Properties

Label 431.2.a.f.1.9
Level $431$
Weight $2$
Character 431.1
Self dual yes
Analytic conductor $3.442$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [431,2,Mod(1,431)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("431.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 431.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.44155232712\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Character \(\chi\) \(=\) 431.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.762826 q^{2} -0.504361 q^{3} -1.41810 q^{4} -3.90060 q^{5} +0.384740 q^{6} +0.799887 q^{7} +2.60741 q^{8} -2.74562 q^{9} +2.97548 q^{10} -2.94608 q^{11} +0.715233 q^{12} +7.03930 q^{13} -0.610175 q^{14} +1.96731 q^{15} +0.847190 q^{16} +0.393953 q^{17} +2.09443 q^{18} -4.94861 q^{19} +5.53142 q^{20} -0.403432 q^{21} +2.24735 q^{22} +7.39242 q^{23} -1.31508 q^{24} +10.2147 q^{25} -5.36976 q^{26} +2.89787 q^{27} -1.13432 q^{28} -0.760089 q^{29} -1.50072 q^{30} +5.60540 q^{31} -5.86108 q^{32} +1.48589 q^{33} -0.300517 q^{34} -3.12004 q^{35} +3.89355 q^{36} +7.29977 q^{37} +3.77493 q^{38} -3.55035 q^{39} -10.1705 q^{40} -10.8923 q^{41} +0.307749 q^{42} +2.29761 q^{43} +4.17782 q^{44} +10.7096 q^{45} -5.63913 q^{46} +2.26168 q^{47} -0.427290 q^{48} -6.36018 q^{49} -7.79201 q^{50} -0.198694 q^{51} -9.98241 q^{52} +0.453054 q^{53} -2.21057 q^{54} +11.4915 q^{55} +2.08564 q^{56} +2.49589 q^{57} +0.579816 q^{58} +12.8185 q^{59} -2.78984 q^{60} -1.86472 q^{61} -4.27595 q^{62} -2.19619 q^{63} +2.77661 q^{64} -27.4575 q^{65} -1.13347 q^{66} -12.3240 q^{67} -0.558663 q^{68} -3.72845 q^{69} +2.38005 q^{70} +7.05470 q^{71} -7.15896 q^{72} +15.1804 q^{73} -5.56846 q^{74} -5.15188 q^{75} +7.01760 q^{76} -2.35653 q^{77} +2.70830 q^{78} -0.886279 q^{79} -3.30455 q^{80} +6.77529 q^{81} +8.30893 q^{82} +4.38957 q^{83} +0.572106 q^{84} -1.53665 q^{85} -1.75268 q^{86} +0.383359 q^{87} -7.68165 q^{88} +3.93084 q^{89} -8.16953 q^{90} +5.63065 q^{91} -10.4832 q^{92} -2.82715 q^{93} -1.72527 q^{94} +19.3025 q^{95} +2.95610 q^{96} +18.8451 q^{97} +4.85171 q^{98} +8.08881 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} + q^{3} + 33 q^{4} + 13 q^{5} + 17 q^{6} + 8 q^{7} - 3 q^{8} + 31 q^{9} - 6 q^{10} + 15 q^{11} - 12 q^{12} + 11 q^{13} + 16 q^{14} - 5 q^{15} + 43 q^{16} + 6 q^{17} - 8 q^{18} + 18 q^{19}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.762826 −0.539400 −0.269700 0.962944i \(-0.586924\pi\)
−0.269700 + 0.962944i \(0.586924\pi\)
\(3\) −0.504361 −0.291193 −0.145597 0.989344i \(-0.546510\pi\)
−0.145597 + 0.989344i \(0.546510\pi\)
\(4\) −1.41810 −0.709048
\(5\) −3.90060 −1.74440 −0.872200 0.489149i \(-0.837307\pi\)
−0.872200 + 0.489149i \(0.837307\pi\)
\(6\) 0.384740 0.157069
\(7\) 0.799887 0.302329 0.151164 0.988509i \(-0.451698\pi\)
0.151164 + 0.988509i \(0.451698\pi\)
\(8\) 2.60741 0.921860
\(9\) −2.74562 −0.915207
\(10\) 2.97548 0.940929
\(11\) −2.94608 −0.888276 −0.444138 0.895958i \(-0.646490\pi\)
−0.444138 + 0.895958i \(0.646490\pi\)
\(12\) 0.715233 0.206470
\(13\) 7.03930 1.95235 0.976176 0.216982i \(-0.0696214\pi\)
0.976176 + 0.216982i \(0.0696214\pi\)
\(14\) −0.610175 −0.163076
\(15\) 1.96731 0.507957
\(16\) 0.847190 0.211797
\(17\) 0.393953 0.0955475 0.0477738 0.998858i \(-0.484787\pi\)
0.0477738 + 0.998858i \(0.484787\pi\)
\(18\) 2.09443 0.493662
\(19\) −4.94861 −1.13529 −0.567644 0.823274i \(-0.692145\pi\)
−0.567644 + 0.823274i \(0.692145\pi\)
\(20\) 5.53142 1.23686
\(21\) −0.403432 −0.0880361
\(22\) 2.24735 0.479136
\(23\) 7.39242 1.54143 0.770713 0.637183i \(-0.219900\pi\)
0.770713 + 0.637183i \(0.219900\pi\)
\(24\) −1.31508 −0.268439
\(25\) 10.2147 2.04293
\(26\) −5.36976 −1.05310
\(27\) 2.89787 0.557695
\(28\) −1.13432 −0.214366
\(29\) −0.760089 −0.141145 −0.0705725 0.997507i \(-0.522483\pi\)
−0.0705725 + 0.997507i \(0.522483\pi\)
\(30\) −1.50072 −0.273992
\(31\) 5.60540 1.00676 0.503380 0.864065i \(-0.332090\pi\)
0.503380 + 0.864065i \(0.332090\pi\)
\(32\) −5.86108 −1.03610
\(33\) 1.48589 0.258660
\(34\) −0.300517 −0.0515383
\(35\) −3.12004 −0.527383
\(36\) 3.89355 0.648925
\(37\) 7.29977 1.20008 0.600038 0.799972i \(-0.295152\pi\)
0.600038 + 0.799972i \(0.295152\pi\)
\(38\) 3.77493 0.612374
\(39\) −3.55035 −0.568511
\(40\) −10.1705 −1.60809
\(41\) −10.8923 −1.70109 −0.850545 0.525902i \(-0.823728\pi\)
−0.850545 + 0.525902i \(0.823728\pi\)
\(42\) 0.307749 0.0474867
\(43\) 2.29761 0.350383 0.175191 0.984534i \(-0.443946\pi\)
0.175191 + 0.984534i \(0.443946\pi\)
\(44\) 4.17782 0.629831
\(45\) 10.7096 1.59649
\(46\) −5.63913 −0.831444
\(47\) 2.26168 0.329901 0.164950 0.986302i \(-0.447254\pi\)
0.164950 + 0.986302i \(0.447254\pi\)
\(48\) −0.427290 −0.0616740
\(49\) −6.36018 −0.908597
\(50\) −7.79201 −1.10196
\(51\) −0.198694 −0.0278228
\(52\) −9.98241 −1.38431
\(53\) 0.453054 0.0622317 0.0311158 0.999516i \(-0.490094\pi\)
0.0311158 + 0.999516i \(0.490094\pi\)
\(54\) −2.21057 −0.300820
\(55\) 11.4915 1.54951
\(56\) 2.08564 0.278705
\(57\) 2.49589 0.330588
\(58\) 0.579816 0.0761335
\(59\) 12.8185 1.66883 0.834415 0.551137i \(-0.185806\pi\)
0.834415 + 0.551137i \(0.185806\pi\)
\(60\) −2.78984 −0.360166
\(61\) −1.86472 −0.238753 −0.119377 0.992849i \(-0.538090\pi\)
−0.119377 + 0.992849i \(0.538090\pi\)
\(62\) −4.27595 −0.543046
\(63\) −2.19619 −0.276693
\(64\) 2.77661 0.347076
\(65\) −27.4575 −3.40568
\(66\) −1.13347 −0.139521
\(67\) −12.3240 −1.50562 −0.752811 0.658237i \(-0.771303\pi\)
−0.752811 + 0.658237i \(0.771303\pi\)
\(68\) −0.558663 −0.0677478
\(69\) −3.72845 −0.448853
\(70\) 2.38005 0.284470
\(71\) 7.05470 0.837239 0.418620 0.908162i \(-0.362514\pi\)
0.418620 + 0.908162i \(0.362514\pi\)
\(72\) −7.15896 −0.843692
\(73\) 15.1804 1.77674 0.888368 0.459132i \(-0.151839\pi\)
0.888368 + 0.459132i \(0.151839\pi\)
\(74\) −5.56846 −0.647320
\(75\) −5.15188 −0.594888
\(76\) 7.01760 0.804974
\(77\) −2.35653 −0.268552
\(78\) 2.70830 0.306655
\(79\) −0.886279 −0.0997142 −0.0498571 0.998756i \(-0.515877\pi\)
−0.0498571 + 0.998756i \(0.515877\pi\)
\(80\) −3.30455 −0.369459
\(81\) 6.77529 0.752810
\(82\) 8.30893 0.917568
\(83\) 4.38957 0.481817 0.240909 0.970548i \(-0.422555\pi\)
0.240909 + 0.970548i \(0.422555\pi\)
\(84\) 0.572106 0.0624219
\(85\) −1.53665 −0.166673
\(86\) −1.75268 −0.188996
\(87\) 0.383359 0.0411005
\(88\) −7.68165 −0.818866
\(89\) 3.93084 0.416668 0.208334 0.978058i \(-0.433196\pi\)
0.208334 + 0.978058i \(0.433196\pi\)
\(90\) −8.16953 −0.861144
\(91\) 5.63065 0.590252
\(92\) −10.4832 −1.09295
\(93\) −2.82715 −0.293162
\(94\) −1.72527 −0.177948
\(95\) 19.3025 1.98040
\(96\) 2.95610 0.301706
\(97\) 18.8451 1.91343 0.956715 0.291027i \(-0.0939969\pi\)
0.956715 + 0.291027i \(0.0939969\pi\)
\(98\) 4.85171 0.490097
\(99\) 8.08881 0.812956
\(100\) −14.4854 −1.44854
\(101\) 0.354180 0.0352422 0.0176211 0.999845i \(-0.494391\pi\)
0.0176211 + 0.999845i \(0.494391\pi\)
\(102\) 0.151569 0.0150076
\(103\) −15.9391 −1.57052 −0.785261 0.619165i \(-0.787471\pi\)
−0.785261 + 0.619165i \(0.787471\pi\)
\(104\) 18.3544 1.79979
\(105\) 1.57363 0.153570
\(106\) −0.345601 −0.0335677
\(107\) −15.0957 −1.45935 −0.729676 0.683793i \(-0.760329\pi\)
−0.729676 + 0.683793i \(0.760329\pi\)
\(108\) −4.10946 −0.395433
\(109\) −6.98888 −0.669413 −0.334707 0.942322i \(-0.608637\pi\)
−0.334707 + 0.942322i \(0.608637\pi\)
\(110\) −8.76599 −0.835805
\(111\) −3.68172 −0.349454
\(112\) 0.677656 0.0640325
\(113\) 4.05349 0.381320 0.190660 0.981656i \(-0.438937\pi\)
0.190660 + 0.981656i \(0.438937\pi\)
\(114\) −1.90393 −0.178319
\(115\) −28.8348 −2.68886
\(116\) 1.07788 0.100079
\(117\) −19.3272 −1.78680
\(118\) −9.77830 −0.900166
\(119\) 0.315118 0.0288868
\(120\) 5.12959 0.468266
\(121\) −2.32062 −0.210965
\(122\) 1.42246 0.128783
\(123\) 5.49365 0.495346
\(124\) −7.94900 −0.713842
\(125\) −20.3403 −1.81929
\(126\) 1.67531 0.149248
\(127\) 14.2960 1.26856 0.634281 0.773102i \(-0.281296\pi\)
0.634281 + 0.773102i \(0.281296\pi\)
\(128\) 9.60410 0.848890
\(129\) −1.15883 −0.102029
\(130\) 20.9453 1.83702
\(131\) −17.3988 −1.52014 −0.760069 0.649843i \(-0.774835\pi\)
−0.760069 + 0.649843i \(0.774835\pi\)
\(132\) −2.10713 −0.183402
\(133\) −3.95833 −0.343231
\(134\) 9.40110 0.812132
\(135\) −11.3034 −0.972843
\(136\) 1.02720 0.0880814
\(137\) 11.2993 0.965361 0.482681 0.875796i \(-0.339663\pi\)
0.482681 + 0.875796i \(0.339663\pi\)
\(138\) 2.84416 0.242111
\(139\) 8.93862 0.758164 0.379082 0.925363i \(-0.376240\pi\)
0.379082 + 0.925363i \(0.376240\pi\)
\(140\) 4.42451 0.373940
\(141\) −1.14071 −0.0960648
\(142\) −5.38151 −0.451606
\(143\) −20.7383 −1.73423
\(144\) −2.32606 −0.193838
\(145\) 2.96480 0.246213
\(146\) −11.5800 −0.958371
\(147\) 3.20783 0.264577
\(148\) −10.3518 −0.850911
\(149\) −0.514437 −0.0421444 −0.0210722 0.999778i \(-0.506708\pi\)
−0.0210722 + 0.999778i \(0.506708\pi\)
\(150\) 3.92999 0.320882
\(151\) 10.4431 0.849851 0.424926 0.905228i \(-0.360300\pi\)
0.424926 + 0.905228i \(0.360300\pi\)
\(152\) −12.9031 −1.04658
\(153\) −1.08164 −0.0874457
\(154\) 1.79762 0.144857
\(155\) −21.8644 −1.75619
\(156\) 5.03474 0.403102
\(157\) 3.33465 0.266134 0.133067 0.991107i \(-0.457517\pi\)
0.133067 + 0.991107i \(0.457517\pi\)
\(158\) 0.676077 0.0537858
\(159\) −0.228503 −0.0181214
\(160\) 22.8617 1.80738
\(161\) 5.91310 0.466018
\(162\) −5.16836 −0.406065
\(163\) 15.7960 1.23724 0.618619 0.785691i \(-0.287692\pi\)
0.618619 + 0.785691i \(0.287692\pi\)
\(164\) 15.4463 1.20616
\(165\) −5.79585 −0.451207
\(166\) −3.34848 −0.259892
\(167\) 5.43655 0.420693 0.210346 0.977627i \(-0.432541\pi\)
0.210346 + 0.977627i \(0.432541\pi\)
\(168\) −1.05191 −0.0811570
\(169\) 36.5518 2.81167
\(170\) 1.17220 0.0899034
\(171\) 13.5870 1.03902
\(172\) −3.25824 −0.248438
\(173\) 16.3463 1.24279 0.621394 0.783498i \(-0.286567\pi\)
0.621394 + 0.783498i \(0.286567\pi\)
\(174\) −0.292437 −0.0221696
\(175\) 8.17058 0.617637
\(176\) −2.49589 −0.188135
\(177\) −6.46517 −0.485952
\(178\) −2.99854 −0.224750
\(179\) 5.85712 0.437782 0.218891 0.975749i \(-0.429756\pi\)
0.218891 + 0.975749i \(0.429756\pi\)
\(180\) −15.1872 −1.13199
\(181\) 1.87539 0.139396 0.0696982 0.997568i \(-0.477796\pi\)
0.0696982 + 0.997568i \(0.477796\pi\)
\(182\) −4.29521 −0.318382
\(183\) 0.940494 0.0695233
\(184\) 19.2751 1.42098
\(185\) −28.4735 −2.09341
\(186\) 2.15662 0.158131
\(187\) −1.16062 −0.0848726
\(188\) −3.20729 −0.233915
\(189\) 2.31797 0.168607
\(190\) −14.7245 −1.06823
\(191\) 2.27837 0.164857 0.0824285 0.996597i \(-0.473732\pi\)
0.0824285 + 0.996597i \(0.473732\pi\)
\(192\) −1.40041 −0.101066
\(193\) 13.7983 0.993223 0.496611 0.867973i \(-0.334577\pi\)
0.496611 + 0.867973i \(0.334577\pi\)
\(194\) −14.3755 −1.03210
\(195\) 13.8485 0.991711
\(196\) 9.01935 0.644239
\(197\) 2.57148 0.183210 0.0916052 0.995795i \(-0.470800\pi\)
0.0916052 + 0.995795i \(0.470800\pi\)
\(198\) −6.17036 −0.438508
\(199\) 5.05421 0.358284 0.179142 0.983823i \(-0.442668\pi\)
0.179142 + 0.983823i \(0.442668\pi\)
\(200\) 26.6338 1.88330
\(201\) 6.21577 0.438427
\(202\) −0.270178 −0.0190096
\(203\) −0.607985 −0.0426722
\(204\) 0.281768 0.0197277
\(205\) 42.4865 2.96738
\(206\) 12.1587 0.847139
\(207\) −20.2968 −1.41072
\(208\) 5.96362 0.413503
\(209\) 14.5790 1.00845
\(210\) −1.20040 −0.0828357
\(211\) −16.1262 −1.11018 −0.555088 0.831792i \(-0.687315\pi\)
−0.555088 + 0.831792i \(0.687315\pi\)
\(212\) −0.642474 −0.0441253
\(213\) −3.55812 −0.243798
\(214\) 11.5154 0.787174
\(215\) −8.96206 −0.611207
\(216\) 7.55594 0.514117
\(217\) 4.48369 0.304373
\(218\) 5.33130 0.361081
\(219\) −7.65643 −0.517374
\(220\) −16.2960 −1.09868
\(221\) 2.77315 0.186542
\(222\) 2.80852 0.188495
\(223\) 8.42872 0.564429 0.282214 0.959351i \(-0.408931\pi\)
0.282214 + 0.959351i \(0.408931\pi\)
\(224\) −4.68821 −0.313244
\(225\) −28.0456 −1.86970
\(226\) −3.09211 −0.205684
\(227\) −16.3902 −1.08786 −0.543930 0.839131i \(-0.683064\pi\)
−0.543930 + 0.839131i \(0.683064\pi\)
\(228\) −3.53941 −0.234403
\(229\) 12.4044 0.819703 0.409851 0.912152i \(-0.365581\pi\)
0.409851 + 0.912152i \(0.365581\pi\)
\(230\) 21.9960 1.45037
\(231\) 1.18854 0.0782004
\(232\) −1.98187 −0.130116
\(233\) 17.4908 1.14586 0.572929 0.819605i \(-0.305807\pi\)
0.572929 + 0.819605i \(0.305807\pi\)
\(234\) 14.7433 0.963802
\(235\) −8.82192 −0.575479
\(236\) −18.1779 −1.18328
\(237\) 0.447005 0.0290361
\(238\) −0.240380 −0.0155815
\(239\) −18.2611 −1.18121 −0.590606 0.806960i \(-0.701111\pi\)
−0.590606 + 0.806960i \(0.701111\pi\)
\(240\) 1.66669 0.107584
\(241\) 15.3425 0.988297 0.494148 0.869378i \(-0.335480\pi\)
0.494148 + 0.869378i \(0.335480\pi\)
\(242\) 1.77023 0.113794
\(243\) −12.1108 −0.776908
\(244\) 2.64436 0.169288
\(245\) 24.8085 1.58496
\(246\) −4.19070 −0.267189
\(247\) −34.8348 −2.21648
\(248\) 14.6156 0.928092
\(249\) −2.21393 −0.140302
\(250\) 15.5161 0.981324
\(251\) 11.2782 0.711875 0.355938 0.934510i \(-0.384162\pi\)
0.355938 + 0.934510i \(0.384162\pi\)
\(252\) 3.11440 0.196189
\(253\) −21.7787 −1.36921
\(254\) −10.9053 −0.684262
\(255\) 0.775027 0.0485341
\(256\) −12.8795 −0.804967
\(257\) 3.90455 0.243559 0.121780 0.992557i \(-0.461140\pi\)
0.121780 + 0.992557i \(0.461140\pi\)
\(258\) 0.883984 0.0550344
\(259\) 5.83900 0.362818
\(260\) 38.9374 2.41479
\(261\) 2.08691 0.129177
\(262\) 13.2722 0.819961
\(263\) −12.1398 −0.748571 −0.374285 0.927314i \(-0.622112\pi\)
−0.374285 + 0.927314i \(0.622112\pi\)
\(264\) 3.87433 0.238448
\(265\) −1.76718 −0.108557
\(266\) 3.01952 0.185138
\(267\) −1.98256 −0.121331
\(268\) 17.4767 1.06756
\(269\) 12.8549 0.783779 0.391889 0.920012i \(-0.371822\pi\)
0.391889 + 0.920012i \(0.371822\pi\)
\(270\) 8.62254 0.524751
\(271\) 11.4276 0.694176 0.347088 0.937832i \(-0.387170\pi\)
0.347088 + 0.937832i \(0.387170\pi\)
\(272\) 0.333753 0.0202367
\(273\) −2.83988 −0.171877
\(274\) −8.61937 −0.520715
\(275\) −30.0932 −1.81469
\(276\) 5.28730 0.318258
\(277\) −10.4286 −0.626593 −0.313296 0.949655i \(-0.601433\pi\)
−0.313296 + 0.949655i \(0.601433\pi\)
\(278\) −6.81861 −0.408953
\(279\) −15.3903 −0.921394
\(280\) −8.13523 −0.486173
\(281\) 8.64987 0.516008 0.258004 0.966144i \(-0.416935\pi\)
0.258004 + 0.966144i \(0.416935\pi\)
\(282\) 0.870161 0.0518173
\(283\) −22.5505 −1.34049 −0.670245 0.742140i \(-0.733811\pi\)
−0.670245 + 0.742140i \(0.733811\pi\)
\(284\) −10.0042 −0.593643
\(285\) −9.73545 −0.576678
\(286\) 15.8198 0.935441
\(287\) −8.71261 −0.514289
\(288\) 16.0923 0.948248
\(289\) −16.8448 −0.990871
\(290\) −2.26163 −0.132807
\(291\) −9.50474 −0.557178
\(292\) −21.5273 −1.25979
\(293\) −10.6374 −0.621444 −0.310722 0.950501i \(-0.600571\pi\)
−0.310722 + 0.950501i \(0.600571\pi\)
\(294\) −2.44702 −0.142713
\(295\) −49.9999 −2.91111
\(296\) 19.0335 1.10630
\(297\) −8.53735 −0.495387
\(298\) 0.392426 0.0227326
\(299\) 52.0375 3.00940
\(300\) 7.30586 0.421804
\(301\) 1.83783 0.105931
\(302\) −7.96630 −0.458409
\(303\) −0.178635 −0.0102623
\(304\) −4.19241 −0.240451
\(305\) 7.27353 0.416481
\(306\) 0.825106 0.0471682
\(307\) 10.2742 0.586382 0.293191 0.956054i \(-0.405283\pi\)
0.293191 + 0.956054i \(0.405283\pi\)
\(308\) 3.34179 0.190416
\(309\) 8.03904 0.457325
\(310\) 16.6788 0.947290
\(311\) −24.5952 −1.39467 −0.697334 0.716746i \(-0.745630\pi\)
−0.697334 + 0.716746i \(0.745630\pi\)
\(312\) −9.25724 −0.524088
\(313\) 16.2399 0.917932 0.458966 0.888454i \(-0.348220\pi\)
0.458966 + 0.888454i \(0.348220\pi\)
\(314\) −2.54376 −0.143553
\(315\) 8.56644 0.482664
\(316\) 1.25683 0.0707022
\(317\) 19.8258 1.11353 0.556763 0.830672i \(-0.312043\pi\)
0.556763 + 0.830672i \(0.312043\pi\)
\(318\) 0.174308 0.00977470
\(319\) 2.23928 0.125376
\(320\) −10.8304 −0.605440
\(321\) 7.61367 0.424954
\(322\) −4.51067 −0.251370
\(323\) −1.94952 −0.108474
\(324\) −9.60801 −0.533778
\(325\) 71.9041 3.98852
\(326\) −12.0496 −0.667366
\(327\) 3.52492 0.194929
\(328\) −28.4007 −1.56817
\(329\) 1.80909 0.0997385
\(330\) 4.42123 0.243381
\(331\) −17.3716 −0.954830 −0.477415 0.878678i \(-0.658426\pi\)
−0.477415 + 0.878678i \(0.658426\pi\)
\(332\) −6.22483 −0.341632
\(333\) −20.0424 −1.09832
\(334\) −4.14714 −0.226921
\(335\) 48.0711 2.62641
\(336\) −0.341784 −0.0186458
\(337\) −7.36233 −0.401052 −0.200526 0.979688i \(-0.564265\pi\)
−0.200526 + 0.979688i \(0.564265\pi\)
\(338\) −27.8826 −1.51662
\(339\) −2.04442 −0.111038
\(340\) 2.17912 0.118179
\(341\) −16.5140 −0.894281
\(342\) −10.3645 −0.560449
\(343\) −10.6866 −0.577024
\(344\) 5.99082 0.323004
\(345\) 14.5432 0.782979
\(346\) −12.4694 −0.670359
\(347\) 4.81358 0.258407 0.129203 0.991618i \(-0.458758\pi\)
0.129203 + 0.991618i \(0.458758\pi\)
\(348\) −0.543641 −0.0291422
\(349\) −32.5237 −1.74096 −0.870478 0.492207i \(-0.836190\pi\)
−0.870478 + 0.492207i \(0.836190\pi\)
\(350\) −6.23273 −0.333153
\(351\) 20.3990 1.08882
\(352\) 17.2672 0.920346
\(353\) 16.3793 0.871782 0.435891 0.899999i \(-0.356433\pi\)
0.435891 + 0.899999i \(0.356433\pi\)
\(354\) 4.93180 0.262122
\(355\) −27.5176 −1.46048
\(356\) −5.57430 −0.295438
\(357\) −0.158933 −0.00841164
\(358\) −4.46796 −0.236139
\(359\) −19.1765 −1.01210 −0.506050 0.862504i \(-0.668895\pi\)
−0.506050 + 0.862504i \(0.668895\pi\)
\(360\) 27.9242 1.47174
\(361\) 5.48873 0.288881
\(362\) −1.43059 −0.0751903
\(363\) 1.17043 0.0614316
\(364\) −7.98480 −0.418517
\(365\) −59.2128 −3.09934
\(366\) −0.717433 −0.0375008
\(367\) −2.40715 −0.125652 −0.0628261 0.998024i \(-0.520011\pi\)
−0.0628261 + 0.998024i \(0.520011\pi\)
\(368\) 6.26278 0.326470
\(369\) 29.9061 1.55685
\(370\) 21.7203 1.12919
\(371\) 0.362392 0.0188144
\(372\) 4.00917 0.207866
\(373\) 9.44701 0.489147 0.244574 0.969631i \(-0.421352\pi\)
0.244574 + 0.969631i \(0.421352\pi\)
\(374\) 0.885348 0.0457802
\(375\) 10.2589 0.529765
\(376\) 5.89715 0.304122
\(377\) −5.35050 −0.275565
\(378\) −1.76821 −0.0909468
\(379\) −2.99284 −0.153732 −0.0768660 0.997041i \(-0.524491\pi\)
−0.0768660 + 0.997041i \(0.524491\pi\)
\(380\) −27.3728 −1.40420
\(381\) −7.21034 −0.369397
\(382\) −1.73800 −0.0889238
\(383\) 33.2120 1.69706 0.848528 0.529151i \(-0.177490\pi\)
0.848528 + 0.529151i \(0.177490\pi\)
\(384\) −4.84394 −0.247191
\(385\) 9.19188 0.468462
\(386\) −10.5257 −0.535744
\(387\) −6.30837 −0.320672
\(388\) −26.7242 −1.35671
\(389\) −3.81911 −0.193636 −0.0968182 0.995302i \(-0.530867\pi\)
−0.0968182 + 0.995302i \(0.530867\pi\)
\(390\) −10.5640 −0.534929
\(391\) 2.91226 0.147279
\(392\) −16.5836 −0.837599
\(393\) 8.77527 0.442654
\(394\) −1.96159 −0.0988236
\(395\) 3.45702 0.173942
\(396\) −11.4707 −0.576425
\(397\) −16.0408 −0.805066 −0.402533 0.915405i \(-0.631870\pi\)
−0.402533 + 0.915405i \(0.631870\pi\)
\(398\) −3.85548 −0.193258
\(399\) 1.99643 0.0999464
\(400\) 8.65375 0.432688
\(401\) −4.17536 −0.208508 −0.104254 0.994551i \(-0.533245\pi\)
−0.104254 + 0.994551i \(0.533245\pi\)
\(402\) −4.74155 −0.236487
\(403\) 39.4581 1.96555
\(404\) −0.502261 −0.0249884
\(405\) −26.4277 −1.31320
\(406\) 0.463787 0.0230174
\(407\) −21.5057 −1.06600
\(408\) −0.518079 −0.0256487
\(409\) −31.2424 −1.54484 −0.772419 0.635114i \(-0.780953\pi\)
−0.772419 + 0.635114i \(0.780953\pi\)
\(410\) −32.4098 −1.60061
\(411\) −5.69891 −0.281107
\(412\) 22.6031 1.11358
\(413\) 10.2534 0.504535
\(414\) 15.4829 0.760943
\(415\) −17.1219 −0.840482
\(416\) −41.2579 −2.02284
\(417\) −4.50829 −0.220772
\(418\) −11.1212 −0.543958
\(419\) −10.1795 −0.497301 −0.248651 0.968593i \(-0.579987\pi\)
−0.248651 + 0.968593i \(0.579987\pi\)
\(420\) −2.23155 −0.108889
\(421\) 9.33687 0.455051 0.227525 0.973772i \(-0.426936\pi\)
0.227525 + 0.973772i \(0.426936\pi\)
\(422\) 12.3015 0.598828
\(423\) −6.20973 −0.301927
\(424\) 1.18130 0.0573689
\(425\) 4.02409 0.195197
\(426\) 2.71423 0.131505
\(427\) −1.49157 −0.0721820
\(428\) 21.4071 1.03475
\(429\) 10.4596 0.504995
\(430\) 6.83649 0.329685
\(431\) 1.00000 0.0481683
\(432\) 2.45504 0.118118
\(433\) 5.94715 0.285802 0.142901 0.989737i \(-0.454357\pi\)
0.142901 + 0.989737i \(0.454357\pi\)
\(434\) −3.42028 −0.164179
\(435\) −1.49533 −0.0716956
\(436\) 9.91091 0.474646
\(437\) −36.5822 −1.74996
\(438\) 5.84052 0.279071
\(439\) −21.4239 −1.02251 −0.511253 0.859430i \(-0.670819\pi\)
−0.511253 + 0.859430i \(0.670819\pi\)
\(440\) 29.9630 1.42843
\(441\) 17.4626 0.831554
\(442\) −2.11543 −0.100621
\(443\) −16.4937 −0.783640 −0.391820 0.920042i \(-0.628154\pi\)
−0.391820 + 0.920042i \(0.628154\pi\)
\(444\) 5.22104 0.247780
\(445\) −15.3326 −0.726835
\(446\) −6.42965 −0.304453
\(447\) 0.259462 0.0122721
\(448\) 2.22097 0.104931
\(449\) 5.97396 0.281929 0.140964 0.990015i \(-0.454980\pi\)
0.140964 + 0.990015i \(0.454980\pi\)
\(450\) 21.3939 1.00852
\(451\) 32.0896 1.51104
\(452\) −5.74823 −0.270374
\(453\) −5.26712 −0.247471
\(454\) 12.5029 0.586791
\(455\) −21.9629 −1.02964
\(456\) 6.50781 0.304756
\(457\) −5.59547 −0.261745 −0.130873 0.991399i \(-0.541778\pi\)
−0.130873 + 0.991399i \(0.541778\pi\)
\(458\) −9.46236 −0.442147
\(459\) 1.14162 0.0532864
\(460\) 40.8906 1.90653
\(461\) 25.6839 1.19622 0.598109 0.801415i \(-0.295919\pi\)
0.598109 + 0.801415i \(0.295919\pi\)
\(462\) −0.906652 −0.0421813
\(463\) −10.4231 −0.484401 −0.242201 0.970226i \(-0.577869\pi\)
−0.242201 + 0.970226i \(0.577869\pi\)
\(464\) −0.643939 −0.0298941
\(465\) 11.0276 0.511391
\(466\) −13.3424 −0.618075
\(467\) 8.80090 0.407257 0.203629 0.979048i \(-0.434727\pi\)
0.203629 + 0.979048i \(0.434727\pi\)
\(468\) 27.4079 1.26693
\(469\) −9.85785 −0.455193
\(470\) 6.72959 0.310413
\(471\) −1.68187 −0.0774965
\(472\) 33.4232 1.53843
\(473\) −6.76895 −0.311237
\(474\) −0.340987 −0.0156621
\(475\) −50.5483 −2.31932
\(476\) −0.446867 −0.0204821
\(477\) −1.24391 −0.0569548
\(478\) 13.9300 0.637145
\(479\) −12.8610 −0.587636 −0.293818 0.955861i \(-0.594926\pi\)
−0.293818 + 0.955861i \(0.594926\pi\)
\(480\) −11.5306 −0.526296
\(481\) 51.3853 2.34297
\(482\) −11.7037 −0.533087
\(483\) −2.98234 −0.135701
\(484\) 3.29086 0.149584
\(485\) −73.5071 −3.33779
\(486\) 9.23843 0.419064
\(487\) −12.1808 −0.551965 −0.275982 0.961163i \(-0.589003\pi\)
−0.275982 + 0.961163i \(0.589003\pi\)
\(488\) −4.86210 −0.220097
\(489\) −7.96689 −0.360275
\(490\) −18.9246 −0.854925
\(491\) 14.1471 0.638451 0.319225 0.947679i \(-0.396577\pi\)
0.319225 + 0.947679i \(0.396577\pi\)
\(492\) −7.79053 −0.351224
\(493\) −0.299439 −0.0134861
\(494\) 26.5729 1.19557
\(495\) −31.5512 −1.41812
\(496\) 4.74884 0.213229
\(497\) 5.64297 0.253122
\(498\) 1.68884 0.0756788
\(499\) −12.6940 −0.568261 −0.284130 0.958786i \(-0.591705\pi\)
−0.284130 + 0.958786i \(0.591705\pi\)
\(500\) 28.8445 1.28996
\(501\) −2.74198 −0.122503
\(502\) −8.60332 −0.383985
\(503\) 29.4917 1.31497 0.657486 0.753467i \(-0.271620\pi\)
0.657486 + 0.753467i \(0.271620\pi\)
\(504\) −5.72637 −0.255073
\(505\) −1.38151 −0.0614766
\(506\) 16.6133 0.738552
\(507\) −18.4353 −0.818741
\(508\) −20.2731 −0.899472
\(509\) 11.2544 0.498843 0.249421 0.968395i \(-0.419760\pi\)
0.249421 + 0.968395i \(0.419760\pi\)
\(510\) −0.591211 −0.0261793
\(511\) 12.1426 0.537159
\(512\) −9.38340 −0.414691
\(513\) −14.3404 −0.633145
\(514\) −2.97850 −0.131376
\(515\) 62.1718 2.73962
\(516\) 1.64333 0.0723435
\(517\) −6.66310 −0.293043
\(518\) −4.45414 −0.195704
\(519\) −8.24445 −0.361891
\(520\) −71.5930 −3.13956
\(521\) 43.1760 1.89158 0.945788 0.324786i \(-0.105292\pi\)
0.945788 + 0.324786i \(0.105292\pi\)
\(522\) −1.59195 −0.0696779
\(523\) 30.6334 1.33951 0.669753 0.742584i \(-0.266400\pi\)
0.669753 + 0.742584i \(0.266400\pi\)
\(524\) 24.6731 1.07785
\(525\) −4.12092 −0.179852
\(526\) 9.26054 0.403779
\(527\) 2.20826 0.0961935
\(528\) 1.25883 0.0547835
\(529\) 31.6478 1.37599
\(530\) 1.34805 0.0585556
\(531\) −35.1948 −1.52732
\(532\) 5.61329 0.243367
\(533\) −76.6742 −3.32113
\(534\) 1.51235 0.0654458
\(535\) 58.8821 2.54569
\(536\) −32.1339 −1.38797
\(537\) −2.95410 −0.127479
\(538\) −9.80607 −0.422770
\(539\) 18.7376 0.807085
\(540\) 16.0293 0.689793
\(541\) −21.0763 −0.906139 −0.453070 0.891475i \(-0.649671\pi\)
−0.453070 + 0.891475i \(0.649671\pi\)
\(542\) −8.71726 −0.374438
\(543\) −0.945872 −0.0405913
\(544\) −2.30899 −0.0989971
\(545\) 27.2608 1.16772
\(546\) 2.16634 0.0927106
\(547\) 13.7175 0.586519 0.293260 0.956033i \(-0.405260\pi\)
0.293260 + 0.956033i \(0.405260\pi\)
\(548\) −16.0234 −0.684488
\(549\) 5.11982 0.218509
\(550\) 22.9559 0.978842
\(551\) 3.76138 0.160240
\(552\) −9.72161 −0.413779
\(553\) −0.708924 −0.0301465
\(554\) 7.95520 0.337984
\(555\) 14.3609 0.609587
\(556\) −12.6758 −0.537575
\(557\) −35.0576 −1.48544 −0.742720 0.669602i \(-0.766465\pi\)
−0.742720 + 0.669602i \(0.766465\pi\)
\(558\) 11.7401 0.496999
\(559\) 16.1736 0.684070
\(560\) −2.64326 −0.111698
\(561\) 0.585370 0.0247143
\(562\) −6.59835 −0.278334
\(563\) −29.3929 −1.23876 −0.619381 0.785090i \(-0.712617\pi\)
−0.619381 + 0.785090i \(0.712617\pi\)
\(564\) 1.61763 0.0681146
\(565\) −15.8110 −0.665174
\(566\) 17.2021 0.723059
\(567\) 5.41946 0.227596
\(568\) 18.3945 0.771817
\(569\) −17.7677 −0.744860 −0.372430 0.928060i \(-0.621475\pi\)
−0.372430 + 0.928060i \(0.621475\pi\)
\(570\) 7.42646 0.311060
\(571\) −39.7364 −1.66292 −0.831459 0.555587i \(-0.812494\pi\)
−0.831459 + 0.555587i \(0.812494\pi\)
\(572\) 29.4090 1.22965
\(573\) −1.14912 −0.0480053
\(574\) 6.64621 0.277407
\(575\) 75.5110 3.14903
\(576\) −7.62351 −0.317646
\(577\) −10.1482 −0.422477 −0.211238 0.977435i \(-0.567750\pi\)
−0.211238 + 0.977435i \(0.567750\pi\)
\(578\) 12.8497 0.534475
\(579\) −6.95932 −0.289220
\(580\) −4.20437 −0.174577
\(581\) 3.51116 0.145667
\(582\) 7.25046 0.300541
\(583\) −1.33473 −0.0552789
\(584\) 39.5817 1.63790
\(585\) 75.3878 3.11690
\(586\) 8.11449 0.335206
\(587\) 26.6622 1.10047 0.550234 0.835011i \(-0.314539\pi\)
0.550234 + 0.835011i \(0.314539\pi\)
\(588\) −4.54901 −0.187598
\(589\) −27.7390 −1.14296
\(590\) 38.1412 1.57025
\(591\) −1.29696 −0.0533496
\(592\) 6.18429 0.254173
\(593\) 4.64555 0.190770 0.0953849 0.995440i \(-0.469592\pi\)
0.0953849 + 0.995440i \(0.469592\pi\)
\(594\) 6.51251 0.267212
\(595\) −1.22915 −0.0503901
\(596\) 0.729522 0.0298824
\(597\) −2.54915 −0.104330
\(598\) −39.6955 −1.62327
\(599\) −24.7553 −1.01147 −0.505736 0.862688i \(-0.668779\pi\)
−0.505736 + 0.862688i \(0.668779\pi\)
\(600\) −13.4331 −0.548403
\(601\) −37.3762 −1.52461 −0.762304 0.647219i \(-0.775932\pi\)
−0.762304 + 0.647219i \(0.775932\pi\)
\(602\) −1.40195 −0.0571390
\(603\) 33.8371 1.37795
\(604\) −14.8094 −0.602585
\(605\) 9.05179 0.368008
\(606\) 0.136267 0.00553548
\(607\) 26.9871 1.09537 0.547686 0.836684i \(-0.315509\pi\)
0.547686 + 0.836684i \(0.315509\pi\)
\(608\) 29.0042 1.17628
\(609\) 0.306644 0.0124259
\(610\) −5.54844 −0.224650
\(611\) 15.9207 0.644082
\(612\) 1.53388 0.0620032
\(613\) −16.4687 −0.665165 −0.332583 0.943074i \(-0.607920\pi\)
−0.332583 + 0.943074i \(0.607920\pi\)
\(614\) −7.83746 −0.316294
\(615\) −21.4285 −0.864082
\(616\) −6.14445 −0.247567
\(617\) 17.0863 0.687868 0.343934 0.938994i \(-0.388240\pi\)
0.343934 + 0.938994i \(0.388240\pi\)
\(618\) −6.13239 −0.246681
\(619\) 17.2504 0.693350 0.346675 0.937985i \(-0.387311\pi\)
0.346675 + 0.937985i \(0.387311\pi\)
\(620\) 31.0059 1.24523
\(621\) 21.4223 0.859646
\(622\) 18.7619 0.752283
\(623\) 3.14423 0.125971
\(624\) −3.00782 −0.120409
\(625\) 28.2660 1.13064
\(626\) −12.3882 −0.495132
\(627\) −7.35308 −0.293654
\(628\) −4.72886 −0.188702
\(629\) 2.87576 0.114664
\(630\) −6.53470 −0.260349
\(631\) −22.2393 −0.885334 −0.442667 0.896686i \(-0.645968\pi\)
−0.442667 + 0.896686i \(0.645968\pi\)
\(632\) −2.31090 −0.0919225
\(633\) 8.13345 0.323275
\(634\) −15.1236 −0.600635
\(635\) −55.7628 −2.21288
\(636\) 0.324039 0.0128490
\(637\) −44.7712 −1.77390
\(638\) −1.70818 −0.0676276
\(639\) −19.3695 −0.766247
\(640\) −37.4617 −1.48080
\(641\) 9.62162 0.380031 0.190016 0.981781i \(-0.439146\pi\)
0.190016 + 0.981781i \(0.439146\pi\)
\(642\) −5.80791 −0.229220
\(643\) −22.9895 −0.906619 −0.453310 0.891353i \(-0.649757\pi\)
−0.453310 + 0.891353i \(0.649757\pi\)
\(644\) −8.38535 −0.330429
\(645\) 4.52012 0.177979
\(646\) 1.48714 0.0585108
\(647\) 17.6777 0.694983 0.347491 0.937683i \(-0.387034\pi\)
0.347491 + 0.937683i \(0.387034\pi\)
\(648\) 17.6660 0.693985
\(649\) −37.7644 −1.48238
\(650\) −54.8503 −2.15141
\(651\) −2.26140 −0.0886313
\(652\) −22.4002 −0.877261
\(653\) 30.7840 1.20467 0.602336 0.798243i \(-0.294237\pi\)
0.602336 + 0.798243i \(0.294237\pi\)
\(654\) −2.68890 −0.105144
\(655\) 67.8656 2.65173
\(656\) −9.22784 −0.360287
\(657\) −41.6797 −1.62608
\(658\) −1.38002 −0.0537989
\(659\) −17.1562 −0.668310 −0.334155 0.942518i \(-0.608451\pi\)
−0.334155 + 0.942518i \(0.608451\pi\)
\(660\) 8.21908 0.319927
\(661\) 24.4127 0.949546 0.474773 0.880108i \(-0.342530\pi\)
0.474773 + 0.880108i \(0.342530\pi\)
\(662\) 13.2515 0.515035
\(663\) −1.39867 −0.0543199
\(664\) 11.4454 0.444168
\(665\) 15.4398 0.598732
\(666\) 15.2889 0.592432
\(667\) −5.61889 −0.217564
\(668\) −7.70955 −0.298291
\(669\) −4.25112 −0.164358
\(670\) −36.6699 −1.41668
\(671\) 5.49362 0.212079
\(672\) 2.36455 0.0912145
\(673\) 27.1193 1.04537 0.522686 0.852525i \(-0.324930\pi\)
0.522686 + 0.852525i \(0.324930\pi\)
\(674\) 5.61618 0.216327
\(675\) 29.6007 1.13933
\(676\) −51.8339 −1.99361
\(677\) 41.0355 1.57712 0.788562 0.614956i \(-0.210826\pi\)
0.788562 + 0.614956i \(0.210826\pi\)
\(678\) 1.55954 0.0598937
\(679\) 15.0740 0.578485
\(680\) −4.00668 −0.153649
\(681\) 8.26661 0.316777
\(682\) 12.5973 0.482375
\(683\) 7.57432 0.289823 0.144912 0.989445i \(-0.453710\pi\)
0.144912 + 0.989445i \(0.453710\pi\)
\(684\) −19.2677 −0.736718
\(685\) −44.0739 −1.68398
\(686\) 8.15205 0.311247
\(687\) −6.25628 −0.238692
\(688\) 1.94651 0.0742101
\(689\) 3.18918 0.121498
\(690\) −11.0939 −0.422338
\(691\) −5.85472 −0.222724 −0.111362 0.993780i \(-0.535521\pi\)
−0.111362 + 0.993780i \(0.535521\pi\)
\(692\) −23.1807 −0.881196
\(693\) 6.47014 0.245780
\(694\) −3.67193 −0.139384
\(695\) −34.8659 −1.32254
\(696\) 0.999577 0.0378889
\(697\) −4.29105 −0.162535
\(698\) 24.8100 0.939071
\(699\) −8.82167 −0.333666
\(700\) −11.5867 −0.437935
\(701\) −3.77528 −0.142590 −0.0712952 0.997455i \(-0.522713\pi\)
−0.0712952 + 0.997455i \(0.522713\pi\)
\(702\) −15.5609 −0.587307
\(703\) −36.1237 −1.36243
\(704\) −8.18011 −0.308300
\(705\) 4.44944 0.167575
\(706\) −12.4946 −0.470239
\(707\) 0.283304 0.0106547
\(708\) 9.16823 0.344563
\(709\) 5.58035 0.209574 0.104787 0.994495i \(-0.466584\pi\)
0.104787 + 0.994495i \(0.466584\pi\)
\(710\) 20.9911 0.787782
\(711\) 2.43339 0.0912591
\(712\) 10.2493 0.384109
\(713\) 41.4375 1.55185
\(714\) 0.121238 0.00453723
\(715\) 80.8919 3.02519
\(716\) −8.30596 −0.310408
\(717\) 9.21018 0.343961
\(718\) 14.6284 0.545926
\(719\) 36.4226 1.35833 0.679167 0.733984i \(-0.262341\pi\)
0.679167 + 0.733984i \(0.262341\pi\)
\(720\) 9.07303 0.338132
\(721\) −12.7494 −0.474814
\(722\) −4.18695 −0.155822
\(723\) −7.73816 −0.287785
\(724\) −2.65948 −0.0988387
\(725\) −7.76405 −0.288350
\(726\) −0.892834 −0.0331362
\(727\) −18.5317 −0.687303 −0.343651 0.939097i \(-0.611664\pi\)
−0.343651 + 0.939097i \(0.611664\pi\)
\(728\) 14.6814 0.544130
\(729\) −14.2176 −0.526579
\(730\) 45.1691 1.67178
\(731\) 0.905150 0.0334782
\(732\) −1.33371 −0.0492954
\(733\) 35.1901 1.29978 0.649889 0.760030i \(-0.274816\pi\)
0.649889 + 0.760030i \(0.274816\pi\)
\(734\) 1.83624 0.0677768
\(735\) −12.5125 −0.461529
\(736\) −43.3276 −1.59708
\(737\) 36.3076 1.33741
\(738\) −22.8132 −0.839764
\(739\) 12.0692 0.443973 0.221986 0.975050i \(-0.428746\pi\)
0.221986 + 0.975050i \(0.428746\pi\)
\(740\) 40.3781 1.48433
\(741\) 17.5693 0.645425
\(742\) −0.276442 −0.0101485
\(743\) −21.7032 −0.796213 −0.398106 0.917339i \(-0.630333\pi\)
−0.398106 + 0.917339i \(0.630333\pi\)
\(744\) −7.37155 −0.270254
\(745\) 2.00661 0.0735166
\(746\) −7.20642 −0.263846
\(747\) −12.0521 −0.440963
\(748\) 1.64586 0.0601788
\(749\) −12.0748 −0.441205
\(750\) −7.82572 −0.285755
\(751\) 42.9590 1.56760 0.783798 0.621016i \(-0.213280\pi\)
0.783798 + 0.621016i \(0.213280\pi\)
\(752\) 1.91608 0.0698721
\(753\) −5.68830 −0.207293
\(754\) 4.08150 0.148639
\(755\) −40.7345 −1.48248
\(756\) −3.28710 −0.119551
\(757\) −37.1921 −1.35177 −0.675886 0.737007i \(-0.736239\pi\)
−0.675886 + 0.737007i \(0.736239\pi\)
\(758\) 2.28302 0.0829229
\(759\) 10.9843 0.398705
\(760\) 50.3297 1.82565
\(761\) 30.4030 1.10211 0.551053 0.834470i \(-0.314226\pi\)
0.551053 + 0.834470i \(0.314226\pi\)
\(762\) 5.50023 0.199252
\(763\) −5.59032 −0.202383
\(764\) −3.23095 −0.116892
\(765\) 4.21906 0.152540
\(766\) −25.3350 −0.915391
\(767\) 90.2334 3.25814
\(768\) 6.49591 0.234401
\(769\) 7.02764 0.253423 0.126712 0.991940i \(-0.459558\pi\)
0.126712 + 0.991940i \(0.459558\pi\)
\(770\) −7.01181 −0.252688
\(771\) −1.96931 −0.0709228
\(772\) −19.5673 −0.704243
\(773\) 30.2946 1.08962 0.544811 0.838559i \(-0.316602\pi\)
0.544811 + 0.838559i \(0.316602\pi\)
\(774\) 4.81219 0.172971
\(775\) 57.2573 2.05674
\(776\) 49.1370 1.76391
\(777\) −2.94496 −0.105650
\(778\) 2.91331 0.104447
\(779\) 53.9017 1.93123
\(780\) −19.6385 −0.703171
\(781\) −20.7837 −0.743700
\(782\) −2.22155 −0.0794424
\(783\) −2.20264 −0.0787159
\(784\) −5.38828 −0.192439
\(785\) −13.0071 −0.464245
\(786\) −6.69400 −0.238767
\(787\) 21.4271 0.763794 0.381897 0.924205i \(-0.375271\pi\)
0.381897 + 0.924205i \(0.375271\pi\)
\(788\) −3.64661 −0.129905
\(789\) 6.12283 0.217979
\(790\) −2.63710 −0.0938240
\(791\) 3.24233 0.115284
\(792\) 21.0909 0.749432
\(793\) −13.1263 −0.466130
\(794\) 12.2364 0.434252
\(795\) 0.891297 0.0316110
\(796\) −7.16736 −0.254040
\(797\) −18.2989 −0.648181 −0.324091 0.946026i \(-0.605058\pi\)
−0.324091 + 0.946026i \(0.605058\pi\)
\(798\) −1.52293 −0.0539111
\(799\) 0.890996 0.0315212
\(800\) −59.8690 −2.11669
\(801\) −10.7926 −0.381337
\(802\) 3.18507 0.112469
\(803\) −44.7228 −1.57823
\(804\) −8.81456 −0.310866
\(805\) −23.0646 −0.812921
\(806\) −30.0997 −1.06022
\(807\) −6.48353 −0.228231
\(808\) 0.923494 0.0324884
\(809\) 2.59577 0.0912624 0.0456312 0.998958i \(-0.485470\pi\)
0.0456312 + 0.998958i \(0.485470\pi\)
\(810\) 20.1597 0.708340
\(811\) 39.0518 1.37129 0.685646 0.727935i \(-0.259520\pi\)
0.685646 + 0.727935i \(0.259520\pi\)
\(812\) 0.862182 0.0302567
\(813\) −5.76363 −0.202139
\(814\) 16.4051 0.574999
\(815\) −61.6138 −2.15824
\(816\) −0.168332 −0.00589279
\(817\) −11.3700 −0.397785
\(818\) 23.8325 0.833284
\(819\) −15.4596 −0.540203
\(820\) −60.2499 −2.10402
\(821\) 24.0702 0.840057 0.420028 0.907511i \(-0.362020\pi\)
0.420028 + 0.907511i \(0.362020\pi\)
\(822\) 4.34728 0.151629
\(823\) −14.1358 −0.492744 −0.246372 0.969175i \(-0.579238\pi\)
−0.246372 + 0.969175i \(0.579238\pi\)
\(824\) −41.5597 −1.44780
\(825\) 15.1778 0.528425
\(826\) −7.82154 −0.272146
\(827\) −8.20230 −0.285222 −0.142611 0.989779i \(-0.545550\pi\)
−0.142611 + 0.989779i \(0.545550\pi\)
\(828\) 28.7828 1.00027
\(829\) 29.4740 1.02368 0.511838 0.859082i \(-0.328965\pi\)
0.511838 + 0.859082i \(0.328965\pi\)
\(830\) 13.0611 0.453356
\(831\) 5.25978 0.182460
\(832\) 19.5454 0.677615
\(833\) −2.50561 −0.0868142
\(834\) 3.43904 0.119084
\(835\) −21.2058 −0.733856
\(836\) −20.6744 −0.715040
\(837\) 16.2437 0.561465
\(838\) 7.76519 0.268244
\(839\) 30.8066 1.06356 0.531781 0.846882i \(-0.321523\pi\)
0.531781 + 0.846882i \(0.321523\pi\)
\(840\) 4.10310 0.141570
\(841\) −28.4223 −0.980078
\(842\) −7.12240 −0.245454
\(843\) −4.36266 −0.150258
\(844\) 22.8685 0.787168
\(845\) −142.574 −4.90469
\(846\) 4.73694 0.162859
\(847\) −1.85623 −0.0637809
\(848\) 0.383822 0.0131805
\(849\) 11.3736 0.390341
\(850\) −3.06968 −0.105289
\(851\) 53.9630 1.84983
\(852\) 5.04576 0.172865
\(853\) 52.7834 1.80727 0.903634 0.428305i \(-0.140889\pi\)
0.903634 + 0.428305i \(0.140889\pi\)
\(854\) 1.13781 0.0389350
\(855\) −52.9974 −1.81247
\(856\) −39.3606 −1.34532
\(857\) −17.7549 −0.606497 −0.303249 0.952911i \(-0.598071\pi\)
−0.303249 + 0.952911i \(0.598071\pi\)
\(858\) −7.97887 −0.272394
\(859\) −45.5665 −1.55471 −0.777355 0.629063i \(-0.783439\pi\)
−0.777355 + 0.629063i \(0.783439\pi\)
\(860\) 12.7091 0.433375
\(861\) 4.39430 0.149757
\(862\) −0.762826 −0.0259820
\(863\) 1.71146 0.0582587 0.0291294 0.999576i \(-0.490727\pi\)
0.0291294 + 0.999576i \(0.490727\pi\)
\(864\) −16.9847 −0.577830
\(865\) −63.7604 −2.16792
\(866\) −4.53664 −0.154161
\(867\) 8.49587 0.288535
\(868\) −6.35831 −0.215815
\(869\) 2.61105 0.0885738
\(870\) 1.14068 0.0386726
\(871\) −86.7527 −2.93950
\(872\) −18.2229 −0.617105
\(873\) −51.7415 −1.75118
\(874\) 27.9058 0.943929
\(875\) −16.2699 −0.550024
\(876\) 10.8576 0.366843
\(877\) 42.5013 1.43517 0.717584 0.696472i \(-0.245248\pi\)
0.717584 + 0.696472i \(0.245248\pi\)
\(878\) 16.3427 0.551540
\(879\) 5.36510 0.180960
\(880\) 9.73545 0.328182
\(881\) 47.3462 1.59513 0.797567 0.603231i \(-0.206120\pi\)
0.797567 + 0.603231i \(0.206120\pi\)
\(882\) −13.3210 −0.448540
\(883\) −44.0352 −1.48190 −0.740951 0.671559i \(-0.765625\pi\)
−0.740951 + 0.671559i \(0.765625\pi\)
\(884\) −3.93259 −0.132267
\(885\) 25.2180 0.847694
\(886\) 12.5818 0.422695
\(887\) 15.6633 0.525923 0.262962 0.964806i \(-0.415301\pi\)
0.262962 + 0.964806i \(0.415301\pi\)
\(888\) −9.59978 −0.322147
\(889\) 11.4352 0.383523
\(890\) 11.6961 0.392055
\(891\) −19.9605 −0.668703
\(892\) −11.9527 −0.400207
\(893\) −11.1922 −0.374532
\(894\) −0.197925 −0.00661959
\(895\) −22.8463 −0.763666
\(896\) 7.68220 0.256644
\(897\) −26.2457 −0.876318
\(898\) −4.55709 −0.152072
\(899\) −4.26061 −0.142099
\(900\) 39.7713 1.32571
\(901\) 0.178482 0.00594608
\(902\) −24.4788 −0.815054
\(903\) −0.926931 −0.0308463
\(904\) 10.5691 0.351523
\(905\) −7.31512 −0.243163
\(906\) 4.01790 0.133486
\(907\) −4.05621 −0.134684 −0.0673421 0.997730i \(-0.521452\pi\)
−0.0673421 + 0.997730i \(0.521452\pi\)
\(908\) 23.2430 0.771344
\(909\) −0.972444 −0.0322539
\(910\) 16.7539 0.555385
\(911\) −21.0079 −0.696022 −0.348011 0.937491i \(-0.613143\pi\)
−0.348011 + 0.937491i \(0.613143\pi\)
\(912\) 2.11449 0.0700178
\(913\) −12.9320 −0.427987
\(914\) 4.26837 0.141185
\(915\) −3.66849 −0.121276
\(916\) −17.5906 −0.581209
\(917\) −13.9171 −0.459582
\(918\) −0.870860 −0.0287427
\(919\) −1.82444 −0.0601826 −0.0300913 0.999547i \(-0.509580\pi\)
−0.0300913 + 0.999547i \(0.509580\pi\)
\(920\) −75.1844 −2.47875
\(921\) −5.18193 −0.170750
\(922\) −19.5923 −0.645239
\(923\) 49.6602 1.63458
\(924\) −1.68547 −0.0554479
\(925\) 74.5647 2.45167
\(926\) 7.95099 0.261286
\(927\) 43.7626 1.43735
\(928\) 4.45495 0.146241
\(929\) 18.4341 0.604805 0.302402 0.953180i \(-0.402211\pi\)
0.302402 + 0.953180i \(0.402211\pi\)
\(930\) −8.41212 −0.275844
\(931\) 31.4740 1.03152
\(932\) −24.8036 −0.812469
\(933\) 12.4049 0.406118
\(934\) −6.71356 −0.219674
\(935\) 4.52709 0.148052
\(936\) −50.3941 −1.64718
\(937\) −5.62021 −0.183604 −0.0918021 0.995777i \(-0.529263\pi\)
−0.0918021 + 0.995777i \(0.529263\pi\)
\(938\) 7.51982 0.245531
\(939\) −8.19077 −0.267296
\(940\) 12.5103 0.408042
\(941\) 39.8933 1.30049 0.650243 0.759727i \(-0.274667\pi\)
0.650243 + 0.759727i \(0.274667\pi\)
\(942\) 1.28298 0.0418016
\(943\) −80.5204 −2.62211
\(944\) 10.8597 0.353454
\(945\) −9.04146 −0.294119
\(946\) 5.16353 0.167881
\(947\) −1.90270 −0.0618294 −0.0309147 0.999522i \(-0.509842\pi\)
−0.0309147 + 0.999522i \(0.509842\pi\)
\(948\) −0.633896 −0.0205880
\(949\) 106.860 3.46881
\(950\) 38.5596 1.25104
\(951\) −9.99934 −0.324251
\(952\) 0.821642 0.0266296
\(953\) 23.2751 0.753954 0.376977 0.926223i \(-0.376964\pi\)
0.376977 + 0.926223i \(0.376964\pi\)
\(954\) 0.948889 0.0307214
\(955\) −8.88700 −0.287577
\(956\) 25.8960 0.837536
\(957\) −1.12941 −0.0365086
\(958\) 9.81074 0.316971
\(959\) 9.03814 0.291857
\(960\) 5.46245 0.176300
\(961\) 0.420559 0.0135664
\(962\) −39.1981 −1.26380
\(963\) 41.4469 1.33561
\(964\) −21.7571 −0.700750
\(965\) −53.8216 −1.73258
\(966\) 2.27501 0.0731972
\(967\) −10.2236 −0.328768 −0.164384 0.986396i \(-0.552564\pi\)
−0.164384 + 0.986396i \(0.552564\pi\)
\(968\) −6.05080 −0.194480
\(969\) 0.983261 0.0315869
\(970\) 56.0732 1.80040
\(971\) 0.885195 0.0284073 0.0142036 0.999899i \(-0.495479\pi\)
0.0142036 + 0.999899i \(0.495479\pi\)
\(972\) 17.1743 0.550865
\(973\) 7.14989 0.229215
\(974\) 9.29183 0.297730
\(975\) −36.2656 −1.16143
\(976\) −1.57977 −0.0505673
\(977\) −50.3194 −1.60986 −0.804930 0.593370i \(-0.797797\pi\)
−0.804930 + 0.593370i \(0.797797\pi\)
\(978\) 6.07735 0.194332
\(979\) −11.5806 −0.370116
\(980\) −35.1808 −1.12381
\(981\) 19.1888 0.612652
\(982\) −10.7918 −0.344380
\(983\) 32.5727 1.03891 0.519454 0.854499i \(-0.326136\pi\)
0.519454 + 0.854499i \(0.326136\pi\)
\(984\) 14.3242 0.456640
\(985\) −10.0303 −0.319592
\(986\) 0.228420 0.00727437
\(987\) −0.912437 −0.0290432
\(988\) 49.3990 1.57159
\(989\) 16.9849 0.540089
\(990\) 24.0681 0.764934
\(991\) 42.2425 1.34188 0.670938 0.741513i \(-0.265892\pi\)
0.670938 + 0.741513i \(0.265892\pi\)
\(992\) −32.8538 −1.04311
\(993\) 8.76157 0.278040
\(994\) −4.30460 −0.136534
\(995\) −19.7144 −0.624990
\(996\) 3.13956 0.0994809
\(997\) −32.2633 −1.02179 −0.510894 0.859644i \(-0.670686\pi\)
−0.510894 + 0.859644i \(0.670686\pi\)
\(998\) 9.68330 0.306520
\(999\) 21.1538 0.669276
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 431.2.a.f.1.9 24
3.2 odd 2 3879.2.a.r.1.16 24
4.3 odd 2 6896.2.a.w.1.13 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.f.1.9 24 1.1 even 1 trivial
3879.2.a.r.1.16 24 3.2 odd 2
6896.2.a.w.1.13 24 4.3 odd 2