Properties

Label 431.2.a.f.1.8
Level $431$
Weight $2$
Character 431.1
Self dual yes
Analytic conductor $3.442$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [431,2,Mod(1,431)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("431.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 431.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.44155232712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 431.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.40794 q^{2} -2.74104 q^{3} -0.0177091 q^{4} +4.09865 q^{5} +3.85922 q^{6} -4.31281 q^{7} +2.84081 q^{8} +4.51331 q^{9} -5.77065 q^{10} -0.743484 q^{11} +0.0485414 q^{12} -6.34810 q^{13} +6.07217 q^{14} -11.2346 q^{15} -3.96427 q^{16} +2.20015 q^{17} -6.35446 q^{18} -2.13671 q^{19} -0.0725834 q^{20} +11.8216 q^{21} +1.04678 q^{22} +6.65760 q^{23} -7.78678 q^{24} +11.7990 q^{25} +8.93773 q^{26} -4.14803 q^{27} +0.0763760 q^{28} +4.63554 q^{29} +15.8176 q^{30} +7.85410 q^{31} -0.100175 q^{32} +2.03792 q^{33} -3.09768 q^{34} -17.6767 q^{35} -0.0799265 q^{36} -5.84050 q^{37} +3.00836 q^{38} +17.4004 q^{39} +11.6435 q^{40} +0.253530 q^{41} -16.6441 q^{42} -0.0120649 q^{43} +0.0131664 q^{44} +18.4985 q^{45} -9.37349 q^{46} +2.90991 q^{47} +10.8662 q^{48} +11.6003 q^{49} -16.6122 q^{50} -6.03070 q^{51} +0.112419 q^{52} +4.36617 q^{53} +5.84017 q^{54} -3.04728 q^{55} -12.2519 q^{56} +5.85682 q^{57} -6.52656 q^{58} +14.4731 q^{59} +0.198954 q^{60} +10.1341 q^{61} -11.0581 q^{62} -19.4650 q^{63} +8.06958 q^{64} -26.0186 q^{65} -2.86927 q^{66} -3.92556 q^{67} -0.0389627 q^{68} -18.2488 q^{69} +24.8877 q^{70} -0.836961 q^{71} +12.8214 q^{72} +5.05132 q^{73} +8.22306 q^{74} -32.3414 q^{75} +0.0378393 q^{76} +3.20651 q^{77} -24.4987 q^{78} -4.55354 q^{79} -16.2482 q^{80} -2.16999 q^{81} -0.356954 q^{82} +2.32619 q^{83} -0.209350 q^{84} +9.01765 q^{85} +0.0169866 q^{86} -12.7062 q^{87} -2.11210 q^{88} +2.29653 q^{89} -26.0447 q^{90} +27.3781 q^{91} -0.117900 q^{92} -21.5284 q^{93} -4.09697 q^{94} -8.75765 q^{95} +0.274583 q^{96} -0.401922 q^{97} -16.3326 q^{98} -3.35557 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{3} + 33 q^{4} + 13 q^{5} + 17 q^{6} + 8 q^{7} - 3 q^{8} + 31 q^{9} - 6 q^{10} + 15 q^{11} - 12 q^{12} + 11 q^{13} + 16 q^{14} - 5 q^{15} + 43 q^{16} + 6 q^{17} - 8 q^{18} + 18 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40794 −0.995563 −0.497781 0.867303i \(-0.665852\pi\)
−0.497781 + 0.867303i \(0.665852\pi\)
\(3\) −2.74104 −1.58254 −0.791270 0.611466i \(-0.790580\pi\)
−0.791270 + 0.611466i \(0.790580\pi\)
\(4\) −0.0177091 −0.00885455
\(5\) 4.09865 1.83297 0.916487 0.400065i \(-0.131013\pi\)
0.916487 + 0.400065i \(0.131013\pi\)
\(6\) 3.85922 1.57552
\(7\) −4.31281 −1.63009 −0.815045 0.579398i \(-0.803288\pi\)
−0.815045 + 0.579398i \(0.803288\pi\)
\(8\) 2.84081 1.00438
\(9\) 4.51331 1.50444
\(10\) −5.77065 −1.82484
\(11\) −0.743484 −0.224169 −0.112084 0.993699i \(-0.535753\pi\)
−0.112084 + 0.993699i \(0.535753\pi\)
\(12\) 0.0485414 0.0140127
\(13\) −6.34810 −1.76065 −0.880323 0.474376i \(-0.842674\pi\)
−0.880323 + 0.474376i \(0.842674\pi\)
\(14\) 6.07217 1.62286
\(15\) −11.2346 −2.90075
\(16\) −3.96427 −0.991067
\(17\) 2.20015 0.533615 0.266807 0.963750i \(-0.414031\pi\)
0.266807 + 0.963750i \(0.414031\pi\)
\(18\) −6.35446 −1.49776
\(19\) −2.13671 −0.490196 −0.245098 0.969498i \(-0.578820\pi\)
−0.245098 + 0.969498i \(0.578820\pi\)
\(20\) −0.0725834 −0.0162301
\(21\) 11.8216 2.57968
\(22\) 1.04678 0.223174
\(23\) 6.65760 1.38821 0.694103 0.719876i \(-0.255801\pi\)
0.694103 + 0.719876i \(0.255801\pi\)
\(24\) −7.78678 −1.58947
\(25\) 11.7990 2.35979
\(26\) 8.93773 1.75283
\(27\) −4.14803 −0.798289
\(28\) 0.0763760 0.0144337
\(29\) 4.63554 0.860799 0.430399 0.902639i \(-0.358373\pi\)
0.430399 + 0.902639i \(0.358373\pi\)
\(30\) 15.8176 2.88788
\(31\) 7.85410 1.41064 0.705319 0.708890i \(-0.250804\pi\)
0.705319 + 0.708890i \(0.250804\pi\)
\(32\) −0.100175 −0.0177086
\(33\) 2.03792 0.354757
\(34\) −3.09768 −0.531247
\(35\) −17.6767 −2.98791
\(36\) −0.0799265 −0.0133211
\(37\) −5.84050 −0.960172 −0.480086 0.877222i \(-0.659394\pi\)
−0.480086 + 0.877222i \(0.659394\pi\)
\(38\) 3.00836 0.488021
\(39\) 17.4004 2.78629
\(40\) 11.6435 1.84100
\(41\) 0.253530 0.0395947 0.0197973 0.999804i \(-0.493698\pi\)
0.0197973 + 0.999804i \(0.493698\pi\)
\(42\) −16.6441 −2.56824
\(43\) −0.0120649 −0.00183988 −0.000919940 1.00000i \(-0.500293\pi\)
−0.000919940 1.00000i \(0.500293\pi\)
\(44\) 0.0131664 0.00198491
\(45\) 18.4985 2.75759
\(46\) −9.37349 −1.38205
\(47\) 2.90991 0.424454 0.212227 0.977220i \(-0.431928\pi\)
0.212227 + 0.977220i \(0.431928\pi\)
\(48\) 10.8662 1.56840
\(49\) 11.6003 1.65719
\(50\) −16.6122 −2.34932
\(51\) −6.03070 −0.844467
\(52\) 0.112419 0.0155897
\(53\) 4.36617 0.599740 0.299870 0.953980i \(-0.403057\pi\)
0.299870 + 0.953980i \(0.403057\pi\)
\(54\) 5.84017 0.794747
\(55\) −3.04728 −0.410896
\(56\) −12.2519 −1.63723
\(57\) 5.85682 0.775755
\(58\) −6.52656 −0.856979
\(59\) 14.4731 1.88424 0.942122 0.335271i \(-0.108828\pi\)
0.942122 + 0.335271i \(0.108828\pi\)
\(60\) 0.198954 0.0256849
\(61\) 10.1341 1.29754 0.648770 0.760984i \(-0.275284\pi\)
0.648770 + 0.760984i \(0.275284\pi\)
\(62\) −11.0581 −1.40438
\(63\) −19.4650 −2.45236
\(64\) 8.06958 1.00870
\(65\) −26.0186 −3.22722
\(66\) −2.86927 −0.353182
\(67\) −3.92556 −0.479583 −0.239792 0.970824i \(-0.577079\pi\)
−0.239792 + 0.970824i \(0.577079\pi\)
\(68\) −0.0389627 −0.00472492
\(69\) −18.2488 −2.19689
\(70\) 24.8877 2.97465
\(71\) −0.836961 −0.0993290 −0.0496645 0.998766i \(-0.515815\pi\)
−0.0496645 + 0.998766i \(0.515815\pi\)
\(72\) 12.8214 1.51102
\(73\) 5.05132 0.591213 0.295606 0.955310i \(-0.404478\pi\)
0.295606 + 0.955310i \(0.404478\pi\)
\(74\) 8.22306 0.955911
\(75\) −32.3414 −3.73446
\(76\) 0.0378393 0.00434046
\(77\) 3.20651 0.365415
\(78\) −24.4987 −2.77393
\(79\) −4.55354 −0.512313 −0.256156 0.966635i \(-0.582456\pi\)
−0.256156 + 0.966635i \(0.582456\pi\)
\(80\) −16.2482 −1.81660
\(81\) −2.16999 −0.241110
\(82\) −0.356954 −0.0394190
\(83\) 2.32619 0.255333 0.127666 0.991817i \(-0.459251\pi\)
0.127666 + 0.991817i \(0.459251\pi\)
\(84\) −0.209350 −0.0228419
\(85\) 9.01765 0.978102
\(86\) 0.0169866 0.00183172
\(87\) −12.7062 −1.36225
\(88\) −2.11210 −0.225150
\(89\) 2.29653 0.243432 0.121716 0.992565i \(-0.461160\pi\)
0.121716 + 0.992565i \(0.461160\pi\)
\(90\) −26.0447 −2.74535
\(91\) 27.3781 2.87001
\(92\) −0.117900 −0.0122919
\(93\) −21.5284 −2.23239
\(94\) −4.09697 −0.422571
\(95\) −8.75765 −0.898516
\(96\) 0.274583 0.0280245
\(97\) −0.401922 −0.0408090 −0.0204045 0.999792i \(-0.506495\pi\)
−0.0204045 + 0.999792i \(0.506495\pi\)
\(98\) −16.3326 −1.64984
\(99\) −3.35557 −0.337248
\(100\) −0.208949 −0.0208949
\(101\) 9.79978 0.975115 0.487557 0.873091i \(-0.337888\pi\)
0.487557 + 0.873091i \(0.337888\pi\)
\(102\) 8.49086 0.840720
\(103\) 3.53984 0.348791 0.174396 0.984676i \(-0.444203\pi\)
0.174396 + 0.984676i \(0.444203\pi\)
\(104\) −18.0337 −1.76835
\(105\) 48.4526 4.72849
\(106\) −6.14730 −0.597079
\(107\) 5.40089 0.522124 0.261062 0.965322i \(-0.415927\pi\)
0.261062 + 0.965322i \(0.415927\pi\)
\(108\) 0.0734579 0.00706849
\(109\) −14.2013 −1.36023 −0.680117 0.733104i \(-0.738071\pi\)
−0.680117 + 0.733104i \(0.738071\pi\)
\(110\) 4.29039 0.409073
\(111\) 16.0090 1.51951
\(112\) 17.0971 1.61553
\(113\) 11.0146 1.03617 0.518085 0.855329i \(-0.326645\pi\)
0.518085 + 0.855329i \(0.326645\pi\)
\(114\) −8.24605 −0.772313
\(115\) 27.2872 2.54454
\(116\) −0.0820913 −0.00762198
\(117\) −28.6509 −2.64878
\(118\) −20.3773 −1.87588
\(119\) −9.48883 −0.869840
\(120\) −31.9153 −2.91345
\(121\) −10.4472 −0.949748
\(122\) −14.2682 −1.29178
\(123\) −0.694935 −0.0626602
\(124\) −0.139089 −0.0124906
\(125\) 27.8665 2.49246
\(126\) 27.4056 2.44148
\(127\) −17.2307 −1.52898 −0.764489 0.644636i \(-0.777009\pi\)
−0.764489 + 0.644636i \(0.777009\pi\)
\(128\) −11.1611 −0.986513
\(129\) 0.0330704 0.00291168
\(130\) 36.6326 3.21290
\(131\) −6.03573 −0.527345 −0.263672 0.964612i \(-0.584934\pi\)
−0.263672 + 0.964612i \(0.584934\pi\)
\(132\) −0.0360897 −0.00314121
\(133\) 9.21525 0.799063
\(134\) 5.52694 0.477455
\(135\) −17.0013 −1.46324
\(136\) 6.25021 0.535951
\(137\) 8.15179 0.696454 0.348227 0.937410i \(-0.386784\pi\)
0.348227 + 0.937410i \(0.386784\pi\)
\(138\) 25.6931 2.18714
\(139\) 1.69634 0.143882 0.0719410 0.997409i \(-0.477081\pi\)
0.0719410 + 0.997409i \(0.477081\pi\)
\(140\) 0.313039 0.0264566
\(141\) −7.97618 −0.671716
\(142\) 1.17839 0.0988882
\(143\) 4.71971 0.394682
\(144\) −17.8920 −1.49100
\(145\) 18.9995 1.57782
\(146\) −7.11195 −0.588589
\(147\) −31.7970 −2.62257
\(148\) 0.103430 0.00850188
\(149\) 12.4258 1.01796 0.508980 0.860779i \(-0.330023\pi\)
0.508980 + 0.860779i \(0.330023\pi\)
\(150\) 45.5347 3.71789
\(151\) 23.4238 1.90620 0.953100 0.302655i \(-0.0978729\pi\)
0.953100 + 0.302655i \(0.0978729\pi\)
\(152\) −6.07000 −0.492342
\(153\) 9.92995 0.802789
\(154\) −4.51457 −0.363794
\(155\) 32.1912 2.58566
\(156\) −0.308145 −0.0246714
\(157\) −7.31771 −0.584017 −0.292008 0.956416i \(-0.594324\pi\)
−0.292008 + 0.956416i \(0.594324\pi\)
\(158\) 6.41110 0.510040
\(159\) −11.9679 −0.949113
\(160\) −0.410582 −0.0324593
\(161\) −28.7130 −2.26290
\(162\) 3.05521 0.240040
\(163\) −3.55408 −0.278377 −0.139189 0.990266i \(-0.544449\pi\)
−0.139189 + 0.990266i \(0.544449\pi\)
\(164\) −0.00448978 −0.000350593 0
\(165\) 8.35273 0.650259
\(166\) −3.27513 −0.254200
\(167\) −5.37100 −0.415620 −0.207810 0.978169i \(-0.566634\pi\)
−0.207810 + 0.978169i \(0.566634\pi\)
\(168\) 33.5829 2.59098
\(169\) 27.2983 2.09987
\(170\) −12.6963 −0.973762
\(171\) −9.64365 −0.737468
\(172\) 0.000213658 0 1.62913e−5 0
\(173\) −14.8892 −1.13201 −0.566004 0.824402i \(-0.691511\pi\)
−0.566004 + 0.824402i \(0.691511\pi\)
\(174\) 17.8896 1.35620
\(175\) −50.8866 −3.84667
\(176\) 2.94737 0.222167
\(177\) −39.6715 −2.98189
\(178\) −3.23338 −0.242352
\(179\) 2.25449 0.168508 0.0842541 0.996444i \(-0.473149\pi\)
0.0842541 + 0.996444i \(0.473149\pi\)
\(180\) −0.327591 −0.0244172
\(181\) −20.9380 −1.55631 −0.778156 0.628071i \(-0.783845\pi\)
−0.778156 + 0.628071i \(0.783845\pi\)
\(182\) −38.5467 −2.85727
\(183\) −27.7780 −2.05341
\(184\) 18.9130 1.39428
\(185\) −23.9382 −1.75997
\(186\) 30.3107 2.22249
\(187\) −1.63578 −0.119620
\(188\) −0.0515319 −0.00375835
\(189\) 17.8897 1.30128
\(190\) 12.3302 0.894529
\(191\) −7.10699 −0.514244 −0.257122 0.966379i \(-0.582774\pi\)
−0.257122 + 0.966379i \(0.582774\pi\)
\(192\) −22.1190 −1.59630
\(193\) 13.5928 0.978431 0.489216 0.872163i \(-0.337283\pi\)
0.489216 + 0.872163i \(0.337283\pi\)
\(194\) 0.565882 0.0406280
\(195\) 71.3182 5.10720
\(196\) −0.205431 −0.0146737
\(197\) 10.3656 0.738517 0.369258 0.929327i \(-0.379612\pi\)
0.369258 + 0.929327i \(0.379612\pi\)
\(198\) 4.72444 0.335751
\(199\) −12.0810 −0.856401 −0.428201 0.903684i \(-0.640852\pi\)
−0.428201 + 0.903684i \(0.640852\pi\)
\(200\) 33.5186 2.37012
\(201\) 10.7601 0.758960
\(202\) −13.7975 −0.970788
\(203\) −19.9922 −1.40318
\(204\) 0.106798 0.00747737
\(205\) 1.03913 0.0725759
\(206\) −4.98388 −0.347243
\(207\) 30.0478 2.08847
\(208\) 25.1656 1.74492
\(209\) 1.58861 0.109887
\(210\) −68.2183 −4.70751
\(211\) −0.353078 −0.0243069 −0.0121534 0.999926i \(-0.503869\pi\)
−0.0121534 + 0.999926i \(0.503869\pi\)
\(212\) −0.0773210 −0.00531043
\(213\) 2.29414 0.157192
\(214\) −7.60412 −0.519807
\(215\) −0.0494498 −0.00337245
\(216\) −11.7838 −0.801784
\(217\) −33.8733 −2.29947
\(218\) 19.9945 1.35420
\(219\) −13.8459 −0.935618
\(220\) 0.0539646 0.00363830
\(221\) −13.9668 −0.939506
\(222\) −22.5397 −1.51277
\(223\) 18.1208 1.21346 0.606728 0.794910i \(-0.292482\pi\)
0.606728 + 0.794910i \(0.292482\pi\)
\(224\) 0.432035 0.0288666
\(225\) 53.2523 3.55015
\(226\) −15.5079 −1.03157
\(227\) 7.44033 0.493832 0.246916 0.969037i \(-0.420583\pi\)
0.246916 + 0.969037i \(0.420583\pi\)
\(228\) −0.103719 −0.00686896
\(229\) 17.6697 1.16765 0.583823 0.811881i \(-0.301556\pi\)
0.583823 + 0.811881i \(0.301556\pi\)
\(230\) −38.4187 −2.53325
\(231\) −8.78917 −0.578285
\(232\) 13.1687 0.864568
\(233\) 8.53445 0.559110 0.279555 0.960130i \(-0.409813\pi\)
0.279555 + 0.960130i \(0.409813\pi\)
\(234\) 40.3387 2.63702
\(235\) 11.9267 0.778013
\(236\) −0.256306 −0.0166841
\(237\) 12.4814 0.810756
\(238\) 13.3597 0.865980
\(239\) −0.869775 −0.0562611 −0.0281305 0.999604i \(-0.508955\pi\)
−0.0281305 + 0.999604i \(0.508955\pi\)
\(240\) 44.5369 2.87484
\(241\) −18.2278 −1.17416 −0.587078 0.809531i \(-0.699722\pi\)
−0.587078 + 0.809531i \(0.699722\pi\)
\(242\) 14.7091 0.945534
\(243\) 18.3921 1.17986
\(244\) −0.179466 −0.0114891
\(245\) 47.5457 3.03759
\(246\) 0.978425 0.0623821
\(247\) 13.5641 0.863061
\(248\) 22.3120 1.41681
\(249\) −6.37618 −0.404074
\(250\) −39.2344 −2.48140
\(251\) −7.84856 −0.495397 −0.247698 0.968837i \(-0.579674\pi\)
−0.247698 + 0.968837i \(0.579674\pi\)
\(252\) 0.344708 0.0217146
\(253\) −4.94982 −0.311193
\(254\) 24.2598 1.52219
\(255\) −24.7178 −1.54789
\(256\) −0.424985 −0.0265616
\(257\) −13.8444 −0.863590 −0.431795 0.901972i \(-0.642120\pi\)
−0.431795 + 0.901972i \(0.642120\pi\)
\(258\) −0.0465611 −0.00289876
\(259\) 25.1890 1.56517
\(260\) 0.460767 0.0285755
\(261\) 20.9216 1.29502
\(262\) 8.49794 0.525005
\(263\) 25.3007 1.56011 0.780053 0.625714i \(-0.215192\pi\)
0.780053 + 0.625714i \(0.215192\pi\)
\(264\) 5.78935 0.356310
\(265\) 17.8954 1.09931
\(266\) −12.9745 −0.795518
\(267\) −6.29489 −0.385241
\(268\) 0.0695180 0.00424649
\(269\) −7.08548 −0.432009 −0.216005 0.976392i \(-0.569303\pi\)
−0.216005 + 0.976392i \(0.569303\pi\)
\(270\) 23.9368 1.45675
\(271\) 7.54164 0.458122 0.229061 0.973412i \(-0.426435\pi\)
0.229061 + 0.973412i \(0.426435\pi\)
\(272\) −8.72199 −0.528848
\(273\) −75.0446 −4.54191
\(274\) −11.4772 −0.693364
\(275\) −8.77234 −0.528992
\(276\) 0.323169 0.0194525
\(277\) −32.8036 −1.97098 −0.985490 0.169734i \(-0.945709\pi\)
−0.985490 + 0.169734i \(0.945709\pi\)
\(278\) −2.38835 −0.143244
\(279\) 35.4480 2.12221
\(280\) −50.2162 −3.00099
\(281\) −16.1057 −0.960788 −0.480394 0.877053i \(-0.659506\pi\)
−0.480394 + 0.877053i \(0.659506\pi\)
\(282\) 11.2300 0.668735
\(283\) 11.2287 0.667475 0.333737 0.942666i \(-0.391690\pi\)
0.333737 + 0.942666i \(0.391690\pi\)
\(284\) 0.0148218 0.000879513 0
\(285\) 24.0051 1.42194
\(286\) −6.64506 −0.392931
\(287\) −1.09342 −0.0645428
\(288\) −0.452120 −0.0266414
\(289\) −12.1593 −0.715255
\(290\) −26.7501 −1.57082
\(291\) 1.10169 0.0645820
\(292\) −0.0894543 −0.00523492
\(293\) −9.96356 −0.582077 −0.291039 0.956711i \(-0.594001\pi\)
−0.291039 + 0.956711i \(0.594001\pi\)
\(294\) 44.7682 2.61094
\(295\) 59.3204 3.45377
\(296\) −16.5917 −0.964375
\(297\) 3.08400 0.178952
\(298\) −17.4947 −1.01344
\(299\) −42.2631 −2.44414
\(300\) 0.572737 0.0330670
\(301\) 0.0520336 0.00299917
\(302\) −32.9792 −1.89774
\(303\) −26.8616 −1.54316
\(304\) 8.47051 0.485817
\(305\) 41.5362 2.37836
\(306\) −13.9808 −0.799227
\(307\) 0.141606 0.00808188 0.00404094 0.999992i \(-0.498714\pi\)
0.00404094 + 0.999992i \(0.498714\pi\)
\(308\) −0.0567843 −0.00323559
\(309\) −9.70285 −0.551976
\(310\) −45.3233 −2.57419
\(311\) 23.3642 1.32486 0.662430 0.749124i \(-0.269525\pi\)
0.662430 + 0.749124i \(0.269525\pi\)
\(312\) 49.4312 2.79849
\(313\) 21.9828 1.24254 0.621269 0.783597i \(-0.286617\pi\)
0.621269 + 0.783597i \(0.286617\pi\)
\(314\) 10.3029 0.581426
\(315\) −79.7804 −4.49512
\(316\) 0.0806390 0.00453630
\(317\) −18.1088 −1.01709 −0.508547 0.861034i \(-0.669817\pi\)
−0.508547 + 0.861034i \(0.669817\pi\)
\(318\) 16.8500 0.944902
\(319\) −3.44645 −0.192964
\(320\) 33.0744 1.84891
\(321\) −14.8041 −0.826282
\(322\) 40.4261 2.25286
\(323\) −4.70109 −0.261576
\(324\) 0.0384286 0.00213492
\(325\) −74.9009 −4.15475
\(326\) 5.00393 0.277142
\(327\) 38.9262 2.15262
\(328\) 0.720229 0.0397680
\(329\) −12.5499 −0.691898
\(330\) −11.7601 −0.647374
\(331\) −3.77675 −0.207589 −0.103795 0.994599i \(-0.533098\pi\)
−0.103795 + 0.994599i \(0.533098\pi\)
\(332\) −0.0411947 −0.00226085
\(333\) −26.3599 −1.44452
\(334\) 7.56204 0.413776
\(335\) −16.0895 −0.879063
\(336\) −46.8640 −2.55664
\(337\) −25.9975 −1.41617 −0.708087 0.706125i \(-0.750442\pi\)
−0.708087 + 0.706125i \(0.750442\pi\)
\(338\) −38.4344 −2.09055
\(339\) −30.1916 −1.63978
\(340\) −0.159694 −0.00866065
\(341\) −5.83940 −0.316221
\(342\) 13.5777 0.734196
\(343\) −19.8404 −1.07128
\(344\) −0.0342741 −0.00184793
\(345\) −74.7953 −4.02684
\(346\) 20.9631 1.12699
\(347\) 22.0927 1.18600 0.592999 0.805203i \(-0.297944\pi\)
0.592999 + 0.805203i \(0.297944\pi\)
\(348\) 0.225016 0.0120621
\(349\) −24.8105 −1.32808 −0.664038 0.747699i \(-0.731159\pi\)
−0.664038 + 0.747699i \(0.731159\pi\)
\(350\) 71.6453 3.82960
\(351\) 26.3321 1.40550
\(352\) 0.0744784 0.00396971
\(353\) 32.9268 1.75251 0.876257 0.481844i \(-0.160033\pi\)
0.876257 + 0.481844i \(0.160033\pi\)
\(354\) 55.8550 2.96866
\(355\) −3.43041 −0.182067
\(356\) −0.0406695 −0.00215548
\(357\) 26.0093 1.37656
\(358\) −3.17418 −0.167761
\(359\) −4.80706 −0.253707 −0.126853 0.991921i \(-0.540488\pi\)
−0.126853 + 0.991921i \(0.540488\pi\)
\(360\) 52.5506 2.76966
\(361\) −14.4345 −0.759708
\(362\) 29.4795 1.54941
\(363\) 28.6363 1.50302
\(364\) −0.484842 −0.0254126
\(365\) 20.7036 1.08368
\(366\) 39.1097 2.04430
\(367\) −5.71120 −0.298122 −0.149061 0.988828i \(-0.547625\pi\)
−0.149061 + 0.988828i \(0.547625\pi\)
\(368\) −26.3925 −1.37580
\(369\) 1.14426 0.0595676
\(370\) 33.7035 1.75216
\(371\) −18.8305 −0.977630
\(372\) 0.381249 0.0197668
\(373\) 10.5496 0.546239 0.273119 0.961980i \(-0.411945\pi\)
0.273119 + 0.961980i \(0.411945\pi\)
\(374\) 2.30307 0.119089
\(375\) −76.3833 −3.94442
\(376\) 8.26650 0.426312
\(377\) −29.4269 −1.51556
\(378\) −25.1876 −1.29551
\(379\) −25.2773 −1.29841 −0.649204 0.760614i \(-0.724898\pi\)
−0.649204 + 0.760614i \(0.724898\pi\)
\(380\) 0.155090 0.00795595
\(381\) 47.2301 2.41967
\(382\) 10.0062 0.511962
\(383\) 36.5453 1.86738 0.933690 0.358083i \(-0.116569\pi\)
0.933690 + 0.358083i \(0.116569\pi\)
\(384\) 30.5931 1.56120
\(385\) 13.1424 0.669797
\(386\) −19.1378 −0.974090
\(387\) −0.0544526 −0.00276798
\(388\) 0.00711768 0.000361346 0
\(389\) 18.5474 0.940392 0.470196 0.882562i \(-0.344183\pi\)
0.470196 + 0.882562i \(0.344183\pi\)
\(390\) −100.412 −5.08454
\(391\) 14.6477 0.740767
\(392\) 32.9544 1.66445
\(393\) 16.5442 0.834544
\(394\) −14.5941 −0.735240
\(395\) −18.6634 −0.939056
\(396\) 0.0594241 0.00298618
\(397\) 10.1070 0.507254 0.253627 0.967302i \(-0.418376\pi\)
0.253627 + 0.967302i \(0.418376\pi\)
\(398\) 17.0093 0.852601
\(399\) −25.2594 −1.26455
\(400\) −46.7742 −2.33871
\(401\) 13.1768 0.658017 0.329009 0.944327i \(-0.393286\pi\)
0.329009 + 0.944327i \(0.393286\pi\)
\(402\) −15.1496 −0.755592
\(403\) −49.8586 −2.48363
\(404\) −0.173545 −0.00863420
\(405\) −8.89403 −0.441948
\(406\) 28.1478 1.39695
\(407\) 4.34232 0.215241
\(408\) −17.1321 −0.848164
\(409\) 23.7895 1.17631 0.588157 0.808747i \(-0.299854\pi\)
0.588157 + 0.808747i \(0.299854\pi\)
\(410\) −1.46303 −0.0722539
\(411\) −22.3444 −1.10217
\(412\) −0.0626874 −0.00308839
\(413\) −62.4199 −3.07148
\(414\) −42.3054 −2.07920
\(415\) 9.53425 0.468018
\(416\) 0.635919 0.0311785
\(417\) −4.64975 −0.227699
\(418\) −2.23667 −0.109399
\(419\) 27.2731 1.33238 0.666188 0.745784i \(-0.267925\pi\)
0.666188 + 0.745784i \(0.267925\pi\)
\(420\) −0.858052 −0.0418686
\(421\) −11.0899 −0.540491 −0.270245 0.962791i \(-0.587105\pi\)
−0.270245 + 0.962791i \(0.587105\pi\)
\(422\) 0.497111 0.0241990
\(423\) 13.1333 0.638563
\(424\) 12.4035 0.602366
\(425\) 25.9595 1.25922
\(426\) −3.23001 −0.156495
\(427\) −43.7065 −2.11511
\(428\) −0.0956449 −0.00462317
\(429\) −12.9369 −0.624600
\(430\) 0.0696223 0.00335749
\(431\) 1.00000 0.0481683
\(432\) 16.4439 0.791158
\(433\) 13.2780 0.638102 0.319051 0.947738i \(-0.396636\pi\)
0.319051 + 0.947738i \(0.396636\pi\)
\(434\) 47.6915 2.28926
\(435\) −52.0784 −2.49697
\(436\) 0.251491 0.0120442
\(437\) −14.2254 −0.680493
\(438\) 19.4941 0.931466
\(439\) 32.3962 1.54619 0.773093 0.634293i \(-0.218709\pi\)
0.773093 + 0.634293i \(0.218709\pi\)
\(440\) −8.65676 −0.412695
\(441\) 52.3559 2.49314
\(442\) 19.6643 0.935338
\(443\) −10.3828 −0.493302 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(444\) −0.283506 −0.0134546
\(445\) 9.41269 0.446204
\(446\) −25.5129 −1.20807
\(447\) −34.0596 −1.61096
\(448\) −34.8026 −1.64427
\(449\) −2.65069 −0.125094 −0.0625468 0.998042i \(-0.519922\pi\)
−0.0625468 + 0.998042i \(0.519922\pi\)
\(450\) −74.9759 −3.53440
\(451\) −0.188495 −0.00887589
\(452\) −0.195059 −0.00917482
\(453\) −64.2055 −3.01664
\(454\) −10.4755 −0.491641
\(455\) 112.213 5.26065
\(456\) 16.6381 0.779151
\(457\) 24.0000 1.12267 0.561336 0.827588i \(-0.310288\pi\)
0.561336 + 0.827588i \(0.310288\pi\)
\(458\) −24.8778 −1.16247
\(459\) −9.12630 −0.425979
\(460\) −0.483231 −0.0225308
\(461\) 21.5533 1.00384 0.501919 0.864915i \(-0.332628\pi\)
0.501919 + 0.864915i \(0.332628\pi\)
\(462\) 12.3746 0.575719
\(463\) −4.69695 −0.218286 −0.109143 0.994026i \(-0.534811\pi\)
−0.109143 + 0.994026i \(0.534811\pi\)
\(464\) −18.3765 −0.853109
\(465\) −88.2375 −4.09192
\(466\) −12.0160 −0.556629
\(467\) 1.73937 0.0804885 0.0402443 0.999190i \(-0.487186\pi\)
0.0402443 + 0.999190i \(0.487186\pi\)
\(468\) 0.507381 0.0234537
\(469\) 16.9302 0.781763
\(470\) −16.7921 −0.774560
\(471\) 20.0581 0.924231
\(472\) 41.1155 1.89249
\(473\) 0.00897006 0.000412444 0
\(474\) −17.5731 −0.807158
\(475\) −25.2110 −1.15676
\(476\) 0.168039 0.00770204
\(477\) 19.7059 0.902270
\(478\) 1.22459 0.0560114
\(479\) −16.7558 −0.765593 −0.382797 0.923833i \(-0.625039\pi\)
−0.382797 + 0.923833i \(0.625039\pi\)
\(480\) 1.12542 0.0513682
\(481\) 37.0760 1.69052
\(482\) 25.6636 1.16895
\(483\) 78.7034 3.58113
\(484\) 0.185011 0.00840959
\(485\) −1.64734 −0.0748019
\(486\) −25.8950 −1.17462
\(487\) 5.58275 0.252978 0.126489 0.991968i \(-0.459629\pi\)
0.126489 + 0.991968i \(0.459629\pi\)
\(488\) 28.7891 1.30322
\(489\) 9.74188 0.440543
\(490\) −66.9415 −3.02411
\(491\) −22.2316 −1.00330 −0.501649 0.865072i \(-0.667273\pi\)
−0.501649 + 0.865072i \(0.667273\pi\)
\(492\) 0.0123067 0.000554827 0
\(493\) 10.1989 0.459335
\(494\) −19.0974 −0.859232
\(495\) −13.7533 −0.618166
\(496\) −31.1358 −1.39804
\(497\) 3.60965 0.161915
\(498\) 8.97727 0.402281
\(499\) −17.4266 −0.780123 −0.390062 0.920789i \(-0.627546\pi\)
−0.390062 + 0.920789i \(0.627546\pi\)
\(500\) −0.493491 −0.0220696
\(501\) 14.7221 0.657736
\(502\) 11.0503 0.493199
\(503\) 30.1617 1.34484 0.672422 0.740168i \(-0.265254\pi\)
0.672422 + 0.740168i \(0.265254\pi\)
\(504\) −55.2965 −2.46310
\(505\) 40.1659 1.78736
\(506\) 6.96904 0.309812
\(507\) −74.8258 −3.32313
\(508\) 0.305140 0.0135384
\(509\) 30.4592 1.35008 0.675041 0.737780i \(-0.264126\pi\)
0.675041 + 0.737780i \(0.264126\pi\)
\(510\) 34.8011 1.54102
\(511\) −21.7854 −0.963729
\(512\) 22.9206 1.01296
\(513\) 8.86316 0.391318
\(514\) 19.4921 0.859758
\(515\) 14.5086 0.639325
\(516\) −0.000585646 0 −2.57816e−5 0
\(517\) −2.16347 −0.0951494
\(518\) −35.4645 −1.55822
\(519\) 40.8120 1.79145
\(520\) −73.9140 −3.24134
\(521\) −28.4023 −1.24433 −0.622164 0.782887i \(-0.713746\pi\)
−0.622164 + 0.782887i \(0.713746\pi\)
\(522\) −29.4564 −1.28927
\(523\) −2.25695 −0.0986897 −0.0493449 0.998782i \(-0.515713\pi\)
−0.0493449 + 0.998782i \(0.515713\pi\)
\(524\) 0.106887 0.00466940
\(525\) 139.482 6.08751
\(526\) −35.6218 −1.55318
\(527\) 17.2802 0.752738
\(528\) −8.07887 −0.351588
\(529\) 21.3236 0.927114
\(530\) −25.1957 −1.09443
\(531\) 65.3217 2.83472
\(532\) −0.163194 −0.00707534
\(533\) −1.60943 −0.0697121
\(534\) 8.86282 0.383532
\(535\) 22.1364 0.957039
\(536\) −11.1518 −0.481683
\(537\) −6.17964 −0.266671
\(538\) 9.97592 0.430092
\(539\) −8.62467 −0.371491
\(540\) 0.301078 0.0129564
\(541\) 1.78328 0.0766692 0.0383346 0.999265i \(-0.487795\pi\)
0.0383346 + 0.999265i \(0.487795\pi\)
\(542\) −10.6182 −0.456089
\(543\) 57.3920 2.46293
\(544\) −0.220400 −0.00944956
\(545\) −58.2060 −2.49327
\(546\) 105.658 4.52175
\(547\) 24.8280 1.06157 0.530785 0.847506i \(-0.321897\pi\)
0.530785 + 0.847506i \(0.321897\pi\)
\(548\) −0.144361 −0.00616679
\(549\) 45.7383 1.95207
\(550\) 12.3509 0.526645
\(551\) −9.90483 −0.421960
\(552\) −51.8412 −2.20651
\(553\) 19.6385 0.835116
\(554\) 46.1855 1.96223
\(555\) 65.6155 2.78522
\(556\) −0.0300407 −0.00127401
\(557\) −4.79171 −0.203031 −0.101516 0.994834i \(-0.532369\pi\)
−0.101516 + 0.994834i \(0.532369\pi\)
\(558\) −49.9086 −2.11280
\(559\) 0.0765891 0.00323937
\(560\) 70.0752 2.96122
\(561\) 4.48373 0.189303
\(562\) 22.6759 0.956525
\(563\) 9.97703 0.420482 0.210241 0.977650i \(-0.432575\pi\)
0.210241 + 0.977650i \(0.432575\pi\)
\(564\) 0.141251 0.00594774
\(565\) 45.1452 1.89927
\(566\) −15.8093 −0.664513
\(567\) 9.35876 0.393031
\(568\) −2.37765 −0.0997639
\(569\) −37.1026 −1.55542 −0.777711 0.628622i \(-0.783619\pi\)
−0.777711 + 0.628622i \(0.783619\pi\)
\(570\) −33.7977 −1.41563
\(571\) 23.4808 0.982640 0.491320 0.870979i \(-0.336514\pi\)
0.491320 + 0.870979i \(0.336514\pi\)
\(572\) −0.0835818 −0.00349473
\(573\) 19.4806 0.813812
\(574\) 1.53947 0.0642564
\(575\) 78.5527 3.27587
\(576\) 36.4205 1.51752
\(577\) 5.30944 0.221035 0.110517 0.993874i \(-0.464749\pi\)
0.110517 + 0.993874i \(0.464749\pi\)
\(578\) 17.1196 0.712082
\(579\) −37.2584 −1.54841
\(580\) −0.336464 −0.0139709
\(581\) −10.0324 −0.416215
\(582\) −1.55111 −0.0642954
\(583\) −3.24618 −0.134443
\(584\) 14.3498 0.593801
\(585\) −117.430 −4.85514
\(586\) 14.0281 0.579495
\(587\) −33.5260 −1.38377 −0.691884 0.722009i \(-0.743219\pi\)
−0.691884 + 0.722009i \(0.743219\pi\)
\(588\) 0.563096 0.0232217
\(589\) −16.7820 −0.691489
\(590\) −83.5195 −3.43844
\(591\) −28.4125 −1.16873
\(592\) 23.1533 0.951594
\(593\) 21.4972 0.882783 0.441392 0.897315i \(-0.354485\pi\)
0.441392 + 0.897315i \(0.354485\pi\)
\(594\) −4.34208 −0.178158
\(595\) −38.8914 −1.59439
\(596\) −0.220049 −0.00901357
\(597\) 33.1146 1.35529
\(598\) 59.5038 2.43329
\(599\) −10.1885 −0.416290 −0.208145 0.978098i \(-0.566743\pi\)
−0.208145 + 0.978098i \(0.566743\pi\)
\(600\) −91.8758 −3.75081
\(601\) 22.9830 0.937496 0.468748 0.883332i \(-0.344705\pi\)
0.468748 + 0.883332i \(0.344705\pi\)
\(602\) −0.0732601 −0.00298586
\(603\) −17.7172 −0.721502
\(604\) −0.414814 −0.0168785
\(605\) −42.8196 −1.74086
\(606\) 37.8195 1.53631
\(607\) −37.3345 −1.51536 −0.757680 0.652627i \(-0.773667\pi\)
−0.757680 + 0.652627i \(0.773667\pi\)
\(608\) 0.214045 0.00868067
\(609\) 54.7995 2.22059
\(610\) −58.4804 −2.36780
\(611\) −18.4724 −0.747313
\(612\) −0.175850 −0.00710833
\(613\) −34.0902 −1.37689 −0.688446 0.725288i \(-0.741707\pi\)
−0.688446 + 0.725288i \(0.741707\pi\)
\(614\) −0.199372 −0.00804602
\(615\) −2.84830 −0.114854
\(616\) 9.10908 0.367015
\(617\) −2.96312 −0.119291 −0.0596454 0.998220i \(-0.518997\pi\)
−0.0596454 + 0.998220i \(0.518997\pi\)
\(618\) 13.6610 0.549527
\(619\) −17.2928 −0.695056 −0.347528 0.937670i \(-0.612979\pi\)
−0.347528 + 0.937670i \(0.612979\pi\)
\(620\) −0.570078 −0.0228949
\(621\) −27.6159 −1.10819
\(622\) −32.8953 −1.31898
\(623\) −9.90451 −0.396816
\(624\) −68.9798 −2.76140
\(625\) 55.2205 2.20882
\(626\) −30.9504 −1.23703
\(627\) −4.35446 −0.173900
\(628\) 0.129590 0.00517121
\(629\) −12.8500 −0.512362
\(630\) 112.326 4.47517
\(631\) −6.26408 −0.249369 −0.124685 0.992196i \(-0.539792\pi\)
−0.124685 + 0.992196i \(0.539792\pi\)
\(632\) −12.9357 −0.514556
\(633\) 0.967800 0.0384666
\(634\) 25.4961 1.01258
\(635\) −70.6227 −2.80258
\(636\) 0.211940 0.00840397
\(637\) −73.6401 −2.91773
\(638\) 4.85240 0.192108
\(639\) −3.77746 −0.149434
\(640\) −45.7455 −1.80825
\(641\) 29.3399 1.15886 0.579429 0.815023i \(-0.303276\pi\)
0.579429 + 0.815023i \(0.303276\pi\)
\(642\) 20.8432 0.822616
\(643\) 10.9848 0.433199 0.216599 0.976261i \(-0.430503\pi\)
0.216599 + 0.976261i \(0.430503\pi\)
\(644\) 0.508481 0.0200369
\(645\) 0.135544 0.00533704
\(646\) 6.61885 0.260415
\(647\) −8.65498 −0.340262 −0.170131 0.985421i \(-0.554419\pi\)
−0.170131 + 0.985421i \(0.554419\pi\)
\(648\) −6.16453 −0.242166
\(649\) −10.7606 −0.422389
\(650\) 105.456 4.13632
\(651\) 92.8480 3.63900
\(652\) 0.0629395 0.00246490
\(653\) −6.64752 −0.260137 −0.130069 0.991505i \(-0.541520\pi\)
−0.130069 + 0.991505i \(0.541520\pi\)
\(654\) −54.8057 −2.14307
\(655\) −24.7384 −0.966608
\(656\) −1.00506 −0.0392410
\(657\) 22.7982 0.889441
\(658\) 17.6695 0.688828
\(659\) −17.0334 −0.663526 −0.331763 0.943363i \(-0.607643\pi\)
−0.331763 + 0.943363i \(0.607643\pi\)
\(660\) −0.147919 −0.00575775
\(661\) 28.0538 1.09117 0.545583 0.838057i \(-0.316308\pi\)
0.545583 + 0.838057i \(0.316308\pi\)
\(662\) 5.31743 0.206668
\(663\) 38.2835 1.48681
\(664\) 6.60827 0.256450
\(665\) 37.7701 1.46466
\(666\) 37.1132 1.43811
\(667\) 30.8616 1.19497
\(668\) 0.0951155 0.00368013
\(669\) −49.6697 −1.92034
\(670\) 22.6530 0.875162
\(671\) −7.53455 −0.290868
\(672\) −1.18423 −0.0456825
\(673\) −5.81377 −0.224104 −0.112052 0.993702i \(-0.535742\pi\)
−0.112052 + 0.993702i \(0.535742\pi\)
\(674\) 36.6029 1.40989
\(675\) −48.9424 −1.88380
\(676\) −0.483429 −0.0185934
\(677\) 25.1421 0.966289 0.483144 0.875541i \(-0.339495\pi\)
0.483144 + 0.875541i \(0.339495\pi\)
\(678\) 42.5079 1.63251
\(679\) 1.73342 0.0665224
\(680\) 25.6174 0.982384
\(681\) −20.3942 −0.781509
\(682\) 8.22152 0.314818
\(683\) −33.4105 −1.27842 −0.639208 0.769034i \(-0.720738\pi\)
−0.639208 + 0.769034i \(0.720738\pi\)
\(684\) 0.170780 0.00652995
\(685\) 33.4114 1.27658
\(686\) 27.9340 1.06653
\(687\) −48.4333 −1.84785
\(688\) 0.0478285 0.00182344
\(689\) −27.7169 −1.05593
\(690\) 105.307 4.00898
\(691\) −31.5283 −1.19939 −0.599697 0.800227i \(-0.704712\pi\)
−0.599697 + 0.800227i \(0.704712\pi\)
\(692\) 0.263675 0.0100234
\(693\) 14.4719 0.549744
\(694\) −31.1051 −1.18073
\(695\) 6.95272 0.263732
\(696\) −36.0959 −1.36821
\(697\) 0.557803 0.0211283
\(698\) 34.9317 1.32218
\(699\) −23.3933 −0.884815
\(700\) 0.901156 0.0340605
\(701\) 43.1201 1.62862 0.814312 0.580428i \(-0.197115\pi\)
0.814312 + 0.580428i \(0.197115\pi\)
\(702\) −37.0740 −1.39927
\(703\) 12.4795 0.470672
\(704\) −5.99960 −0.226119
\(705\) −32.6916 −1.23124
\(706\) −46.3588 −1.74474
\(707\) −42.2646 −1.58952
\(708\) 0.702546 0.0264033
\(709\) 28.8045 1.08178 0.540888 0.841095i \(-0.318088\pi\)
0.540888 + 0.841095i \(0.318088\pi\)
\(710\) 4.82981 0.181260
\(711\) −20.5515 −0.770741
\(712\) 6.52402 0.244498
\(713\) 52.2895 1.95826
\(714\) −36.6195 −1.37045
\(715\) 19.3445 0.723442
\(716\) −0.0399249 −0.00149206
\(717\) 2.38409 0.0890354
\(718\) 6.76804 0.252581
\(719\) −2.34460 −0.0874390 −0.0437195 0.999044i \(-0.513921\pi\)
−0.0437195 + 0.999044i \(0.513921\pi\)
\(720\) −73.3329 −2.73296
\(721\) −15.2667 −0.568560
\(722\) 20.3228 0.756337
\(723\) 49.9631 1.85815
\(724\) 0.370794 0.0137804
\(725\) 54.6946 2.03131
\(726\) −40.3181 −1.49635
\(727\) −40.8010 −1.51323 −0.756613 0.653862i \(-0.773147\pi\)
−0.756613 + 0.653862i \(0.773147\pi\)
\(728\) 77.7761 2.88257
\(729\) −43.9036 −1.62606
\(730\) −29.1494 −1.07887
\(731\) −0.0265446 −0.000981787 0
\(732\) 0.491924 0.0181820
\(733\) −36.1463 −1.33509 −0.667547 0.744568i \(-0.732655\pi\)
−0.667547 + 0.744568i \(0.732655\pi\)
\(734\) 8.04102 0.296799
\(735\) −130.325 −4.80710
\(736\) −0.666924 −0.0245831
\(737\) 2.91859 0.107508
\(738\) −1.61104 −0.0593033
\(739\) 7.44981 0.274046 0.137023 0.990568i \(-0.456247\pi\)
0.137023 + 0.990568i \(0.456247\pi\)
\(740\) 0.423923 0.0155837
\(741\) −37.1797 −1.36583
\(742\) 26.5122 0.973292
\(743\) 11.0337 0.404786 0.202393 0.979304i \(-0.435128\pi\)
0.202393 + 0.979304i \(0.435128\pi\)
\(744\) −61.1581 −2.24217
\(745\) 50.9289 1.86589
\(746\) −14.8532 −0.543815
\(747\) 10.4988 0.384131
\(748\) 0.0289681 0.00105918
\(749\) −23.2930 −0.851108
\(750\) 107.543 3.92692
\(751\) 16.2487 0.592922 0.296461 0.955045i \(-0.404193\pi\)
0.296461 + 0.955045i \(0.404193\pi\)
\(752\) −11.5357 −0.420662
\(753\) 21.5132 0.783986
\(754\) 41.4312 1.50884
\(755\) 96.0059 3.49401
\(756\) −0.316810 −0.0115223
\(757\) 7.45713 0.271034 0.135517 0.990775i \(-0.456730\pi\)
0.135517 + 0.990775i \(0.456730\pi\)
\(758\) 35.5889 1.29265
\(759\) 13.5677 0.492475
\(760\) −24.8788 −0.902450
\(761\) −48.9997 −1.77624 −0.888120 0.459612i \(-0.847988\pi\)
−0.888120 + 0.459612i \(0.847988\pi\)
\(762\) −66.4971 −2.40893
\(763\) 61.2473 2.21730
\(764\) 0.125858 0.00455340
\(765\) 40.6994 1.47149
\(766\) −51.4536 −1.85909
\(767\) −91.8769 −3.31748
\(768\) 1.16490 0.0420347
\(769\) 45.9000 1.65519 0.827597 0.561322i \(-0.189707\pi\)
0.827597 + 0.561322i \(0.189707\pi\)
\(770\) −18.5036 −0.666825
\(771\) 37.9481 1.36667
\(772\) −0.240716 −0.00866357
\(773\) −26.8764 −0.966676 −0.483338 0.875434i \(-0.660576\pi\)
−0.483338 + 0.875434i \(0.660576\pi\)
\(774\) 0.0766659 0.00275570
\(775\) 92.6702 3.32881
\(776\) −1.14179 −0.0409877
\(777\) −69.0439 −2.47694
\(778\) −26.1136 −0.936220
\(779\) −0.541720 −0.0194091
\(780\) −1.26298 −0.0452219
\(781\) 0.622267 0.0222665
\(782\) −20.6231 −0.737480
\(783\) −19.2284 −0.687166
\(784\) −45.9868 −1.64239
\(785\) −29.9928 −1.07049
\(786\) −23.2932 −0.830841
\(787\) 48.2008 1.71817 0.859087 0.511830i \(-0.171032\pi\)
0.859087 + 0.511830i \(0.171032\pi\)
\(788\) −0.183565 −0.00653923
\(789\) −69.3502 −2.46893
\(790\) 26.2769 0.934889
\(791\) −47.5041 −1.68905
\(792\) −9.53254 −0.338724
\(793\) −64.3323 −2.28451
\(794\) −14.2300 −0.505003
\(795\) −49.0521 −1.73970
\(796\) 0.213944 0.00758305
\(797\) −22.2963 −0.789775 −0.394888 0.918729i \(-0.629216\pi\)
−0.394888 + 0.918729i \(0.629216\pi\)
\(798\) 35.5636 1.25894
\(799\) 6.40224 0.226495
\(800\) −1.18196 −0.0417885
\(801\) 10.3650 0.366228
\(802\) −18.5521 −0.655097
\(803\) −3.75558 −0.132532
\(804\) −0.190552 −0.00672024
\(805\) −117.684 −4.14783
\(806\) 70.1978 2.47261
\(807\) 19.4216 0.683672
\(808\) 27.8393 0.979384
\(809\) 21.9715 0.772477 0.386239 0.922399i \(-0.373774\pi\)
0.386239 + 0.922399i \(0.373774\pi\)
\(810\) 12.5223 0.439987
\(811\) 39.4534 1.38540 0.692698 0.721228i \(-0.256422\pi\)
0.692698 + 0.721228i \(0.256422\pi\)
\(812\) 0.354044 0.0124245
\(813\) −20.6719 −0.724996
\(814\) −6.11372 −0.214286
\(815\) −14.5669 −0.510258
\(816\) 23.9073 0.836924
\(817\) 0.0257792 0.000901901 0
\(818\) −33.4941 −1.17109
\(819\) 123.566 4.31774
\(820\) −0.0184020 −0.000642627 0
\(821\) −15.8584 −0.553463 −0.276732 0.960947i \(-0.589251\pi\)
−0.276732 + 0.960947i \(0.589251\pi\)
\(822\) 31.4595 1.09728
\(823\) −32.6788 −1.13911 −0.569556 0.821953i \(-0.692885\pi\)
−0.569556 + 0.821953i \(0.692885\pi\)
\(824\) 10.0560 0.350318
\(825\) 24.0453 0.837151
\(826\) 87.8835 3.05786
\(827\) 19.7152 0.685566 0.342783 0.939415i \(-0.388630\pi\)
0.342783 + 0.939415i \(0.388630\pi\)
\(828\) −0.532119 −0.0184924
\(829\) −8.57402 −0.297788 −0.148894 0.988853i \(-0.547571\pi\)
−0.148894 + 0.988853i \(0.547571\pi\)
\(830\) −13.4236 −0.465941
\(831\) 89.9161 3.11916
\(832\) −51.2264 −1.77596
\(833\) 25.5225 0.884302
\(834\) 6.54656 0.226689
\(835\) −22.0139 −0.761821
\(836\) −0.0281329 −0.000972997 0
\(837\) −32.5791 −1.12610
\(838\) −38.3988 −1.32646
\(839\) −40.1585 −1.38643 −0.693213 0.720733i \(-0.743805\pi\)
−0.693213 + 0.720733i \(0.743805\pi\)
\(840\) 137.645 4.74919
\(841\) −7.51173 −0.259025
\(842\) 15.6140 0.538092
\(843\) 44.1465 1.52049
\(844\) 0.00625268 0.000215226 0
\(845\) 111.886 3.84901
\(846\) −18.4909 −0.635730
\(847\) 45.0569 1.54817
\(848\) −17.3087 −0.594383
\(849\) −30.7782 −1.05631
\(850\) −36.5493 −1.25363
\(851\) −38.8837 −1.33292
\(852\) −0.0406272 −0.00139187
\(853\) 46.8346 1.60359 0.801793 0.597602i \(-0.203880\pi\)
0.801793 + 0.597602i \(0.203880\pi\)
\(854\) 61.5361 2.10572
\(855\) −39.5260 −1.35176
\(856\) 15.3429 0.524410
\(857\) 34.1142 1.16532 0.582659 0.812716i \(-0.302012\pi\)
0.582659 + 0.812716i \(0.302012\pi\)
\(858\) 18.2144 0.621829
\(859\) −14.3320 −0.489000 −0.244500 0.969649i \(-0.578624\pi\)
−0.244500 + 0.969649i \(0.578624\pi\)
\(860\) 0.000875711 0 2.98615e−5 0
\(861\) 2.99712 0.102142
\(862\) −1.40794 −0.0479546
\(863\) 33.3755 1.13612 0.568058 0.822989i \(-0.307695\pi\)
0.568058 + 0.822989i \(0.307695\pi\)
\(864\) 0.415528 0.0141366
\(865\) −61.0258 −2.07494
\(866\) −18.6947 −0.635271
\(867\) 33.3292 1.13192
\(868\) 0.599865 0.0203607
\(869\) 3.38548 0.114845
\(870\) 73.3231 2.48589
\(871\) 24.9198 0.844376
\(872\) −40.3431 −1.36619
\(873\) −1.81400 −0.0613945
\(874\) 20.0285 0.677473
\(875\) −120.183 −4.06293
\(876\) 0.245198 0.00828447
\(877\) −22.2208 −0.750344 −0.375172 0.926955i \(-0.622416\pi\)
−0.375172 + 0.926955i \(0.622416\pi\)
\(878\) −45.6119 −1.53933
\(879\) 27.3105 0.921161
\(880\) 12.0803 0.407225
\(881\) −8.14558 −0.274431 −0.137216 0.990541i \(-0.543815\pi\)
−0.137216 + 0.990541i \(0.543815\pi\)
\(882\) −73.7138 −2.48207
\(883\) −30.0987 −1.01290 −0.506451 0.862269i \(-0.669043\pi\)
−0.506451 + 0.862269i \(0.669043\pi\)
\(884\) 0.247339 0.00831890
\(885\) −162.600 −5.46573
\(886\) 14.6184 0.491113
\(887\) −9.26328 −0.311031 −0.155515 0.987833i \(-0.549704\pi\)
−0.155515 + 0.987833i \(0.549704\pi\)
\(888\) 45.4786 1.52616
\(889\) 74.3128 2.49237
\(890\) −13.2525 −0.444225
\(891\) 1.61335 0.0540494
\(892\) −0.320902 −0.0107446
\(893\) −6.21765 −0.208066
\(894\) 47.9538 1.60381
\(895\) 9.24036 0.308871
\(896\) 48.1358 1.60810
\(897\) 115.845 3.86795
\(898\) 3.73201 0.124539
\(899\) 36.4080 1.21428
\(900\) −0.943050 −0.0314350
\(901\) 9.60624 0.320030
\(902\) 0.265390 0.00883651
\(903\) −0.142626 −0.00474630
\(904\) 31.2905 1.04071
\(905\) −85.8178 −2.85268
\(906\) 90.3975 3.00325
\(907\) −8.63333 −0.286665 −0.143332 0.989675i \(-0.545782\pi\)
−0.143332 + 0.989675i \(0.545782\pi\)
\(908\) −0.131761 −0.00437266
\(909\) 44.2294 1.46700
\(910\) −157.990 −5.23731
\(911\) −27.6270 −0.915325 −0.457662 0.889126i \(-0.651313\pi\)
−0.457662 + 0.889126i \(0.651313\pi\)
\(912\) −23.2180 −0.768825
\(913\) −1.72949 −0.0572376
\(914\) −33.7905 −1.11769
\(915\) −113.852 −3.76385
\(916\) −0.312914 −0.0103390
\(917\) 26.0310 0.859619
\(918\) 12.8493 0.424089
\(919\) −11.9774 −0.395099 −0.197549 0.980293i \(-0.563298\pi\)
−0.197549 + 0.980293i \(0.563298\pi\)
\(920\) 77.5177 2.55568
\(921\) −0.388148 −0.0127899
\(922\) −30.3457 −0.999383
\(923\) 5.31311 0.174883
\(924\) 0.155648 0.00512045
\(925\) −68.9117 −2.26580
\(926\) 6.61302 0.217317
\(927\) 15.9764 0.524733
\(928\) −0.464365 −0.0152435
\(929\) 51.8723 1.70188 0.850938 0.525266i \(-0.176034\pi\)
0.850938 + 0.525266i \(0.176034\pi\)
\(930\) 124.233 4.07376
\(931\) −24.7866 −0.812348
\(932\) −0.151137 −0.00495067
\(933\) −64.0421 −2.09664
\(934\) −2.44893 −0.0801314
\(935\) −6.70448 −0.219260
\(936\) −81.3918 −2.66037
\(937\) 17.6441 0.576407 0.288203 0.957569i \(-0.406942\pi\)
0.288203 + 0.957569i \(0.406942\pi\)
\(938\) −23.8367 −0.778294
\(939\) −60.2556 −1.96637
\(940\) −0.211211 −0.00688895
\(941\) 14.8231 0.483218 0.241609 0.970374i \(-0.422325\pi\)
0.241609 + 0.970374i \(0.422325\pi\)
\(942\) −28.2406 −0.920130
\(943\) 1.68790 0.0549655
\(944\) −57.3754 −1.86741
\(945\) 73.3236 2.38522
\(946\) −0.0126293 −0.000410614 0
\(947\) 54.5890 1.77390 0.886952 0.461862i \(-0.152818\pi\)
0.886952 + 0.461862i \(0.152818\pi\)
\(948\) −0.221035 −0.00717888
\(949\) −32.0663 −1.04092
\(950\) 35.4955 1.15163
\(951\) 49.6370 1.60959
\(952\) −26.9560 −0.873648
\(953\) 26.2485 0.850273 0.425136 0.905129i \(-0.360226\pi\)
0.425136 + 0.905129i \(0.360226\pi\)
\(954\) −27.7447 −0.898267
\(955\) −29.1291 −0.942595
\(956\) 0.0154029 0.000498166 0
\(957\) 9.44687 0.305374
\(958\) 23.5912 0.762196
\(959\) −35.1571 −1.13528
\(960\) −90.6583 −2.92598
\(961\) 30.6869 0.989901
\(962\) −52.2008 −1.68302
\(963\) 24.3759 0.785501
\(964\) 0.322798 0.0103966
\(965\) 55.7122 1.79344
\(966\) −110.810 −3.56524
\(967\) −33.7099 −1.08404 −0.542019 0.840366i \(-0.682340\pi\)
−0.542019 + 0.840366i \(0.682340\pi\)
\(968\) −29.6786 −0.953906
\(969\) 12.8859 0.413954
\(970\) 2.31935 0.0744700
\(971\) −13.6275 −0.437326 −0.218663 0.975800i \(-0.570170\pi\)
−0.218663 + 0.975800i \(0.570170\pi\)
\(972\) −0.325708 −0.0104471
\(973\) −7.31601 −0.234541
\(974\) −7.86016 −0.251856
\(975\) 205.306 6.57507
\(976\) −40.1743 −1.28595
\(977\) −2.75551 −0.0881565 −0.0440782 0.999028i \(-0.514035\pi\)
−0.0440782 + 0.999028i \(0.514035\pi\)
\(978\) −13.7160 −0.438588
\(979\) −1.70744 −0.0545699
\(980\) −0.841992 −0.0268965
\(981\) −64.0946 −2.04638
\(982\) 31.3007 0.998845
\(983\) −16.1627 −0.515510 −0.257755 0.966210i \(-0.582983\pi\)
−0.257755 + 0.966210i \(0.582983\pi\)
\(984\) −1.97418 −0.0629345
\(985\) 42.4849 1.35368
\(986\) −14.3594 −0.457297
\(987\) 34.3998 1.09496
\(988\) −0.240207 −0.00764202
\(989\) −0.0803232 −0.00255413
\(990\) 19.3638 0.615423
\(991\) 24.6281 0.782336 0.391168 0.920319i \(-0.372071\pi\)
0.391168 + 0.920319i \(0.372071\pi\)
\(992\) −0.786783 −0.0249804
\(993\) 10.3522 0.328518
\(994\) −5.08217 −0.161197
\(995\) −49.5159 −1.56976
\(996\) 0.112916 0.00357789
\(997\) 14.9726 0.474186 0.237093 0.971487i \(-0.423805\pi\)
0.237093 + 0.971487i \(0.423805\pi\)
\(998\) 24.5356 0.776662
\(999\) 24.2266 0.766495
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 431.2.a.f.1.8 24
3.2 odd 2 3879.2.a.r.1.17 24
4.3 odd 2 6896.2.a.w.1.22 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.f.1.8 24 1.1 even 1 trivial
3879.2.a.r.1.17 24 3.2 odd 2
6896.2.a.w.1.22 24 4.3 odd 2