Properties

Label 431.2.a.f.1.23
Level 431431
Weight 22
Character 431.1
Self dual yes
Analytic conductor 3.4423.442
Analytic rank 00
Dimension 2424
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [431,2,Mod(1,431)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(431, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("431.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 431 431
Weight: k k == 2 2
Character orbit: [χ][\chi] == 431.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.441552327123.44155232712
Analytic rank: 00
Dimension: 2424
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.23
Character χ\chi == 431.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.57370q22.57511q3+4.62395q4+2.28360q56.62758q6+0.357026q7+6.75328q8+3.63121q9+5.87731q103.46937q1111.9072q12+3.92837q13+0.918878q145.88053q15+8.13303q16+6.75219q17+9.34567q187.25447q19+10.5593q200.919381q218.92912q22+2.04539q2317.3905q24+0.214828q25+10.1105q261.62544q27+1.65087q285.43464q2915.1347q30+5.78498q31+7.42547q32+8.93401q33+17.3781q34+0.815303q35+16.7906q364.94633q3718.6709q3810.1160q39+15.4218q401.78711q412.36622q423.93078q4316.0422q44+8.29223q45+5.26423q465.17162q4720.9435q486.87253q49+0.552903q5017.3876q51+18.1646q5214.1387q534.18341q547.92264q55+2.41109q56+18.6811q5713.9872q588.33307q5927.1913q60+9.86026q61+14.8888q62+1.29644q63+2.84489q64+8.97083q65+22.9935q664.19720q67+31.2218q685.26712q69+2.09835q70+11.5581q71+24.5226q72+4.14078q7312.7304q740.553206q7533.5443q761.23865q7726.0356q78+4.16693q79+18.5726q806.70794q814.59949q82+8.38331q834.25118q84+15.4193q8510.1167q86+13.9948q8723.4296q88+0.930759q89+21.3418q90+1.40253q91+9.45779q9214.8970q9313.3102q9416.5663q9519.1214q9613.8575q9717.6879q9812.5980q99+O(q100)q+2.57370 q^{2} -2.57511 q^{3} +4.62395 q^{4} +2.28360 q^{5} -6.62758 q^{6} +0.357026 q^{7} +6.75328 q^{8} +3.63121 q^{9} +5.87731 q^{10} -3.46937 q^{11} -11.9072 q^{12} +3.92837 q^{13} +0.918878 q^{14} -5.88053 q^{15} +8.13303 q^{16} +6.75219 q^{17} +9.34567 q^{18} -7.25447 q^{19} +10.5593 q^{20} -0.919381 q^{21} -8.92912 q^{22} +2.04539 q^{23} -17.3905 q^{24} +0.214828 q^{25} +10.1105 q^{26} -1.62544 q^{27} +1.65087 q^{28} -5.43464 q^{29} -15.1347 q^{30} +5.78498 q^{31} +7.42547 q^{32} +8.93401 q^{33} +17.3781 q^{34} +0.815303 q^{35} +16.7906 q^{36} -4.94633 q^{37} -18.6709 q^{38} -10.1160 q^{39} +15.4218 q^{40} -1.78711 q^{41} -2.36622 q^{42} -3.93078 q^{43} -16.0422 q^{44} +8.29223 q^{45} +5.26423 q^{46} -5.17162 q^{47} -20.9435 q^{48} -6.87253 q^{49} +0.552903 q^{50} -17.3876 q^{51} +18.1646 q^{52} -14.1387 q^{53} -4.18341 q^{54} -7.92264 q^{55} +2.41109 q^{56} +18.6811 q^{57} -13.9872 q^{58} -8.33307 q^{59} -27.1913 q^{60} +9.86026 q^{61} +14.8888 q^{62} +1.29644 q^{63} +2.84489 q^{64} +8.97083 q^{65} +22.9935 q^{66} -4.19720 q^{67} +31.2218 q^{68} -5.26712 q^{69} +2.09835 q^{70} +11.5581 q^{71} +24.5226 q^{72} +4.14078 q^{73} -12.7304 q^{74} -0.553206 q^{75} -33.5443 q^{76} -1.23865 q^{77} -26.0356 q^{78} +4.16693 q^{79} +18.5726 q^{80} -6.70794 q^{81} -4.59949 q^{82} +8.38331 q^{83} -4.25118 q^{84} +15.4193 q^{85} -10.1167 q^{86} +13.9948 q^{87} -23.4296 q^{88} +0.930759 q^{89} +21.3418 q^{90} +1.40253 q^{91} +9.45779 q^{92} -14.8970 q^{93} -13.3102 q^{94} -16.5663 q^{95} -19.1214 q^{96} -13.8575 q^{97} -17.6879 q^{98} -12.5980 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q+q2+q3+33q4+13q5+17q6+8q73q8+31q96q10+15q1112q12+11q13+16q145q15+43q16+6q178q18+18q19+9q99+O(q100) 24 q + q^{2} + q^{3} + 33 q^{4} + 13 q^{5} + 17 q^{6} + 8 q^{7} - 3 q^{8} + 31 q^{9} - 6 q^{10} + 15 q^{11} - 12 q^{12} + 11 q^{13} + 16 q^{14} - 5 q^{15} + 43 q^{16} + 6 q^{17} - 8 q^{18} + 18 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.57370 1.81988 0.909942 0.414736i 0.136126π-0.136126\pi
0.909942 + 0.414736i 0.136126π0.136126\pi
33 −2.57511 −1.48674 −0.743371 0.668879i 0.766774π-0.766774\pi
−0.743371 + 0.668879i 0.766774π0.766774\pi
44 4.62395 2.31198
55 2.28360 1.02126 0.510628 0.859801i 0.329413π-0.329413\pi
0.510628 + 0.859801i 0.329413π0.329413\pi
66 −6.62758 −2.70570
77 0.357026 0.134943 0.0674715 0.997721i 0.478507π-0.478507\pi
0.0674715 + 0.997721i 0.478507π0.478507\pi
88 6.75328 2.38764
99 3.63121 1.21040
1010 5.87731 1.85857
1111 −3.46937 −1.04605 −0.523026 0.852316i 0.675197π-0.675197\pi
−0.523026 + 0.852316i 0.675197π0.675197\pi
1212 −11.9072 −3.43731
1313 3.92837 1.08953 0.544767 0.838587i 0.316618π-0.316618\pi
0.544767 + 0.838587i 0.316618π0.316618\pi
1414 0.918878 0.245580
1515 −5.88053 −1.51835
1616 8.13303 2.03326
1717 6.75219 1.63765 0.818823 0.574046i 0.194627π-0.194627\pi
0.818823 + 0.574046i 0.194627π0.194627\pi
1818 9.34567 2.20279
1919 −7.25447 −1.66429 −0.832144 0.554559i 0.812887π-0.812887\pi
−0.832144 + 0.554559i 0.812887π0.812887\pi
2020 10.5593 2.36112
2121 −0.919381 −0.200625
2222 −8.92912 −1.90369
2323 2.04539 0.426494 0.213247 0.976998i 0.431596π-0.431596\pi
0.213247 + 0.976998i 0.431596π0.431596\pi
2424 −17.3905 −3.54981
2525 0.214828 0.0429656
2626 10.1105 1.98283
2727 −1.62544 −0.312817
2828 1.65087 0.311985
2929 −5.43464 −1.00919 −0.504594 0.863357i 0.668358π-0.668358\pi
−0.504594 + 0.863357i 0.668358π0.668358\pi
3030 −15.1347 −2.76321
3131 5.78498 1.03901 0.519507 0.854466i 0.326116π-0.326116\pi
0.519507 + 0.854466i 0.326116π0.326116\pi
3232 7.42547 1.31265
3333 8.93401 1.55521
3434 17.3781 2.98032
3535 0.815303 0.137811
3636 16.7906 2.79843
3737 −4.94633 −0.813172 −0.406586 0.913613i 0.633281π-0.633281\pi
−0.406586 + 0.913613i 0.633281π0.633281\pi
3838 −18.6709 −3.02881
3939 −10.1160 −1.61986
4040 15.4218 2.43840
4141 −1.78711 −0.279099 −0.139550 0.990215i 0.544566π-0.544566\pi
−0.139550 + 0.990215i 0.544566π0.544566\pi
4242 −2.36622 −0.365115
4343 −3.93078 −0.599438 −0.299719 0.954028i 0.596893π-0.596893\pi
−0.299719 + 0.954028i 0.596893π0.596893\pi
4444 −16.0422 −2.41845
4545 8.29223 1.23613
4646 5.26423 0.776169
4747 −5.17162 −0.754358 −0.377179 0.926140i 0.623106π-0.623106\pi
−0.377179 + 0.926140i 0.623106π0.623106\pi
4848 −20.9435 −3.02293
4949 −6.87253 −0.981790
5050 0.552903 0.0781923
5151 −17.3876 −2.43476
5252 18.1646 2.51898
5353 −14.1387 −1.94210 −0.971051 0.238871i 0.923223π-0.923223\pi
−0.971051 + 0.238871i 0.923223π0.923223\pi
5454 −4.18341 −0.569290
5555 −7.92264 −1.06829
5656 2.41109 0.322196
5757 18.6811 2.47437
5858 −13.9872 −1.83660
5959 −8.33307 −1.08487 −0.542437 0.840097i 0.682498π-0.682498\pi
−0.542437 + 0.840097i 0.682498π0.682498\pi
6060 −27.1913 −3.51038
6161 9.86026 1.26248 0.631239 0.775589i 0.282547π-0.282547\pi
0.631239 + 0.775589i 0.282547π0.282547\pi
6262 14.8888 1.89088
6363 1.29644 0.163335
6464 2.84489 0.355611
6565 8.97083 1.11269
6666 22.9935 2.83030
6767 −4.19720 −0.512770 −0.256385 0.966575i 0.582532π-0.582532\pi
−0.256385 + 0.966575i 0.582532π0.582532\pi
6868 31.2218 3.78620
6969 −5.26712 −0.634086
7070 2.09835 0.250801
7171 11.5581 1.37169 0.685847 0.727746i 0.259432π-0.259432\pi
0.685847 + 0.727746i 0.259432π0.259432\pi
7272 24.5226 2.89001
7373 4.14078 0.484641 0.242321 0.970196i 0.422091π-0.422091\pi
0.242321 + 0.970196i 0.422091π0.422091\pi
7474 −12.7304 −1.47988
7575 −0.553206 −0.0638787
7676 −33.5443 −3.84780
7777 −1.23865 −0.141157
7878 −26.0356 −2.94795
7979 4.16693 0.468816 0.234408 0.972138i 0.424685π-0.424685\pi
0.234408 + 0.972138i 0.424685π0.424685\pi
8080 18.5726 2.07648
8181 −6.70794 −0.745326
8282 −4.59949 −0.507928
8383 8.38331 0.920187 0.460094 0.887870i 0.347816π-0.347816\pi
0.460094 + 0.887870i 0.347816π0.347816\pi
8484 −4.25118 −0.463841
8585 15.4193 1.67246
8686 −10.1167 −1.09091
8787 13.9948 1.50040
8888 −23.4296 −2.49760
8989 0.930759 0.0986602 0.0493301 0.998783i 0.484291π-0.484291\pi
0.0493301 + 0.998783i 0.484291π0.484291\pi
9090 21.3418 2.24962
9191 1.40253 0.147025
9292 9.45779 0.986043
9393 −14.8970 −1.54475
9494 −13.3102 −1.37284
9595 −16.5663 −1.69967
9696 −19.1214 −1.95157
9797 −13.8575 −1.40701 −0.703507 0.710688i 0.748384π-0.748384\pi
−0.703507 + 0.710688i 0.748384π0.748384\pi
9898 −17.6879 −1.78674
9999 −12.5980 −1.26615
100100 0.993353 0.0993353
101101 6.91545 0.688113 0.344056 0.938949i 0.388199π-0.388199\pi
0.344056 + 0.938949i 0.388199π0.388199\pi
102102 −44.7507 −4.43098
103103 −2.27419 −0.224082 −0.112041 0.993704i 0.535739π-0.535739\pi
−0.112041 + 0.993704i 0.535739π0.535739\pi
104104 26.5294 2.60142
105105 −2.09950 −0.204890
106106 −36.3889 −3.53440
107107 17.3862 1.68079 0.840394 0.541976i 0.182323π-0.182323\pi
0.840394 + 0.541976i 0.182323π0.182323\pi
108108 −7.51597 −0.723225
109109 10.6882 1.02374 0.511871 0.859062i 0.328953π-0.328953\pi
0.511871 + 0.859062i 0.328953π0.328953\pi
110110 −20.3905 −1.94416
111111 12.7374 1.20898
112112 2.90370 0.274374
113113 −8.62652 −0.811515 −0.405757 0.913981i 0.632992π-0.632992\pi
−0.405757 + 0.913981i 0.632992π0.632992\pi
114114 48.0796 4.50306
115115 4.67086 0.435560
116116 −25.1295 −2.33322
117117 14.2648 1.31878
118118 −21.4469 −1.97434
119119 2.41070 0.220989
120120 −39.7129 −3.62527
121121 1.03649 0.0942268
122122 25.3774 2.29756
123123 4.60201 0.414949
124124 26.7495 2.40217
125125 −10.9274 −0.977378
126126 3.33664 0.297252
127127 14.9387 1.32559 0.662796 0.748800i 0.269370π-0.269370\pi
0.662796 + 0.748800i 0.269370π0.269370\pi
128128 −7.52904 −0.665479
129129 10.1222 0.891210
130130 23.0883 2.02497
131131 6.20221 0.541889 0.270945 0.962595i 0.412664π-0.412664\pi
0.270945 + 0.962595i 0.412664π0.412664\pi
132132 41.3104 3.59561
133133 −2.59003 −0.224584
134134 −10.8024 −0.933182
135135 −3.71186 −0.319466
136136 45.5994 3.91012
137137 5.11007 0.436583 0.218291 0.975884i 0.429952π-0.429952\pi
0.218291 + 0.975884i 0.429952π0.429952\pi
138138 −13.5560 −1.15396
139139 12.4468 1.05572 0.527860 0.849331i 0.322995π-0.322995\pi
0.527860 + 0.849331i 0.322995π0.322995\pi
140140 3.76992 0.318617
141141 13.3175 1.12154
142142 29.7471 2.49632
143143 −13.6290 −1.13971
144144 29.5328 2.46106
145145 −12.4105 −1.03064
146146 10.6571 0.881990
147147 17.6976 1.45967
148148 −22.8716 −1.88003
149149 −1.92002 −0.157294 −0.0786469 0.996903i 0.525060π-0.525060\pi
−0.0786469 + 0.996903i 0.525060π0.525060\pi
150150 −1.42379 −0.116252
151151 11.0283 0.897468 0.448734 0.893665i 0.351875π-0.351875\pi
0.448734 + 0.893665i 0.351875π0.351875\pi
152152 −48.9914 −3.97373
153153 24.5186 1.98221
154154 −3.18792 −0.256890
155155 13.2106 1.06110
156156 −46.7759 −3.74507
157157 −6.15407 −0.491148 −0.245574 0.969378i 0.578976π-0.578976\pi
−0.245574 + 0.969378i 0.578976π0.578976\pi
158158 10.7244 0.853190
159159 36.4088 2.88741
160160 16.9568 1.34055
161161 0.730257 0.0575523
162162 −17.2642 −1.35641
163163 6.77561 0.530706 0.265353 0.964151i 0.414511π-0.414511\pi
0.265353 + 0.964151i 0.414511π0.414511\pi
164164 −8.26350 −0.645271
165165 20.4017 1.58827
166166 21.5761 1.67463
167167 −18.1364 −1.40344 −0.701718 0.712455i 0.747583π-0.747583\pi
−0.701718 + 0.712455i 0.747583π0.747583\pi
168168 −6.20884 −0.479022
169169 2.43211 0.187086
170170 39.6847 3.04368
171171 −26.3425 −2.01446
172172 −18.1757 −1.38589
173173 22.1208 1.68181 0.840906 0.541182i 0.182023π-0.182023\pi
0.840906 + 0.541182i 0.182023π0.182023\pi
174174 36.0185 2.73056
175175 0.0766990 0.00579790
176176 −28.2165 −2.12690
177177 21.4586 1.61293
178178 2.39550 0.179550
179179 −23.5578 −1.76079 −0.880396 0.474239i 0.842723π-0.842723\pi
−0.880396 + 0.474239i 0.842723π0.842723\pi
180180 38.3429 2.85791
181181 18.3718 1.36556 0.682782 0.730623i 0.260770π-0.260770\pi
0.682782 + 0.730623i 0.260770π0.260770\pi
182182 3.60970 0.267568
183183 −25.3913 −1.87698
184184 13.8131 1.01832
185185 −11.2954 −0.830457
186186 −38.3404 −2.81126
187187 −23.4258 −1.71306
188188 −23.9133 −1.74406
189189 −0.580325 −0.0422124
190190 −42.6368 −3.09320
191191 22.4901 1.62732 0.813662 0.581338i 0.197470π-0.197470\pi
0.813662 + 0.581338i 0.197470π0.197470\pi
192192 −7.32591 −0.528702
193193 −20.9215 −1.50596 −0.752982 0.658041i 0.771385π-0.771385\pi
−0.752982 + 0.658041i 0.771385π0.771385\pi
194194 −35.6651 −2.56060
195195 −23.1009 −1.65429
196196 −31.7783 −2.26988
197197 14.8504 1.05805 0.529023 0.848608i 0.322559π-0.322559\pi
0.529023 + 0.848608i 0.322559π0.322559\pi
198198 −32.4235 −2.30424
199199 5.65028 0.400538 0.200269 0.979741i 0.435818π-0.435818\pi
0.200269 + 0.979741i 0.435818π0.435818\pi
200200 1.45079 0.102586
201201 10.8083 0.762357
202202 17.7983 1.25228
203203 −1.94030 −0.136183
204204 −80.3997 −5.62910
205205 −4.08104 −0.285032
206206 −5.85308 −0.407804
207207 7.42725 0.516230
208208 31.9496 2.21531
209209 25.1684 1.74093
210210 −5.40349 −0.372876
211211 −18.5688 −1.27833 −0.639163 0.769071i 0.720719π-0.720719\pi
−0.639163 + 0.769071i 0.720719π0.720719\pi
212212 −65.3768 −4.49010
213213 −29.7634 −2.03936
214214 44.7470 3.05884
215215 −8.97632 −0.612180
216216 −10.9771 −0.746895
217217 2.06539 0.140208
218218 27.5082 1.86309
219219 −10.6630 −0.720537
220220 −36.6339 −2.46986
221221 26.5251 1.78427
222222 32.7822 2.20020
223223 26.1851 1.75348 0.876741 0.480963i 0.159713π-0.159713\pi
0.876741 + 0.480963i 0.159713π0.159713\pi
224224 2.65108 0.177133
225225 0.780085 0.0520057
226226 −22.2021 −1.47686
227227 −10.2752 −0.681991 −0.340995 0.940065i 0.610764π-0.610764\pi
−0.340995 + 0.940065i 0.610764π0.610764\pi
228228 86.3804 5.72068
229229 −2.60508 −0.172149 −0.0860743 0.996289i 0.527432π-0.527432\pi
−0.0860743 + 0.996289i 0.527432π0.527432\pi
230230 12.0214 0.792668
231231 3.18967 0.209865
232232 −36.7016 −2.40958
233233 10.1213 0.663069 0.331535 0.943443i 0.392434π-0.392434\pi
0.331535 + 0.943443i 0.392434π0.392434\pi
234234 36.7133 2.40002
235235 −11.8099 −0.770393
236236 −38.5317 −2.50820
237237 −10.7303 −0.697009
238238 6.20443 0.402174
239239 0.429477 0.0277805 0.0138903 0.999904i 0.495578π-0.495578\pi
0.0138903 + 0.999904i 0.495578π0.495578\pi
240240 −47.8266 −3.08719
241241 11.7589 0.757460 0.378730 0.925507i 0.376361π-0.376361\pi
0.378730 + 0.925507i 0.376361π0.376361\pi
242242 2.66763 0.171482
243243 22.1500 1.42092
244244 45.5934 2.91882
245245 −15.6941 −1.00266
246246 11.8442 0.755159
247247 −28.4983 −1.81330
248248 39.0676 2.48079
249249 −21.5880 −1.36808
250250 −28.1239 −1.77871
251251 −20.5272 −1.29566 −0.647831 0.761784i 0.724324π-0.724324\pi
−0.647831 + 0.761784i 0.724324π0.724324\pi
252252 5.99466 0.377628
253253 −7.09621 −0.446135
254254 38.4477 2.41242
255255 −39.7064 −2.48651
256256 −25.0673 −1.56671
257257 −8.29241 −0.517267 −0.258633 0.965976i 0.583272π-0.583272\pi
−0.258633 + 0.965976i 0.583272π0.583272\pi
258258 26.0515 1.62190
259259 −1.76597 −0.109732
260260 41.4807 2.57252
261261 −19.7343 −1.22152
262262 15.9626 0.986175
263263 −9.09964 −0.561108 −0.280554 0.959838i 0.590518π-0.590518\pi
−0.280554 + 0.959838i 0.590518π0.590518\pi
264264 60.3339 3.71329
265265 −32.2872 −1.98339
266266 −6.66597 −0.408717
267267 −2.39681 −0.146682
268268 −19.4077 −1.18551
269269 −16.7574 −1.02172 −0.510859 0.859665i 0.670672π-0.670672\pi
−0.510859 + 0.859665i 0.670672π0.670672\pi
270270 −9.55323 −0.581391
271271 3.42966 0.208337 0.104169 0.994560i 0.466782π-0.466782\pi
0.104169 + 0.994560i 0.466782π0.466782\pi
272272 54.9158 3.32976
273273 −3.61167 −0.218588
274274 13.1518 0.794530
275275 −0.745316 −0.0449442
276276 −24.3549 −1.46599
277277 27.9036 1.67656 0.838281 0.545238i 0.183561π-0.183561\pi
0.838281 + 0.545238i 0.183561π0.183561\pi
278278 32.0343 1.92129
279279 21.0065 1.25763
280280 5.50597 0.329045
281281 −0.416804 −0.0248644 −0.0124322 0.999923i 0.503957π-0.503957\pi
−0.0124322 + 0.999923i 0.503957π0.503957\pi
282282 34.2753 2.04107
283283 −20.2605 −1.20436 −0.602180 0.798360i 0.705701π-0.705701\pi
−0.602180 + 0.798360i 0.705701π0.705701\pi
284284 53.4441 3.17132
285285 42.6601 2.52697
286286 −35.0769 −2.07414
287287 −0.638043 −0.0376625
288288 26.9634 1.58884
289289 28.5920 1.68188
290290 −31.9411 −1.87564
291291 35.6846 2.09187
292292 19.1468 1.12048
293293 −22.9900 −1.34309 −0.671544 0.740965i 0.734368π-0.734368\pi
−0.671544 + 0.740965i 0.734368π0.734368\pi
294294 45.5483 2.65643
295295 −19.0294 −1.10793
296296 −33.4039 −1.94156
297297 5.63925 0.327223
298298 −4.94155 −0.286256
299299 8.03506 0.464680
300300 −2.55800 −0.147686
301301 −1.40339 −0.0808899
302302 28.3835 1.63329
303303 −17.8081 −1.02305
304304 −59.0008 −3.38393
305305 22.5169 1.28931
306306 63.1037 3.60740
307307 0.973601 0.0555663 0.0277832 0.999614i 0.491155π-0.491155\pi
0.0277832 + 0.999614i 0.491155π0.491155\pi
308308 −5.72747 −0.326353
309309 5.85629 0.333153
310310 34.0001 1.93108
311311 9.31814 0.528383 0.264192 0.964470i 0.414895π-0.414895\pi
0.264192 + 0.964470i 0.414895π0.414895\pi
312312 −68.3162 −3.86764
313313 7.32414 0.413985 0.206992 0.978343i 0.433632π-0.433632\pi
0.206992 + 0.978343i 0.433632π0.433632\pi
314314 −15.8387 −0.893832
315315 2.96054 0.166807
316316 19.2677 1.08389
317317 −24.9725 −1.40260 −0.701299 0.712867i 0.747396π-0.747396\pi
−0.701299 + 0.712867i 0.747396π0.747396\pi
318318 93.7055 5.25475
319319 18.8547 1.05566
320320 6.49659 0.363170
321321 −44.7715 −2.49890
322322 1.87947 0.104739
323323 −48.9835 −2.72552
324324 −31.0172 −1.72318
325325 0.843924 0.0468125
326326 17.4384 0.965824
327327 −27.5233 −1.52204
328328 −12.0688 −0.666390
329329 −1.84640 −0.101795
330330 52.5080 2.89047
331331 20.9861 1.15350 0.576750 0.816921i 0.304321π-0.304321\pi
0.576750 + 0.816921i 0.304321π0.304321\pi
332332 38.7640 2.12745
333333 −17.9612 −0.984266
334334 −46.6777 −2.55409
335335 −9.58474 −0.523670
336336 −7.47736 −0.407923
337337 −22.9966 −1.25270 −0.626352 0.779541i 0.715453π-0.715453\pi
−0.626352 + 0.779541i 0.715453π0.715453\pi
338338 6.25954 0.340474
339339 22.2143 1.20651
340340 71.2981 3.86668
341341 −20.0702 −1.08686
342342 −67.7978 −3.66609
343343 −4.95285 −0.267429
344344 −26.5456 −1.43124
345345 −12.0280 −0.647565
346346 56.9323 3.06070
347347 −28.4604 −1.52784 −0.763918 0.645314i 0.776727π-0.776727\pi
−0.763918 + 0.645314i 0.776727π0.776727\pi
348348 64.7114 3.46889
349349 15.7762 0.844483 0.422242 0.906483i 0.361243π-0.361243\pi
0.422242 + 0.906483i 0.361243π0.361243\pi
350350 0.197401 0.0105515
351351 −6.38535 −0.340825
352352 −25.7617 −1.37310
353353 14.0908 0.749976 0.374988 0.927030i 0.377647π-0.377647\pi
0.374988 + 0.927030i 0.377647π0.377647\pi
354354 55.2281 2.93534
355355 26.3941 1.40085
356356 4.30379 0.228100
357357 −6.20783 −0.328553
358358 −60.6308 −3.20444
359359 19.9187 1.05127 0.525635 0.850710i 0.323828π-0.323828\pi
0.525635 + 0.850710i 0.323828π0.323828\pi
360360 55.9998 2.95145
361361 33.6273 1.76986
362362 47.2835 2.48517
363363 −2.66909 −0.140091
364364 6.48523 0.339918
365365 9.45587 0.494943
366366 −65.3497 −3.41588
367367 −23.8968 −1.24740 −0.623701 0.781663i 0.714372π-0.714372\pi
−0.623701 + 0.781663i 0.714372π0.714372\pi
368368 16.6352 0.867172
369369 −6.48937 −0.337823
370370 −29.0711 −1.51134
371371 −5.04788 −0.262073
372372 −68.8830 −3.57141
373373 11.8632 0.614252 0.307126 0.951669i 0.400633π-0.400633\pi
0.307126 + 0.951669i 0.400633π0.400633\pi
374374 −60.2911 −3.11758
375375 28.1393 1.45311
376376 −34.9254 −1.80114
377377 −21.3493 −1.09954
378378 −1.49358 −0.0768217
379379 −0.367424 −0.0188733 −0.00943666 0.999955i 0.503004π-0.503004\pi
−0.00943666 + 0.999955i 0.503004π0.503004\pi
380380 −76.6018 −3.92959
381381 −38.4687 −1.97081
382382 57.8828 2.96154
383383 8.56628 0.437717 0.218858 0.975757i 0.429767π-0.429767\pi
0.218858 + 0.975757i 0.429767π0.429767\pi
384384 19.3881 0.989396
385385 −2.82859 −0.144158
386386 −53.8458 −2.74068
387387 −14.2735 −0.725562
388388 −64.0764 −3.25298
389389 8.98279 0.455445 0.227723 0.973726i 0.426872π-0.426872\pi
0.227723 + 0.973726i 0.426872π0.426872\pi
390390 −59.4549 −3.01062
391391 13.8109 0.698445
392392 −46.4121 −2.34417
393393 −15.9714 −0.805650
394394 38.2205 1.92552
395395 9.51559 0.478781
396396 −58.2526 −2.92730
397397 17.3868 0.872619 0.436309 0.899797i 0.356285π-0.356285\pi
0.436309 + 0.899797i 0.356285π0.356285\pi
398398 14.5422 0.728932
399399 6.66962 0.333899
400400 1.74720 0.0873601
401401 0.584876 0.0292073 0.0146036 0.999893i 0.495351π-0.495351\pi
0.0146036 + 0.999893i 0.495351π0.495351\pi
402402 27.8173 1.38740
403403 22.7256 1.13204
404404 31.9767 1.59090
405405 −15.3182 −0.761169
406406 −4.99377 −0.247837
407407 17.1606 0.850621
408408 −117.424 −5.81334
409409 39.3068 1.94360 0.971798 0.235814i 0.0757756π-0.0757756\pi
0.971798 + 0.235814i 0.0757756π0.0757756\pi
410410 −10.5034 −0.518725
411411 −13.1590 −0.649086
412412 −10.5157 −0.518073
413413 −2.97512 −0.146396
414414 19.1155 0.939478
415415 19.1441 0.939748
416416 29.1700 1.43018
417417 −32.0518 −1.56958
418418 64.7760 3.16830
419419 −32.5887 −1.59206 −0.796032 0.605254i 0.793071π-0.793071\pi
−0.796032 + 0.605254i 0.793071π0.793071\pi
420420 −9.70799 −0.473701
421421 21.1968 1.03307 0.516534 0.856267i 0.327222π-0.327222\pi
0.516534 + 0.856267i 0.327222π0.327222\pi
422422 −47.7905 −2.32641
423423 −18.7792 −0.913078
424424 −95.4827 −4.63705
425425 1.45056 0.0703623
426426 −76.6022 −3.71139
427427 3.52037 0.170362
428428 80.3930 3.88594
429429 35.0961 1.69446
430430 −23.1024 −1.11410
431431 1.00000 0.0481683
432432 −13.2198 −0.636037
433433 20.5332 0.986762 0.493381 0.869813i 0.335761π-0.335761\pi
0.493381 + 0.869813i 0.335761π0.335761\pi
434434 5.31569 0.255161
435435 31.9586 1.53230
436436 49.4217 2.36687
437437 −14.8382 −0.709809
438438 −27.4433 −1.31129
439439 36.3028 1.73264 0.866319 0.499491i 0.166480π-0.166480\pi
0.866319 + 0.499491i 0.166480π0.166480\pi
440440 −53.5038 −2.55069
441441 −24.9556 −1.18836
442442 68.2678 3.24717
443443 −15.4351 −0.733344 −0.366672 0.930350i 0.619503π-0.619503\pi
−0.366672 + 0.930350i 0.619503π0.619503\pi
444444 58.8970 2.79513
445445 2.12548 0.100757
446446 67.3926 3.19113
447447 4.94426 0.233855
448448 1.01570 0.0479872
449449 −41.4986 −1.95844 −0.979221 0.202796i 0.934997π-0.934997\pi
−0.979221 + 0.202796i 0.934997π0.934997\pi
450450 2.00771 0.0946443
451451 6.20013 0.291953
452452 −39.8886 −1.87620
453453 −28.3990 −1.33430
454454 −26.4454 −1.24114
455455 3.20282 0.150150
456456 126.159 5.90791
457457 −7.90474 −0.369768 −0.184884 0.982760i 0.559191π-0.559191\pi
−0.184884 + 0.982760i 0.559191π0.559191\pi
458458 −6.70471 −0.313290
459459 −10.9753 −0.512283
460460 21.5978 1.00700
461461 −2.00122 −0.0932062 −0.0466031 0.998913i 0.514840π-0.514840\pi
−0.0466031 + 0.998913i 0.514840π0.514840\pi
462462 8.20927 0.381930
463463 −18.9604 −0.881164 −0.440582 0.897712i 0.645228π-0.645228\pi
−0.440582 + 0.897712i 0.645228π0.645228\pi
464464 −44.2001 −2.05194
465465 −34.0188 −1.57758
466466 26.0493 1.20671
467467 6.42774 0.297440 0.148720 0.988879i 0.452485π-0.452485\pi
0.148720 + 0.988879i 0.452485π0.452485\pi
468468 65.9596 3.04898
469469 −1.49851 −0.0691947
470470 −30.3952 −1.40203
471471 15.8474 0.730211
472472 −56.2755 −2.59029
473473 13.6373 0.627044
474474 −27.6166 −1.26847
475475 −1.55846 −0.0715071
476476 11.1470 0.510921
477477 −51.3407 −2.35073
478478 1.10535 0.0505573
479479 −14.5170 −0.663300 −0.331650 0.943403i 0.607605π-0.607605\pi
−0.331650 + 0.943403i 0.607605π0.607605\pi
480480 −43.6657 −1.99306
481481 −19.4310 −0.885979
482482 30.2640 1.37849
483483 −1.88049 −0.0855655
484484 4.79270 0.217850
485485 −31.6450 −1.43692
486486 57.0076 2.58592
487487 29.9959 1.35925 0.679623 0.733561i 0.262143π-0.262143\pi
0.679623 + 0.733561i 0.262143π0.262143\pi
488488 66.5891 3.01435
489489 −17.4480 −0.789024
490490 −40.3920 −1.82472
491491 −31.7300 −1.43196 −0.715978 0.698123i 0.754019π-0.754019\pi
−0.715978 + 0.698123i 0.754019π0.754019\pi
492492 21.2795 0.959352
493493 −36.6957 −1.65269
494494 −73.3461 −3.30000
495495 −28.7688 −1.29306
496496 47.0494 2.11258
497497 4.12654 0.185100
498498 −55.5610 −2.48975
499499 20.3965 0.913072 0.456536 0.889705i 0.349090π-0.349090\pi
0.456536 + 0.889705i 0.349090π0.349090\pi
500500 −50.5279 −2.25967
501501 46.7032 2.08655
502502 −52.8308 −2.35796
503503 −13.7113 −0.611358 −0.305679 0.952135i 0.598883π-0.598883\pi
−0.305679 + 0.952135i 0.598883π0.598883\pi
504504 8.75519 0.389987
505505 15.7921 0.702740
506506 −18.2635 −0.811914
507507 −6.26297 −0.278148
508508 69.0756 3.06474
509509 19.8740 0.880901 0.440451 0.897777i 0.354819π-0.354819\pi
0.440451 + 0.897777i 0.354819π0.354819\pi
510510 −102.193 −4.52516
511511 1.47836 0.0653989
512512 −49.4577 −2.18574
513513 11.7917 0.520617
514514 −21.3422 −0.941365
515515 −5.19333 −0.228846
516516 46.8046 2.06046
517517 17.9422 0.789098
518518 −4.54507 −0.199699
519519 −56.9635 −2.50042
520520 60.5825 2.65672
521521 15.0333 0.658620 0.329310 0.944222i 0.393184π-0.393184\pi
0.329310 + 0.944222i 0.393184π0.393184\pi
522522 −50.7903 −2.22303
523523 −27.1598 −1.18761 −0.593807 0.804607i 0.702376π-0.702376\pi
−0.593807 + 0.804607i 0.702376π0.702376\pi
524524 28.6787 1.25284
525525 −0.197509 −0.00861998
526526 −23.4198 −1.02115
527527 39.0613 1.70154
528528 72.6606 3.16215
529529 −18.8164 −0.818103
530530 −83.0977 −3.60953
531531 −30.2591 −1.31313
532532 −11.9762 −0.519233
533533 −7.02043 −0.304088
534534 −6.16868 −0.266945
535535 39.7031 1.71652
536536 −28.3449 −1.22431
537537 60.6640 2.61785
538538 −43.1286 −1.85941
539539 23.8433 1.02700
540540 −17.1635 −0.738598
541541 4.52575 0.194577 0.0972886 0.995256i 0.468983π-0.468983\pi
0.0972886 + 0.995256i 0.468983π0.468983\pi
542542 8.82694 0.379149
543543 −47.3094 −2.03024
544544 50.1381 2.14965
545545 24.4075 1.04550
546546 −9.29538 −0.397805
547547 −24.6932 −1.05581 −0.527903 0.849304i 0.677022π-0.677022\pi
−0.527903 + 0.849304i 0.677022π0.677022\pi
548548 23.6287 1.00937
549549 35.8047 1.52811
550550 −1.91822 −0.0817933
551551 39.4254 1.67958
552552 −35.5703 −1.51397
553553 1.48770 0.0632634
554554 71.8155 3.05115
555555 29.0870 1.23468
556556 57.5532 2.44080
557557 28.0914 1.19027 0.595135 0.803626i 0.297099π-0.297099\pi
0.595135 + 0.803626i 0.297099π0.297099\pi
558558 54.0645 2.28873
559559 −15.4416 −0.653108
560560 6.63089 0.280206
561561 60.3241 2.54689
562562 −1.07273 −0.0452504
563563 21.6657 0.913100 0.456550 0.889698i 0.349085π-0.349085\pi
0.456550 + 0.889698i 0.349085π0.349085\pi
564564 61.5795 2.59297
565565 −19.6995 −0.828765
566566 −52.1445 −2.19180
567567 −2.39490 −0.100577
568568 78.0550 3.27512
569569 4.83832 0.202833 0.101416 0.994844i 0.467663π-0.467663\pi
0.101416 + 0.994844i 0.467663π0.467663\pi
570570 109.795 4.59879
571571 −38.9894 −1.63165 −0.815827 0.578296i 0.803718π-0.803718\pi
−0.815827 + 0.578296i 0.803718π0.803718\pi
572572 −63.0197 −2.63498
573573 −57.9145 −2.41941
574574 −1.64213 −0.0685414
575575 0.439407 0.0183245
576576 10.3304 0.430433
577577 19.7275 0.821269 0.410634 0.911800i 0.365307π-0.365307\pi
0.410634 + 0.911800i 0.365307π0.365307\pi
578578 73.5874 3.06083
579579 53.8753 2.23898
580580 −57.3858 −2.38281
581581 2.99305 0.124173
582582 91.8416 3.80696
583583 49.0524 2.03154
584584 27.9638 1.15715
585585 32.5750 1.34681
586586 −59.1693 −2.44426
587587 12.4387 0.513401 0.256701 0.966491i 0.417365π-0.417365\pi
0.256701 + 0.966491i 0.417365π0.417365\pi
588588 81.8327 3.37472
589589 −41.9670 −1.72922
590590 −48.9760 −2.01631
591591 −38.2414 −1.57304
592592 −40.2287 −1.65339
593593 −36.7614 −1.50961 −0.754806 0.655948i 0.772269π-0.772269\pi
−0.754806 + 0.655948i 0.772269π0.772269\pi
594594 14.5138 0.595507
595595 5.50508 0.225686
596596 −8.87806 −0.363660
597597 −14.5501 −0.595497
598598 20.6799 0.845663
599599 −11.1268 −0.454630 −0.227315 0.973821i 0.572995π-0.572995\pi
−0.227315 + 0.973821i 0.572995π0.572995\pi
600600 −3.73595 −0.152520
601601 3.94777 0.161033 0.0805165 0.996753i 0.474343π-0.474343\pi
0.0805165 + 0.996753i 0.474343π0.474343\pi
602602 −3.61190 −0.147210
603603 −15.2409 −0.620659
604604 50.9942 2.07492
605605 2.36694 0.0962297
606606 −45.8327 −1.86183
607607 36.7922 1.49335 0.746674 0.665190i 0.231649π-0.231649\pi
0.746674 + 0.665190i 0.231649π0.231649\pi
608608 −53.8678 −2.18463
609609 4.99651 0.202469
610610 57.9518 2.34640
611611 −20.3160 −0.821899
612612 113.373 4.58283
613613 15.3619 0.620462 0.310231 0.950661i 0.399594π-0.399594\pi
0.310231 + 0.950661i 0.399594π0.399594\pi
614614 2.50576 0.101124
615615 10.5091 0.423770
616616 −8.36496 −0.337034
617617 27.4366 1.10455 0.552277 0.833661i 0.313759π-0.313759\pi
0.552277 + 0.833661i 0.313759π0.313759\pi
618618 15.0724 0.606299
619619 −17.2553 −0.693549 −0.346775 0.937948i 0.612723π-0.612723\pi
−0.346775 + 0.937948i 0.612723π0.612723\pi
620620 61.0851 2.45324
621621 −3.32467 −0.133414
622622 23.9821 0.961596
623623 0.332305 0.0133135
624624 −82.2738 −3.29359
625625 −26.0280 −1.04112
626626 18.8502 0.753404
627627 −64.8115 −2.58832
628628 −28.4561 −1.13552
629629 −33.3985 −1.33169
630630 7.61955 0.303570
631631 17.3059 0.688935 0.344468 0.938798i 0.388059π-0.388059\pi
0.344468 + 0.938798i 0.388059π0.388059\pi
632632 28.1404 1.11937
633633 47.8167 1.90054
634634 −64.2719 −2.55256
635635 34.1139 1.35377
636636 168.353 6.67562
637637 −26.9979 −1.06969
638638 48.5265 1.92118
639639 41.9699 1.66030
640640 −17.1933 −0.679625
641641 −28.1003 −1.10989 −0.554947 0.831885i 0.687262π-0.687262\pi
−0.554947 + 0.831885i 0.687262π0.687262\pi
642642 −115.229 −4.54771
643643 30.7867 1.21411 0.607054 0.794661i 0.292351π-0.292351\pi
0.607054 + 0.794661i 0.292351π0.292351\pi
644644 3.37667 0.133060
645645 23.1150 0.910154
646646 −126.069 −4.96012
647647 18.4628 0.725847 0.362924 0.931819i 0.381779π-0.381779\pi
0.362924 + 0.931819i 0.381779π0.381779\pi
648648 −45.3006 −1.77957
649649 28.9105 1.13483
650650 2.17201 0.0851932
651651 −5.31860 −0.208453
652652 31.3301 1.22698
653653 20.0886 0.786129 0.393064 0.919511i 0.371415π-0.371415\pi
0.393064 + 0.919511i 0.371415π0.371415\pi
654654 −70.8368 −2.76994
655655 14.1634 0.553408
656656 −14.5346 −0.567481
657657 15.0360 0.586612
658658 −4.75209 −0.185256
659659 6.54611 0.255000 0.127500 0.991839i 0.459305π-0.459305\pi
0.127500 + 0.991839i 0.459305π0.459305\pi
660660 94.3365 3.67204
661661 −3.02612 −0.117702 −0.0588511 0.998267i 0.518744π-0.518744\pi
−0.0588511 + 0.998267i 0.518744π0.518744\pi
662662 54.0120 2.09923
663663 −68.3052 −2.65275
664664 56.6148 2.19708
665665 −5.91459 −0.229358
666666 −46.2267 −1.79125
667667 −11.1160 −0.430412
668668 −83.8618 −3.24471
669669 −67.4295 −2.60698
670670 −24.6683 −0.953019
671671 −34.2089 −1.32062
672672 −6.82684 −0.263351
673673 −15.0061 −0.578443 −0.289221 0.957262i 0.593396π-0.593396\pi
−0.289221 + 0.957262i 0.593396π0.593396\pi
674674 −59.1864 −2.27977
675675 −0.349190 −0.0134403
676676 11.2460 0.432538
677677 −24.4966 −0.941479 −0.470739 0.882272i 0.656013π-0.656013\pi
−0.470739 + 0.882272i 0.656013π0.656013\pi
678678 57.1730 2.19571
679679 −4.94748 −0.189867
680680 104.131 3.99323
681681 26.4599 1.01394
682682 −51.6548 −1.97796
683683 −34.9705 −1.33811 −0.669054 0.743214i 0.733301π-0.733301\pi
−0.669054 + 0.743214i 0.733301π0.733301\pi
684684 −121.807 −4.65739
685685 11.6694 0.445863
686686 −12.7472 −0.486689
687687 6.70838 0.255941
688688 −31.9691 −1.21881
689689 −55.5422 −2.11599
690690 −30.9565 −1.17849
691691 −17.5598 −0.668008 −0.334004 0.942572i 0.608400π-0.608400\pi
−0.334004 + 0.942572i 0.608400π0.608400\pi
692692 102.285 3.88831
693693 −4.49781 −0.170858
694694 −73.2487 −2.78048
695695 28.4234 1.07816
696696 94.5109 3.58243
697697 −12.0669 −0.457066
698698 40.6034 1.53686
699699 −26.0635 −0.985813
700700 0.354653 0.0134046
701701 4.20672 0.158886 0.0794428 0.996839i 0.474686π-0.474686\pi
0.0794428 + 0.996839i 0.474686π0.474686\pi
702702 −16.4340 −0.620261
703703 35.8830 1.35335
704704 −9.86996 −0.371988
705705 30.4118 1.14538
706706 36.2655 1.36487
707707 2.46899 0.0928559
708708 99.2236 3.72905
709709 13.4162 0.503856 0.251928 0.967746i 0.418935π-0.418935\pi
0.251928 + 0.967746i 0.418935π0.418935\pi
710710 67.9305 2.54939
711711 15.1310 0.567457
712712 6.28567 0.235566
713713 11.8326 0.443133
714714 −15.9771 −0.597929
715715 −31.1231 −1.16394
716716 −108.930 −4.07091
717717 −1.10595 −0.0413025
718718 51.2649 1.91319
719719 21.7997 0.812992 0.406496 0.913653i 0.366751π-0.366751\pi
0.406496 + 0.913653i 0.366751π0.366751\pi
720720 67.4410 2.51338
721721 −0.811942 −0.0302383
722722 86.5467 3.22094
723723 −30.2806 −1.12615
724724 84.9502 3.15715
725725 −1.16751 −0.0433603
726726 −6.86945 −0.254949
727727 0.197006 0.00730656 0.00365328 0.999993i 0.498837π-0.498837\pi
0.00365328 + 0.999993i 0.498837π0.498837\pi
728728 9.47167 0.351043
729729 −36.9150 −1.36722
730730 24.3366 0.900739
731731 −26.5413 −0.981667
732732 −117.408 −4.33953
733733 17.8257 0.658406 0.329203 0.944259i 0.393220π-0.393220\pi
0.329203 + 0.944259i 0.393220π0.393220\pi
734734 −61.5033 −2.27013
735735 40.4141 1.49070
736736 15.1880 0.559837
737737 14.5616 0.536385
738738 −16.7017 −0.614799
739739 25.8894 0.952358 0.476179 0.879348i 0.342021π-0.342021\pi
0.476179 + 0.879348i 0.342021π0.342021\pi
740740 −52.2296 −1.92000
741741 73.3863 2.69591
742742 −12.9918 −0.476943
743743 −31.7529 −1.16490 −0.582451 0.812866i 0.697906π-0.697906\pi
−0.582451 + 0.812866i 0.697906π0.697906\pi
744744 −100.603 −3.68830
745745 −4.38455 −0.160637
746746 30.5323 1.11787
747747 30.4416 1.11380
748748 −108.320 −3.96056
749749 6.20732 0.226811
750750 72.4224 2.64449
751751 14.5689 0.531627 0.265813 0.964025i 0.414360π-0.414360\pi
0.265813 + 0.964025i 0.414360π0.414360\pi
752752 −42.0609 −1.53380
753753 52.8598 1.92632
754754 −54.9468 −2.00104
755755 25.1842 0.916545
756756 −2.68339 −0.0975941
757757 −20.7347 −0.753615 −0.376807 0.926292i 0.622978π-0.622978\pi
−0.376807 + 0.926292i 0.622978π0.622978\pi
758758 −0.945641 −0.0343472
759759 18.2735 0.663288
760760 −111.877 −4.05820
761761 −15.2610 −0.553211 −0.276605 0.960984i 0.589209π-0.589209\pi
−0.276605 + 0.960984i 0.589209π0.589209\pi
762762 −99.0072 −3.58665
763763 3.81595 0.138147
764764 103.993 3.76234
765765 55.9907 2.02435
766766 22.0471 0.796593
767767 −32.7354 −1.18201
768768 64.5511 2.32929
769769 −28.0157 −1.01027 −0.505136 0.863040i 0.668558π-0.668558\pi
−0.505136 + 0.863040i 0.668558π0.668558\pi
770770 −7.27994 −0.262351
771771 21.3539 0.769042
772772 −96.7401 −3.48175
773773 −48.4011 −1.74087 −0.870433 0.492286i 0.836161π-0.836161\pi
−0.870433 + 0.492286i 0.836161π0.836161\pi
774774 −36.7357 −1.32044
775775 1.24277 0.0446418
776776 −93.5835 −3.35945
777777 4.54756 0.163143
778778 23.1190 0.828858
779779 12.9645 0.464502
780780 −106.818 −3.82468
781781 −40.0993 −1.43486
782782 35.5451 1.27109
783783 8.83370 0.315691
784784 −55.8945 −1.99623
785785 −14.0534 −0.501588
786786 −41.1056 −1.46619
787787 −0.785954 −0.0280162 −0.0140081 0.999902i 0.504459π-0.504459\pi
−0.0140081 + 0.999902i 0.504459π0.504459\pi
788788 68.6674 2.44618
789789 23.4326 0.834223
790790 24.4903 0.871327
791791 −3.07989 −0.109508
792792 −85.0778 −3.02311
793793 38.7348 1.37551
794794 44.7485 1.58806
795795 83.1432 2.94878
796796 26.1266 0.926034
797797 20.5907 0.729360 0.364680 0.931133i 0.381178π-0.381178\pi
0.364680 + 0.931133i 0.381178π0.381178\pi
798798 17.1656 0.607657
799799 −34.9197 −1.23537
800800 1.59520 0.0563987
801801 3.37978 0.119419
802802 1.50530 0.0531539
803803 −14.3659 −0.506960
804804 49.9770 1.76255
805805 1.66761 0.0587757
806806 58.4889 2.06018
807807 43.1522 1.51903
808808 46.7019 1.64297
809809 −51.1388 −1.79795 −0.898973 0.438005i 0.855685π-0.855685\pi
−0.898973 + 0.438005i 0.855685π0.855685\pi
810810 −39.4246 −1.38524
811811 24.9576 0.876380 0.438190 0.898882i 0.355620π-0.355620\pi
0.438190 + 0.898882i 0.355620π0.355620\pi
812812 −8.97188 −0.314851
813813 −8.83177 −0.309744
814814 44.1664 1.54803
815815 15.4728 0.541988
816816 −141.414 −4.95049
817817 28.5157 0.997638
818818 101.164 3.53712
819819 5.09288 0.177960
820820 −18.8705 −0.658988
821821 42.3879 1.47935 0.739673 0.672966i 0.234980π-0.234980\pi
0.739673 + 0.672966i 0.234980π0.234980\pi
822822 −33.8674 −1.18126
823823 28.6648 0.999192 0.499596 0.866259i 0.333482π-0.333482\pi
0.499596 + 0.866259i 0.333482π0.333482\pi
824824 −15.3582 −0.535029
825825 1.91927 0.0668205
826826 −7.65707 −0.266424
827827 28.1811 0.979952 0.489976 0.871736i 0.337006π-0.337006\pi
0.489976 + 0.871736i 0.337006π0.337006\pi
828828 34.3433 1.19351
829829 −0.632280 −0.0219600 −0.0109800 0.999940i 0.503495π-0.503495\pi
−0.0109800 + 0.999940i 0.503495π0.503495\pi
830830 49.2713 1.71023
831831 −71.8548 −2.49262
832832 11.1758 0.387450
833833 −46.4046 −1.60782
834834 −82.4919 −2.85646
835835 −41.4162 −1.43327
836836 116.377 4.02500
837837 −9.40316 −0.325021
838838 −83.8738 −2.89737
839839 20.8027 0.718189 0.359095 0.933301i 0.383086π-0.383086\pi
0.359095 + 0.933301i 0.383086π0.383086\pi
840840 −14.1785 −0.489205
841841 0.535307 0.0184589
842842 54.5542 1.88006
843843 1.07332 0.0369670
844844 −85.8611 −2.95546
845845 5.55397 0.191063
846846 −48.3322 −1.66170
847847 0.370055 0.0127152
848848 −114.991 −3.94880
849849 52.1731 1.79057
850850 3.73330 0.128051
851851 −10.1172 −0.346813
852852 −137.625 −4.71494
853853 −28.6059 −0.979447 −0.489724 0.871878i 0.662902π-0.662902\pi
−0.489724 + 0.871878i 0.662902π0.662902\pi
854854 9.06038 0.310040
855855 −60.1557 −2.05728
856856 117.414 4.01313
857857 6.92375 0.236511 0.118255 0.992983i 0.462270π-0.462270\pi
0.118255 + 0.992983i 0.462270π0.462270\pi
858858 90.3270 3.08371
859859 27.6913 0.944816 0.472408 0.881380i 0.343385π-0.343385\pi
0.472408 + 0.881380i 0.343385π0.343385\pi
860860 −41.5061 −1.41535
861861 1.64303 0.0559945
862862 2.57370 0.0876607
863863 −28.3542 −0.965189 −0.482595 0.875844i 0.660306π-0.660306\pi
−0.482595 + 0.875844i 0.660306π0.660306\pi
864864 −12.0697 −0.410619
865865 50.5150 1.71756
866866 52.8463 1.79579
867867 −73.6277 −2.50053
868868 9.55025 0.324156
869869 −14.4566 −0.490406
870870 82.2519 2.78860
871871 −16.4882 −0.558681
872872 72.1803 2.44433
873873 −50.3195 −1.70306
874874 −38.1892 −1.29177
875875 −3.90137 −0.131890
876876 −49.3051 −1.66586
877877 31.3956 1.06016 0.530078 0.847949i 0.322163π-0.322163\pi
0.530078 + 0.847949i 0.322163π0.322163\pi
878878 93.4327 3.15320
879879 59.2017 1.99683
880880 −64.4351 −2.17211
881881 46.6917 1.57308 0.786542 0.617537i 0.211869π-0.211869\pi
0.786542 + 0.617537i 0.211869π0.211869\pi
882882 −64.2284 −2.16268
883883 45.3947 1.52765 0.763827 0.645421i 0.223318π-0.223318\pi
0.763827 + 0.645421i 0.223318π0.223318\pi
884884 122.651 4.12519
885885 49.0029 1.64721
886886 −39.7254 −1.33460
887887 21.0448 0.706614 0.353307 0.935507i 0.385057π-0.385057\pi
0.353307 + 0.935507i 0.385057π0.385057\pi
888888 86.0190 2.88661
889889 5.33348 0.178879
890890 5.47036 0.183367
891891 23.2723 0.779651
892892 121.079 4.05401
893893 37.5173 1.25547
894894 12.7251 0.425590
895895 −53.7966 −1.79822
896896 −2.68806 −0.0898017
897897 −20.6912 −0.690859
898898 −106.805 −3.56414
899899 −31.4393 −1.04856
900900 3.60708 0.120236
901901 −95.4673 −3.18048
902902 15.9573 0.531320
903903 3.61388 0.120262
904904 −58.2573 −1.93761
905905 41.9538 1.39459
906906 −73.0908 −2.42828
907907 −9.13393 −0.303287 −0.151644 0.988435i 0.548457π-0.548457\pi
−0.151644 + 0.988435i 0.548457π0.548457\pi
908908 −47.5122 −1.57675
909909 25.1114 0.832894
910910 8.24310 0.273256
911911 −56.0465 −1.85690 −0.928451 0.371454i 0.878859π-0.878859\pi
−0.928451 + 0.371454i 0.878859π0.878859\pi
912912 151.934 5.03103
913913 −29.0848 −0.962565
914914 −20.3445 −0.672935
915915 −57.9836 −1.91688
916916 −12.0458 −0.398003
917917 2.21435 0.0731241
918918 −28.2472 −0.932295
919919 8.36459 0.275923 0.137961 0.990438i 0.455945π-0.455945\pi
0.137961 + 0.990438i 0.455945π0.455945\pi
920920 31.5436 1.03996
921921 −2.50713 −0.0826128
922922 −5.15055 −0.169624
923923 45.4045 1.49451
924924 14.7489 0.485203
925925 −1.06261 −0.0349384
926926 −48.7984 −1.60362
927927 −8.25805 −0.271230
928928 −40.3547 −1.32471
929929 −44.1199 −1.44753 −0.723764 0.690048i 0.757589π-0.757589\pi
−0.723764 + 0.690048i 0.757589π0.757589\pi
930930 −87.5542 −2.87102
931931 49.8566 1.63398
932932 46.8005 1.53300
933933 −23.9953 −0.785570
934934 16.5431 0.541307
935935 −53.4951 −1.74948
936936 96.3339 3.14877
937937 −6.03479 −0.197148 −0.0985739 0.995130i 0.531428π-0.531428\pi
−0.0985739 + 0.995130i 0.531428π0.531428\pi
938938 −3.85672 −0.125926
939939 −18.8605 −0.615489
940940 −54.6084 −1.78113
941941 −16.1755 −0.527305 −0.263653 0.964618i 0.584927π-0.584927\pi
−0.263653 + 0.964618i 0.584927π0.584927\pi
942942 40.7866 1.32890
943943 −3.65534 −0.119034
944944 −67.7731 −2.20583
945945 −1.32523 −0.0431097
946946 35.0984 1.14115
947947 9.49983 0.308703 0.154351 0.988016i 0.450671π-0.450671\pi
0.154351 + 0.988016i 0.450671π0.450671\pi
948948 −49.6165 −1.61147
949949 16.2665 0.528033
950950 −4.01102 −0.130135
951951 64.3071 2.08530
952952 16.2801 0.527643
953953 7.46016 0.241658 0.120829 0.992673i 0.461445π-0.461445\pi
0.120829 + 0.992673i 0.461445π0.461445\pi
954954 −132.136 −4.27805
955955 51.3583 1.66192
956956 1.98588 0.0642279
957957 −48.5531 −1.56950
958958 −37.3625 −1.20713
959959 1.82443 0.0589138
960960 −16.7294 −0.539941
961961 2.46600 0.0795484
962962 −50.0097 −1.61238
963963 63.1330 2.03443
964964 54.3728 1.75123
965965 −47.7764 −1.53798
966966 −4.83984 −0.155719
967967 −21.3283 −0.685872 −0.342936 0.939359i 0.611421π-0.611421\pi
−0.342936 + 0.939359i 0.611421π0.611421\pi
968968 6.99974 0.224980
969969 126.138 4.05214
970970 −81.4447 −2.61503
971971 −24.7464 −0.794151 −0.397076 0.917786i 0.629975π-0.629975\pi
−0.397076 + 0.917786i 0.629975π0.629975\pi
972972 102.421 3.28514
973973 4.44381 0.142462
974974 77.2007 2.47367
975975 −2.17320 −0.0695981
976976 80.1939 2.56694
977977 −7.20494 −0.230507 −0.115253 0.993336i 0.536768π-0.536768\pi
−0.115253 + 0.993336i 0.536768π0.536768\pi
978978 −44.9059 −1.43593
979979 −3.22914 −0.103204
980980 −72.5688 −2.31813
981981 38.8111 1.23914
982982 −81.6637 −2.60599
983983 −4.58079 −0.146104 −0.0730522 0.997328i 0.523274π-0.523274\pi
−0.0730522 + 0.997328i 0.523274π0.523274\pi
984984 31.0786 0.990751
985985 33.9123 1.08054
986986 −94.4439 −3.00771
987987 4.75469 0.151343
988988 −131.775 −4.19231
989989 −8.03998 −0.255656
990990 −74.0424 −2.35322
991991 11.3402 0.360233 0.180116 0.983645i 0.442353π-0.442353\pi
0.180116 + 0.983645i 0.442353π0.442353\pi
992992 42.9562 1.36386
993993 −54.0416 −1.71496
994994 10.6205 0.336861
995995 12.9030 0.409052
996996 −99.8218 −3.16297
997997 −8.45209 −0.267680 −0.133840 0.991003i 0.542731π-0.542731\pi
−0.133840 + 0.991003i 0.542731π0.542731\pi
998998 52.4945 1.66168
999999 8.03998 0.254374
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 431.2.a.f.1.23 24
3.2 odd 2 3879.2.a.r.1.2 24
4.3 odd 2 6896.2.a.w.1.21 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.f.1.23 24 1.1 even 1 trivial
3879.2.a.r.1.2 24 3.2 odd 2
6896.2.a.w.1.21 24 4.3 odd 2