Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [431,2,Mod(5,431)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(431, base_ring=CyclotomicField(430))
chi = DirichletCharacter(H, H._module([342]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("431.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 431 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 431.g (of order \(215\), degree \(168\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.44155232712\) |
Analytic rank: | \(0\) |
Dimension: | \(5880\) |
Relative dimension: | \(35\) over \(\Q(\zeta_{215})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{215}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −2.66233 | + | 0.194857i | 1.26549 | − | 1.76883i | 5.07134 | − | 0.746346i | −2.12116 | − | 0.0620067i | −3.02449 | + | 4.95581i | 0.780844 | − | 0.584937i | −8.14496 | + | 1.81437i | −0.558663 | − | 1.63758i | 5.65931 | − | 0.248241i |
5.2 | −2.59031 | + | 0.189586i | −0.459563 | + | 0.642351i | 4.69509 | − | 0.690974i | 0.806183 | + | 0.0235667i | 1.06863 | − | 1.75102i | 0.854837 | − | 0.640366i | −6.96055 | + | 1.55053i | 0.767224 | + | 2.24892i | −2.09274 | + | 0.0917963i |
5.3 | −2.39071 | + | 0.174978i | −1.55868 | + | 2.17864i | 3.70621 | − | 0.545441i | 1.90733 | + | 0.0557560i | 3.34515 | − | 5.48123i | −1.73456 | + | 1.29938i | −4.08552 | + | 0.910089i | −1.34833 | − | 3.95228i | −4.56964 | + | 0.200444i |
5.4 | −2.34608 | + | 0.171711i | 1.05945 | − | 1.48084i | 3.49590 | − | 0.514490i | −0.0559383 | − | 0.00163521i | −2.23127 | + | 3.65607i | −2.34018 | + | 1.75305i | −3.52117 | + | 0.784373i | −0.101806 | − | 0.298418i | 0.131516 | − | 0.00576887i |
5.5 | −2.24045 | + | 0.163980i | −0.268343 | + | 0.375075i | 3.01406 | − | 0.443577i | −3.36556 | − | 0.0983834i | 0.539706 | − | 0.884342i | 1.32859 | − | 0.995260i | −2.29471 | + | 0.511169i | 0.899968 | + | 2.63802i | 7.55651 | − | 0.331461i |
5.6 | −1.87779 | + | 0.137437i | −0.905959 | + | 1.26630i | 1.52854 | − | 0.224954i | −3.05565 | − | 0.0893241i | 1.52717 | − | 2.50236i | −3.23949 | + | 2.42673i | 0.836183 | − | 0.186268i | 0.185891 | + | 0.544891i | 5.75016 | − | 0.252227i |
5.7 | −1.81442 | + | 0.132799i | 0.702660 | − | 0.982138i | 1.29581 | − | 0.190704i | 2.08075 | + | 0.0608255i | −1.14450 | + | 1.87533i | 3.85368 | − | 2.88683i | 1.22568 | − | 0.273032i | 0.497776 | + | 1.45910i | −3.78345 | + | 0.165958i |
5.8 | −1.78889 | + | 0.130930i | 0.416164 | − | 0.581690i | 1.20429 | − | 0.177235i | 3.47349 | + | 0.101539i | −0.668310 | + | 1.09507i | −2.67429 | + | 2.00333i | 1.37039 | − | 0.305266i | 0.803470 | + | 2.35516i | −6.22698 | + | 0.273142i |
5.9 | −1.47323 | + | 0.107827i | −1.74955 | + | 2.44542i | 0.180102 | − | 0.0265055i | −2.15511 | − | 0.0629990i | 2.31381 | − | 3.79132i | 1.47005 | − | 1.10123i | 2.62119 | − | 0.583896i | −1.95051 | − | 5.71742i | 3.18177 | − | 0.139566i |
5.10 | −1.33250 | + | 0.0975262i | 1.69925 | − | 2.37511i | −0.212651 | + | 0.0312957i | −1.49743 | − | 0.0437735i | −2.03261 | + | 3.33055i | 1.96607 | − | 1.47280i | 2.88850 | − | 0.643440i | −1.78508 | − | 5.23249i | 1.99959 | − | 0.0877105i |
5.11 | −1.29290 | + | 0.0946282i | 1.33541 | − | 1.86657i | −0.316048 | + | 0.0465126i | −2.39201 | − | 0.0699244i | −1.54993 | + | 2.53965i | −2.75421 | + | 2.06321i | 2.93491 | − | 0.653779i | −0.732097 | − | 2.14595i | 3.09926 | − | 0.135947i |
5.12 | −1.21343 | + | 0.0888114i | −1.11023 | + | 1.55182i | −0.514168 | + | 0.0756698i | 3.76433 | + | 0.110040i | 1.20936 | − | 1.98162i | 0.698634 | − | 0.523353i | 2.99232 | − | 0.666567i | −0.206884 | − | 0.606428i | −4.57751 | + | 0.200789i |
5.13 | −0.938919 | + | 0.0687200i | −1.08710 | + | 1.51949i | −1.10184 | + | 0.162157i | 0.355845 | + | 0.0104022i | 0.916283 | − | 1.50139i | 1.57666 | − | 1.18109i | 2.86121 | − | 0.637362i | −0.158420 | − | 0.464367i | −0.334825 | + | 0.0146868i |
5.14 | −0.637787 | + | 0.0466800i | 0.0585875 | − | 0.0818903i | −1.57409 | + | 0.231659i | −0.920024 | − | 0.0268946i | −0.0335437 | + | 0.0549634i | 0.775804 | − | 0.581162i | 2.24151 | − | 0.499318i | 0.965368 | + | 2.82972i | 0.588035 | − | 0.0257937i |
5.15 | −0.401820 | + | 0.0294094i | 0.932471 | − | 1.30336i | −1.81809 | + | 0.267568i | 1.10023 | + | 0.0321624i | −0.336354 | + | 0.551137i | 0.145881 | − | 0.109281i | 1.50919 | − | 0.336186i | 0.139408 | + | 0.408637i | −0.443039 | + | 0.0194336i |
5.16 | −0.368842 | + | 0.0269958i | 0.224442 | − | 0.313712i | −1.84337 | + | 0.271288i | −3.72788 | − | 0.108975i | −0.0743147 | + | 0.121769i | 2.78896 | − | 2.08924i | 1.39455 | − | 0.310650i | 0.920600 | + | 2.69850i | 1.37794 | − | 0.0604424i |
5.17 | −0.367429 | + | 0.0268924i | −0.745733 | + | 1.04234i | −1.84441 | + | 0.271440i | −1.79441 | − | 0.0524548i | 0.245973 | − | 0.403042i | −3.63620 | + | 2.72391i | 1.38959 | − | 0.309543i | 0.438279 | + | 1.28470i | 0.660728 | − | 0.0289823i |
5.18 | −0.157447 | + | 0.0115237i | 1.60827 | − | 2.24795i | −1.95403 | + | 0.287574i | 3.23009 | + | 0.0944234i | −0.227314 | + | 0.372467i | −0.366625 | + | 0.274642i | 0.612527 | − | 0.136446i | −1.49811 | − | 4.39131i | −0.509658 | + | 0.0223558i |
5.19 | 0.154754 | − | 0.0113265i | −1.86776 | + | 2.61064i | −1.95487 | + | 0.287697i | 2.55594 | + | 0.0747164i | −0.259472 | + | 0.425161i | −3.34637 | + | 2.50679i | −0.602174 | + | 0.134140i | −2.35831 | − | 6.91277i | 0.396387 | − | 0.0173872i |
5.20 | 0.183861 | − | 0.0134569i | 0.342119 | − | 0.478194i | −1.94506 | + | 0.286254i | 1.14690 | + | 0.0335267i | 0.0564672 | − | 0.0925251i | −2.02516 | + | 1.51707i | −0.713653 | + | 0.158973i | 0.857017 | + | 2.51212i | 0.211321 | − | 0.00926944i |
See next 80 embeddings (of 5880 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
431.g | even | 215 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 431.2.g.a | ✓ | 5880 |
431.g | even | 215 | 1 | inner | 431.2.g.a | ✓ | 5880 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
431.2.g.a | ✓ | 5880 | 1.a | even | 1 | 1 | trivial |
431.2.g.a | ✓ | 5880 | 431.g | even | 215 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(431, [\chi])\).