) 13.6373 0.627044
\(474\) −27.6166 −1.26847
\(475\) −1.55846 −0.0715071
\(476\) 11.1470 0.510921
\(477\) −51.3407 −2.35073
\(478\) 1.10535 0.0505573
\(479\) −14.5170 −0.663300 −0.331650 0.943403i \(-0.607605\pi\)
−0.331650 + 0.943403i \(0.607605\pi\)
\(480\) −43.6657 −1.99306
\(481\) −19.4310 −0.885979
\(482\) 30.2640 1.37849
\(483\) −1.88049 −0.0855655
\(484\) 4.79270 0.217850
\(485\) −31.6450 −1.43692
\(486\) 57.0076 2.58592
\(487\) 29.9959 1.35925 0.679623 0.733561i \(-0.262143\pi\)
0.679623 + 0.733561i \(0.262143\pi\)
\(488\) 66.5891 3.01435
\(489\) −17.4480 −0.789024
\(490\) −40.3920 −1.82472
\(491\) −31.7300 −1.43196 −0.715978 0.698123i \(-0.754019\pi\)
−0.715978 + 0.698123i \(0.754019\pi\)
\(492\) 21.2795 0.959352
\(493\) −36.6957 −1.65269
\(494\) −73.3461 −3.30000
\(495\) −28.7688 −1.29306
\(496\) 47.0494 2.11258
\(497\) 4.12654 0.185100
\(498\) −55.5610 −2.48975
\(499\) 20.3965 0.913072 0.456536 0.889705i \(-0.349090\pi\)
0.456536 + 0.889705i \(0.349090\pi\)
\(500\) −50.5279 −2.25967
\(501\) 46.7032 2.08655
\(502\) −52.8308 −2.35796
\(503\) −13.7113 −0.611358 −0.305679 0.952135i \(-0.598883\pi\)
−0.305679 + 0.952135i \(0.598883\pi\)
\(504\) 8.75519 0.389987
\(505\) 15.7921 0.702740
\(506\) −18.2635 −0.811914
\(507\) −6.26297 −0.278148
\(508\) 69.0756 3.06474
\(509\) 19.8740 0.880901 0.440451 0.897777i \(-0.354819\pi\)
0.440451 + 0.897777i \(0.354819\pi\)
\(510\) −102.193 −4.52516
\(511\) 1.47836 0.0653989
\(512\) −49.4577 −2.18574
\(513\) 11.7917 0.520617
\(514\) −21.3422 −0.941365
\(515\) −5.19333 −0.228846
\(516\) 46.8046 2.06046
\(517\) 17.9422 0.789098
\(518\) −4.54507 −0.199699
\(519\) −56.9635 −2.50042
\(520\) 60.5825 2.65672
\(521\) 15.0333 0.658620 0.329310 0.944222i \(-0.393184\pi\)
0.329310 + 0.944222i \(0.393184\pi\)
\(522\) −50.7903 −2.22303
\(523\) −27.1598 −1.18761 −0.593807 0.804607i \(-0.702376\pi\)
−0.593807 + 0.804607i \(0.702376\pi\)
\(524\) 28.6787 1.25284
\(525\) −0.197509 −0.00861998
\(526\) −23.4198 −1.02115
\(527\) 39.0613 1.70154
\(528\) 72.6606 3.16215
\(529\) −18.8164 −0.818103
\(530\) −83.0977 −3.60953
\(531\) −30.2591 −1.31313
\(532\) −11.9762 −0.519233
\(533\) −7.02043 −0.304088
\(534\) −6.16868 −0.266945
\(535\) 39.7031 1.71652
\(536\) −28.3449 −1.22431
\(537\) 60.6640 2.61785
\(538\) −43.1286 −1.85941
\(539\) 23.8433 1.02700
\(540\) −17.1635 −0.738598
\(541\) 4.52575 0.194577 0.0972886 0.995256i \(-0.468983\pi\)
0.0972886 + 0.995256i \(0.468983\pi\)
\(542\) 8.82694 0.379149
\(543\) −47.3094 −2.03024
\(544\) 50.1381 2.14965
\(545\) 24.4075 1.04550
\(546\) −9.29538 −0.397805
\(547\) −24.6932 −1.05581 −0.527903 0.849304i \(-0.677022\pi\)
−0.527903 + 0.849304i \(0.677022\pi\)
\(548\) 23.6287 1.00937
\(549\) 35.8047 1.52811
\(550\) −1.91822 −0.0817933
\(551\) 39.4254 1.67958
\(552\) −35.5703 −1.51397
\(553\) 1.48770 0.0632634
\(554\) 71.8155 3.05115
\(555\) 29.0870 1.23468
\(556\) 57.5532 2.44080
\(557\) 28.0914 1.19027 0.595135 0.803626i \(-0.297099\pi\)
0.595135 + 0.803626i \(0.297099\pi\)
\(558\) 54.0645 2.28873
\(559\) −15.4416 −0.653108
\(560\) 6.63089 0.280206
\(561\) 60.3241 2.54689
\(562\) −1.07273 −0.0452504
\(563\) 21.6657 0.913100 0.456550 0.889698i \(-0.349085\pi\)
0.456550 + 0.889698i \(0.349085\pi\)
\(564\) 61.5795 2.59297
\(565\) −19.6995 −0.828765
\(566\) −52.1445 −2.19180
\(567\) −2.39490 −0.100577
\(568\) 78.0550 3.27512
\(569\) 4.83832 0.202833 0.101416 0.994844i \(-0.467663\pi\)
0.101416 + 0.994844i \(0.467663\pi\)
\(570\) 109.795 4.59879
\(571\) −38.9894 −1.63165 −0.815827 0.578296i \(-0.803718\pi\)
−0.815827 + 0.578296i \(0.803718\pi\)
\(572\) −63.0197 −2.63498
\(573\) −57.9145 −2.41941
\(574\) −1.64213 −0.0685414
\(575\) 0.439407 0.0183245
\(576\) 10.3304 0.430433
\(577\) 19.7275 0.821269 0.410634 0.911800i \(-0.365307\pi\)
0.410634 + 0.911800i \(0.365307\pi\)
\(578\) 73.5874 3.06083
\(579\) 53.8753 2.23898
\(580\) −57.3858 −2.38281
\(581\) 2.99305 0.124173
\(582\) 91.8416 3.80696
\(583\) 49.0524 2.03154
\(584\) 27.9638 1.15715
\(585\) 32.5750 1.34681
\(586\) −59.1693 −2.44426
\(587\) 12.4387 0.513401 0.256701 0.966491i \(-0.417365\pi\)
0.256701 + 0.966491i \(0.417365\pi\)
\(588\) 81.8327 3.37472
\(589\) −41.9670 −1.72922
\(590\) −48.9760 −2.01631
\(591\) −38.2414 −1.57304
\(592\) −40.2287 −1.65339
\(593\) −36.7614 −1.50961 −0.754806 0.655948i \(-0.772269\pi\)
−0.754806 + 0.655948i \(0.772269\pi\)
\(594\) 14.5138 0.595507
\(595\) 5.50508 0.225686
\(596\) −8.87806 −0.363660
\(597\) −14.5501 −0.595497
\(598\) 20.6799 0.845663
\(599\) −11.1268 −0.454630 −0.227315 0.973821i \(-0.572995\pi\)
−0.227315 + 0.973821i \(0.572995\pi\)
\(600\) −3.73595 −0.152520
\(601\) 3.94777 0.161033 0.0805165 0.996753i \(-0.474343\pi\)
0.0805165 + 0.996753i \(0.474343\pi\)
\(602\) −3.61190 −0.147210
\(603\) −15.2409 −0.620659
\(604\) 50.9942 2.07492
\(605\) 2.36694 0.0962297
\(606\) −45.8327 −1.86183
\(607\) 36.7922 1.49335 0.746674 0.665190i \(-0.231649\pi\)
0.746674 + 0.665190i \(0.231649\pi\)
\(608\) −53.8678 −2.18463
\(609\) 4.99651 0.202469
\(610\) 57.9518 2.34640
\(611\) −20.3160 −0.821899
\(612\) 113.373 4.58283
\(613\) 15.3619 0.620462 0.310231 0.950661i \(-0.399594\pi\)
0.310231 + 0.950661i \(0.399594\pi\)
\(614\) 2.50576 0.101124
\(615\) 10.5091 0.423770
\(616\) −8.36496 −0.337034
\(617\) 27.4366 1.10455 0.552277 0.833661i \(-0.313759\pi\)
0.552277 + 0.833661i \(0.313759\pi\)
\(618\) 15.0724 0.606299
\(619\) −17.2553 −0.693549 −0.346775 0.937948i \(-0.612723\pi\)
−0.346775 + 0.937948i \(0.612723\pi\)
\(620\) 61.0851 2.45324
\(621\) −3.32467 −0.133414
\(622\) 23.9821 0.961596
\(623\) 0.332305 0.0133135
\(624\) −82.2738 −3.29359
\(625\) −26.0280 −1.04112
\(626\) 18.8502 0.753404
\(627\) −64.8115 −2.58832
\(628\) −28.4561 −1.13552
\(629\) −33.3985 −1.33169
\(630\) 7.61955 0.303570
\(631\) 17.3059 0.688935 0.344468 0.938798i \(-0.388059\pi\)
0.344468 + 0.938798i \(0.388059\pi\)
\(632\) 28.1404 1.11937
\(633\) 47.8167 1.90054
\(634\) −64.2719 −2.55256
\(635\) 34.1139 1.35377
\(636\) 168.353 6.67562
\(637\) −26.9979 −1.06969
\(638\) 48.5265 1.92118
\(639\) 41.9699 1.66030
\(640\) −17.1933 −0.679625
\(641\) −28.1003 −1.10989 −0.554947 0.831885i \(-0.687262\pi\)
−0.554947 + 0.831885i \(0.687262\pi\)
\(642\) −115.229 −4.54771
\(643\) 30.7867 1.21411 0.607054 0.794661i \(-0.292351\pi\)
0.607054 + 0.794661i \(0.292351\pi\)
\(644\) 3.37667 0.133060
\(645\) 23.1150 0.910154
\(646\) −126.069 −4.96012
\(647\) 18.4628 0.725847 0.362924 0.931819i \(-0.381779\pi\)
0.362924 + 0.931819i \(0.381779\pi\)
\(648\) −45.3006 −1.77957
\(649\) 28.9105 1.13483
\(650\) 2.17201 0.0851932
\(651\) −5.31860 −0.208453
\(652\) 31.3301 1.22698
\(653\) 20.0886 0.786129 0.393064 0.919511i \(-0.371415\pi\)
0.393064 + 0.919511i \(0.371415\pi\)
\(654\) −70.8368 −2.76994
\(655\) 14.1634 0.553408
\(656\) −14.5346 −0.567481
\(657\) 15.0360 0.586612
\(658\) −4.75209 −0.185256
\(659\) 6.54611 0.255000 0.127500 0.991839i \(-0.459305\pi\)
0.127500 + 0.991839i \(0.459305\pi\)
\(660\) 94.3365 3.67204
\(661\) −3.02612 −0.117702 −0.0588511 0.998267i \(-0.518744\pi\)
−0.0588511 + 0.998267i \(0.518744\pi\)
\(662\) 54.0120 2.09923
\(663\) −68.3052 −2.65275
\(664\) 56.6148 2.19708
\(665\) −5.91459 −0.229358
\(666\) −46.2267 −1.79125
\(667\) −11.1160 −0.430412
\(668\) −83.8618 −3.24471
\(669\) −67.4295 −2.60698
\(670\) −24.6683 −0.953019
\(671\) −34.2089 −1.32062
\(672\) −6.82684 −0.263351
\(673\) −15.0061 −0.578443 −0.289221 0.957262i \(-0.593396\pi\)
−0.289221 + 0.957262i \(0.593396\pi\)
\(674\) −59.1864 −2.27977
\(675\) −0.349190 −0.0134403
\(676\) 11.2460 0.432538
\(677\) −24.4966 −0.941479 −0.470739 0.882272i \(-0.656013\pi\)
−0.470739 + 0.882272i \(0.656013\pi\)
\(678\) 57.1730 2.19571
\(679\) −4.94748 −0.189867
\(680\) 104.131 3.99323
\(681\) 26.4599 1.01394
\(682\) −51.6548 −1.97796
\(683\) −34.9705 −1.33811 −0.669054 0.743214i \(-0.733301\pi\)
−0.669054 + 0.743214i \(0.733301\pi\)
\(684\) −121.807 −4.65739
\(685\) 11.6694 0.445863
\(686\) −12.7472 −0.486689
\(687\) 6.70838 0.255941
\(688\) −31.9691 −1.21881
\(689\) −55.5422 −2.11599
\(690\) −30.9565 −1.17849
\(691\) −17.5598 −0.668008 −0.334004 0.942572i \(-0.608400\pi\)
−0.334004 + 0.942572i \(0.608400\pi\)
\(692\) 102.285 3.88831
\(693\) −4.49781 −0.170858
\(694\) −73.2487 −2.78048
\(695\) 28.4234 1.07816
\(696\) 94.5109 3.58243
\(697\) −12.0669 −0.457066
\(698\) 40.6034 1.53686
\(699\) −26.0635 −0.985813
\(700\) 0.354653 0.0134046
\(701\) 4.20672 0.158886 0.0794428 0.996839i \(-0.474686\pi\)
0.0794428 + 0.996839i \(0.474686\pi\)
\(702\) −16.4340 −0.620261
\(703\) 35.8830 1.35335
\(704\) −9.86996 −0.371988
\(705\) 30.4118 1.14538
\(706\) 36.2655 1.36487
\(707\) 2.46899 0.0928559
\(708\) 99.2236 3.72905
\(709\) 13.4162 0.503856 0.251928 0.967746i \(-0.418935\pi\)
0.251928 + 0.967746i \(0.418935\pi\)
\(710\) 67.9305 2.54939
\(711\) 15.1310 0.567457
\(712\) 6.28567 0.235566
\(713\) 11.8326 0.443133
\(714\) −15.9771 −0.597929
\(715\) −31.1231 −1.16394
\(716\) −108.930 −4.07091
\(717\) −1.10595 −0.0413025
\(718\) 51.2649 1.91319
\(719\) 21.7997 0.812992 0.406496 0.913653i \(-0.366751\pi\)
0.406496 + 0.913653i \(0.366751\pi\)
\(720\) 67.4410 2.51338
\(721\) −0.811942 −0.0302383
\(722\) 86.5467 3.22094
\(723\) −30.2806 −1.12615
\(724\) 84.9502 3.15715
\(725\) −1.16751 −0.0433603
\(726\) −6.86945 −0.254949
\(727\) 0.197006 0.00730656 0.00365328 0.999993i \(-0.498837\pi\)
0.00365328 + 0.999993i \(0.498837\pi\)
\(728\) 9.47167 0.351043
\(729\) −36.9150 −1.36722
\(730\) 24.3366 0.900739
\(731\) −26.5413 −0.981667
\(732\) −117.408 −4.33953
\(733\) 17.8257 0.658406 0.329203 0.944259i \(-0.393220\pi\)
0.329203 + 0.944259i \(0.393220\pi\)
\(734\) −61.5033 −2.27013
\(735\) 40.4141 1.49070
\(736\) 15.1880 0.559837
\(737\) 14.5616 0.536385
\(738\) −16.7017 −0.614799
\(739\) 25.8894 0.952358 0.476179 0.879348i \(-0.342021\pi\)
0.476179 + 0.879348i \(0.342021\pi\)
\(740\) −52.2296 −1.92000
\(741\) 73.3863 2.69591
\(742\) −12.9918 −0.476943
\(743\) −31.7529 −1.16490 −0.582451 0.812866i \(-0.697906\pi\)
−0.582451 + 0.812866i \(0.697906\pi\)
\(744\) −100.603 −3.68830
\(745\) −4.38455 −0.160637
\(746\) 30.5323 1.11787
\(747\) 30.4416 1.11380
\(748\) −108.320 −3.96056
\(749\) 6.20732 0.226811
\(750\) 72.4224 2.64449
\(751\) 14.5689 0.531627 0.265813 0.964025i \(-0.414360\pi\)
0.265813 + 0.964025i \(0.414360\pi\)
\(752\) −42.0609 −1.53380
\(753\) 52.8598 1.92632
\(754\) −54.9468 −2.00104
\(755\) 25.1842 0.916545
\(756\) −2.68339 −0.0975941
\(757\) −20.7347 −0.753615 −0.376807 0.926292i \(-0.622978\pi\)
−0.376807 + 0.926292i \(0.622978\pi\)
\(758\) −0.945641 −0.0343472
\(759\) 18.2735 0.663288
\(760\) −111.877 −4.05820
\(761\) −15.2610 −0.553211 −0.276605 0.960984i \(-0.589209\pi\)
−0.276605 + 0.960984i \(0.589209\pi\)
\(762\) −99.0072 −3.58665
\(763\) 3.81595 0.138147
\(764\) 103.993 3.76234
\(765\) 55.9907 2.02435
\(766\) 22.0471 0.796593
\(767\) −32.7354 −1.18201
\(768\) 64.5511 2.32929
\(769\) −28.0157 −1.01027 −0.505136 0.863040i \(-0.668558\pi\)
−0.505136 + 0.863040i \(0.668558\pi\)
\(770\) −7.27994 −0.262351
\(771\) 21.3539 0.769042
\(772\) −96.7401 −3.48175
\(773\) −48.4011 −1.74087 −0.870433 0.492286i \(-0.836161\pi\)
−0.870433 + 0.492286i \(0.836161\pi\)
\(774\) −36.7357 −1.32044
\(775\) 1.24277 0.0446418
\(776\) −93.5835 −3.35945
\(777\) 4.54756 0.163143
\(778\) 23.1190 0.828858
\(779\) 12.9645 0.464502
\(780\) −106.818 −3.82468
\(781\) −40.0993 −1.43486
\(782\) 35.5451 1.27109
\(783\) 8.83370 0.315691
\(784\) −55.8945 −1.99623
\(785\) −14.0534 −0.501588
\(786\) −41.1056 −1.46619
\(787\) −0.785954 −0.0280162 −0.0140081 0.999902i \(-0.504459\pi\)
−0.0140081 + 0.999902i \(0.504459\pi\)
\(788\) 68.6674 2.44618
\(789\) 23.4326 0.834223
\(790\) 24.4903 0.871327
\(791\) −3.07989 −0.109508
\(792\) −85.0778 −3.02311
\(793\) 38.7348 1.37551
\(794\) 44.7485 1.58806
\(795\) 83.1432 2.94878
\(796\) 26.1266 0.926034
\(797\) 20.5907 0.729360 0.364680 0.931133i \(-0.381178\pi\)
0.364680 + 0.931133i \(0.381178\pi\)
\(798\) 17.1656 0.607657
\(799\) −34.9197 −1.23537
\(800\) 1.59520 0.0563987
\(801\) 3.37978 0.119419
\(802\) 1.50530 0.0531539
\(803\) −14.3659 −0.506960
\(804\) 49.9770 1.76255
\(805\) 1.66761 0.0587757
\(806\) 58.4889 2.06018
\(807\) 43.1522 1.51903
\(808\) 46.7019 1.64297
\(809\) −51.1388 −1.79795 −0.898973 0.438005i \(-0.855685\pi\)
−0.898973 + 0.438005i \(0.855685\pi\)
\(810\) −39.4246 −1.38524
\(811\) 24.9576 0.876380 0.438190 0.898882i \(-0.355620\pi\)
0.438190 + 0.898882i \(0.355620\pi\)
\(812\) −8.97188 −0.314851
\(813\) −8.83177 −0.309744
\(814\) 44.1664 1.54803
\(815\) 15.4728 0.541988
\(816\) −141.414 −4.95049
\(817\) 28.5157 0.997638
\(818\) 101.164 3.53712
\(819\) 5.09288 0.177960
\(820\) −18.8705 −0.658988
\(821\) 42.3879 1.47935 0.739673 0.672966i \(-0.234980\pi\)
0.739673 + 0.672966i \(0.234980\pi\)
\(822\) −33.8674 −1.18126
\(823\) 28.6648 0.999192 0.499596 0.866259i \(-0.333482\pi\)
0.499596 + 0.866259i \(0.333482\pi\)
\(824\) −15.3582 −0.535029
\(825\) 1.91927 0.0668205
\(826\) −7.65707 −0.266424
\(827\) 28.1811 0.979952 0.489976 0.871736i \(-0.337006\pi\)
0.489976 + 0.871736i \(0.337006\pi\)
\(828\) 34.3433 1.19351
\(829\) −0.632280 −0.0219600 −0.0109800 0.999940i \(-0.503495\pi\)
−0.0109800 + 0.999940i \(0.503495\pi\)
\(830\) 49.2713 1.71023
\(831\) −71.8548 −2.49262
\(832\) 11.1758 0.387450
\(833\) −46.4046 −1.60782
\(834\) −82.4919 −2.85646
\(835\) −41.4162 −1.43327
\(836\) 116.377 4.02500
\(837\) −9.40316 −0.325021
\(838\) −83.8738 −2.89737
\(839\) 20.8027 0.718189 0.359095 0.933301i \(-0.383086\pi\)
0.359095 + 0.933301i \(0.383086\pi\)
\(840\) −14.1785 −0.489205
\(841\) 0.535307 0.0184589
\(842\) 54.5542 1.88006
\(843\) 1.07332 0.0369670
\(844\) −85.8611 −2.95546
\(845\) 5.55397 0.191063
\(846\) −48.3322 −1.66170
\(847\) 0.370055 0.0127152
\(848\) −114.991 −3.94880
\(849\) 52.1731 1.79057
\(850\) 3.73330 0.128051
\(851\) −10.1172 −0.346813
\(852\) −137.625 −4.71494
\(853\) −28.6059 −0.979447 −0.489724 0.871878i \(-0.662902\pi\)
−0.489724 + 0.871878i \(0.662902\pi\)
\(854\) 9.06038 0.310040
\(855\) −60.1557 −2.05728
\(856\) 117.414 4.01313
\(857\) 6.92375 0.236511 0.118255 0.992983i \(-0.462270\pi\)
0.118255 + 0.992983i \(0.462270\pi\)
\(858\) 90.3270 3.08371
\(859\) 27.6913 0.944816 0.472408 0.881380i \(-0.343385\pi\)
0.472408 + 0.881380i \(0.343385\pi\)
\(860\) −41.5061 −1.41535
\(861\) 1.64303 0.0559945
\(862\) 2.57370 0.0876607
\(863\) −28.3542 −0.965189 −0.482595 0.875844i \(-0.660306\pi\)
−0.482595 + 0.875844i \(0.660306\pi\)
\(864\) −12.0697 −0.410619
\(865\) 50.5150 1.71756
\(866\) 52.8463 1.79579
\(867\) −73.6277 −2.50053
\(868\) 9.55025 0.324156
\(869\) −14.4566 −0.490406
\(870\) 82.2519 2.78860
\(871\) −16.4882 −0.558681
\(872\) 72.1803 2.44433
\(873\) −50.3195 −1.70306
\(874\) −38.1892 −1.29177
\(875\) −3.90137 −0.131890
\(876\) −49.3051 −1.66586
\(877\) 31.3956 1.06016 0.530078 0.847949i \(-0.322163\pi\)
0.530078 + 0.847949i \(0.322163\pi\)
\(878\) 93.4327 3.15320
\(879\) 59.2017 1.99683
\(880\) −64.4351 −2.17211
\(881\) 46.6917 1.57308 0.786542 0.617537i \(-0.211869\pi\)
0.786542 + 0.617537i \(0.211869\pi\)
\(882\) −64.2284 −2.16268
\(883\) 45.3947 1.52765 0.763827 0.645421i \(-0.223318\pi\)
0.763827 + 0.645421i \(0.223318\pi\)
\(884\) 122.651 4.12519
\(885\) 49.0029 1.64721
\(886\) −39.7254 −1.33460
\(887\) 21.0448 0.706614 0.353307 0.935507i \(-0.385057\pi\)
0.353307 + 0.935507i \(0.385057\pi\)
\(888\) 86.0190 2.88661
\(889\) 5.33348 0.178879
\(890\) 5.47036 0.183367
\(891\) 23.2723 0.779651
\(892\) 121.079 4.05401
\(893\) 37.5173 1.25547
\(894\) 12.7251 0.425590
\(895\) −53.7966 −1.79822
\(896\) −2.68806 −0.0898017
\(897\) −20.6912 −0.690859
\(898\) −106.805 −3.56414
\(899\) −31.4393 −1.04856
\(900\) 3.60708 0.120236
\(901\) −95.4673 −3.18048
\(902\) 15.9573 0.531320
\(903\) 3.61388 0.120262
\(904\) −58.2573 −1.93761
\(905\) 41.9538 1.39459
\(906\) −73.0908 −2.42828
\(907\) −9.13393 −0.303287 −0.151644 0.988435i \(-0.548457\pi\)
−0.151644 + 0.988435i \(0.548457\pi\)
\(908\) −47.5122 −1.57675
\(909\) 25.1114 0.832894
\(910\) 8.24310 0.273256
\(911\) −56.0465 −1.85690 −0.928451 0.371454i \(-0.878859\pi\)
−0.928451 + 0.371454i \(0.878859\pi\)
\(912\) 151.934 5.03103
\(913\) −29.0848 −0.962565
\(914\) −20.3445 −0.672935
\(915\) −57.9836 −1.91688
\(916\) −12.0458 −0.398003
\(917\) 2.21435 0.0731241
\(918\) −28.2472 −0.932295
\(919\) 8.36459 0.275923 0.137961 0.990438i \(-0.455945\pi\)
0.137961 + 0.990438i \(0.455945\pi\)
\(920\) 31.5436 1.03996
\(921\) −2.50713 −0.0826128
\(922\) −5.15055 −0.169624
\(923\) 45.4045 1.49451
\(924\) 14.7489 0.485203
\(925\) −1.06261 −0.0349384
\(926\) −48.7984 −1.60362
\(927\) −8.25805 −0.271230
\(928\) −40.3547 −1.32471
\(929\) −44.1199 −1.44753 −0.723764 0.690048i \(-0.757589\pi\)
−0.723764 + 0.690048i \(0.757589\pi\)
\(930\) −87.5542 −2.87102
\(931\) 49.8566 1.63398
\(932\) 46.8005 1.53300
\(933\) −23.9953 −0.785570
\(934\) 16.5431 0.541307
\(935\) −53.4951 −1.74948
\(936\) 96.3339 3.14877
\(937\) −6.03479 −0.197148 −0.0985739 0.995130i \(-0.531428\pi\)
−0.0985739 + 0.995130i \(0.531428\pi\)
\(938\) −3.85672 −0.125926
\(939\) −18.8605 −0.615489
\(940\) −54.6084 −1.78113
\(941\) −16.1755 −0.527305 −0.263653 0.964618i \(-0.584927\pi\)
−0.263653 + 0.964618i \(0.584927\pi\)
\(942\) 40.7866 1.32890
\(943\) −3.65534 −0.119034
\(944\) −67.7731 −2.20583
\(945\) −1.32523 −0.0431097
\(946\) 35.0984 1.14115
\(947\) 9.49983 0.308703 0.154351 0.988016i \(-0.450671\pi\)
0.154351 + 0.988016i \(0.450671\pi\)
\(948\) −49.6165 −1.61147
\(949\) 16.2665 0.528033
\(950\) −4.01102 −0.130135
\(951\) 64.3071 2.08530
\(952\) 16.2801 0.527643
\(953\) 7.46016 0.241658 0.120829 0.992673i \(-0.461445\pi\)
0.120829 + 0.992673i \(0.461445\pi\)
\(954\) −132.136 −4.27805
\(955\) 51.3583 1.66192
\(956\) 1.98588 0.0642279
\(957\) −48.5531 −1.56950
\(958\) −37.3625 −1.20713
\(959\) 1.82443 0.0589138
\(960\) −16.7294 −0.539941
\(961\) 2.46600 0.0795484
\(962\) −50.0097 −1.61238
\(963\) 63.1330 2.03443
\(964\) 54.3728 1.75123
\(965\) −47.7764 −1.53798
\(966\) −4.83984 −0.155719
\(967\) −21.3283 −0.685872 −0.342936 0.939359i \(-0.611421\pi\)
−0.342936 + 0.939359i \(0.611421\pi\)
\(968\) 6.99974 0.224980
\(969\) 126.138 4.05214
\(970\) −81.4447 −2.61503
\(971\) −24.7464 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(972\) 102.421 3.28514
\(973\) 4.44381 0.142462
\(974\) 77.2007 2.47367
\(975\) −2.17320 −0.0695981
\(976\) 80.1939 2.56694
\(977\) −7.20494 −0.230507 −0.115253 0.993336i \(-0.536768\pi\)
−0.115253 + 0.993336i \(0.536768\pi\)
\(978\) −44.9059 −1.43593
\(979\) −3.22914 −0.103204
\(980\) −72.5688 −2.31813
\(981\) 38.8111 1.23914
\(982\) −81.6637 −2.60599
\(983\) −4.58079 −0.146104 −0.0730522 0.997328i \(-0.523274\pi\)
−0.0730522 + 0.997328i \(0.523274\pi\)
\(984\) 31.0786 0.990751
\(985\) 33.9123 1.08054
\(986\) −94.4439 −3.00771
\(987\) 4.75469 0.151343
\(988\) −131.775 −4.19231
\(989\) −8.03998 −0.255656
\(990\) −74.0424 −2.35322
\(991\) 11.3402 0.360233 0.180116 0.983645i \(-0.442353\pi\)
0.180116 + 0.983645i \(0.442353\pi\)
\(992\) 42.9562 1.36386
\(993\) −54.0416 −1.71496
\(994\) 10.6205 0.336861
\(995\) 12.9030 0.409052
\(996\) −99.8218 −3.16297
\(997\) −8.45209 −0.267680 −0.133840 0.991003i \(-0.542731\pi\)
−0.133840 + 0.991003i \(0.542731\pi\)
\(998\) 52.4945 1.66168
\(999\) 8.03998 0.254374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 431.2.a.f.1.23 24
3.2 odd 2 3879.2.a.r.1.2 24
4.3 odd 2 6896.2.a.w.1.21 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.f.1.23 24 1.1 even 1 trivial
3879.2.a.r.1.2 24 3.2 odd 2
6896.2.a.w.1.21 24 4.3 odd 2