Properties

Label 432.2.u.c.241.2
Level $432$
Weight $2$
Character 432.241
Analytic conductor $3.450$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,2,Mod(49,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.u (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 241.2
Root \(0.500000 + 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 432.241
Dual form 432.2.u.c.337.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72962 - 0.0916693i) q^{3} +(-1.33735 + 1.12217i) q^{5} +(2.31094 - 0.841112i) q^{7} +(2.98319 - 0.317107i) q^{9} +(0.960783 + 0.806193i) q^{11} +(-0.789931 - 4.47992i) q^{13} +(-2.21024 + 2.06353i) q^{15} +(3.32358 + 5.75662i) q^{17} +(0.124578 - 0.215776i) q^{19} +(3.91994 - 1.66665i) q^{21} +(0.791222 + 0.287981i) q^{23} +(-0.339001 + 1.92257i) q^{25} +(5.13073 - 0.821942i) q^{27} +(-0.0889744 + 0.504599i) q^{29} +(-0.770551 - 0.280458i) q^{31} +(1.73570 + 1.30634i) q^{33} +(-2.14666 + 3.71812i) q^{35} +(-1.30403 - 2.25865i) q^{37} +(-1.77695 - 7.67616i) q^{39} +(-1.41572 - 8.02895i) q^{41} +(-3.31478 - 2.78143i) q^{43} +(-3.63373 + 3.77173i) q^{45} +(-4.98256 + 1.81351i) q^{47} +(-0.729356 + 0.612002i) q^{49} +(6.27625 + 9.65211i) q^{51} -10.4841 q^{53} -2.18959 q^{55} +(0.195693 - 0.384630i) q^{57} +(2.30289 - 1.93235i) q^{59} +(-2.70930 + 0.986103i) q^{61} +(6.62725 - 3.24201i) q^{63} +(6.08365 + 5.10479i) q^{65} +(-1.75146 - 9.93303i) q^{67} +(1.39492 + 0.425568i) q^{69} +(0.0447378 + 0.0774882i) q^{71} +(2.66057 - 4.60824i) q^{73} +(-0.410103 + 3.35640i) q^{75} +(2.89841 + 1.05493i) q^{77} +(-0.829503 + 4.70435i) q^{79} +(8.79889 - 1.89198i) q^{81} +(-1.39625 + 7.91851i) q^{83} +(-10.9047 - 3.96899i) q^{85} +(-0.107636 + 0.880922i) q^{87} +(-3.35189 + 5.80564i) q^{89} +(-5.59359 - 9.68839i) q^{91} +(-1.35847 - 0.414450i) q^{93} +(0.0755324 + 0.428365i) q^{95} +(4.20603 + 3.52928i) q^{97} +(3.12185 + 2.10036i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 3 q^{5} + 6 q^{7} - 3 q^{11} - 6 q^{13} - 9 q^{15} + 9 q^{17} + 3 q^{19} - 12 q^{21} + 12 q^{23} + 3 q^{25} + 9 q^{27} - 6 q^{29} - 3 q^{31} - 12 q^{35} - 3 q^{37} - 33 q^{39} + 15 q^{41}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72962 0.0916693i 0.998598 0.0529253i
\(4\) 0 0
\(5\) −1.33735 + 1.12217i −0.598081 + 0.501850i −0.890828 0.454340i \(-0.849875\pi\)
0.292747 + 0.956190i \(0.405431\pi\)
\(6\) 0 0
\(7\) 2.31094 0.841112i 0.873452 0.317910i 0.133888 0.990997i \(-0.457254\pi\)
0.739564 + 0.673086i \(0.235032\pi\)
\(8\) 0 0
\(9\) 2.98319 0.317107i 0.994398 0.105702i
\(10\) 0 0
\(11\) 0.960783 + 0.806193i 0.289687 + 0.243076i 0.776036 0.630688i \(-0.217227\pi\)
−0.486349 + 0.873764i \(0.661672\pi\)
\(12\) 0 0
\(13\) −0.789931 4.47992i −0.219087 1.24251i −0.873671 0.486517i \(-0.838267\pi\)
0.654584 0.755989i \(-0.272844\pi\)
\(14\) 0 0
\(15\) −2.21024 + 2.06353i −0.570683 + 0.532800i
\(16\) 0 0
\(17\) 3.32358 + 5.75662i 0.806088 + 1.39618i 0.915554 + 0.402194i \(0.131752\pi\)
−0.109467 + 0.993990i \(0.534914\pi\)
\(18\) 0 0
\(19\) 0.124578 0.215776i 0.0285802 0.0495023i −0.851382 0.524547i \(-0.824235\pi\)
0.879962 + 0.475045i \(0.157568\pi\)
\(20\) 0 0
\(21\) 3.91994 1.66665i 0.855402 0.363693i
\(22\) 0 0
\(23\) 0.791222 + 0.287981i 0.164981 + 0.0600483i 0.423190 0.906041i \(-0.360910\pi\)
−0.258209 + 0.966089i \(0.583132\pi\)
\(24\) 0 0
\(25\) −0.339001 + 1.92257i −0.0678002 + 0.384514i
\(26\) 0 0
\(27\) 5.13073 0.821942i 0.987410 0.158183i
\(28\) 0 0
\(29\) −0.0889744 + 0.504599i −0.0165221 + 0.0937016i −0.991954 0.126601i \(-0.959593\pi\)
0.975432 + 0.220302i \(0.0707044\pi\)
\(30\) 0 0
\(31\) −0.770551 0.280458i −0.138395 0.0503717i 0.271894 0.962327i \(-0.412350\pi\)
−0.410289 + 0.911956i \(0.634572\pi\)
\(32\) 0 0
\(33\) 1.73570 + 1.30634i 0.302146 + 0.227404i
\(34\) 0 0
\(35\) −2.14666 + 3.71812i −0.362852 + 0.628478i
\(36\) 0 0
\(37\) −1.30403 2.25865i −0.214381 0.371319i 0.738700 0.674035i \(-0.235440\pi\)
−0.953081 + 0.302715i \(0.902107\pi\)
\(38\) 0 0
\(39\) −1.77695 7.67616i −0.284540 1.22917i
\(40\) 0 0
\(41\) −1.41572 8.02895i −0.221099 1.25391i −0.870005 0.493044i \(-0.835884\pi\)
0.648906 0.760869i \(-0.275227\pi\)
\(42\) 0 0
\(43\) −3.31478 2.78143i −0.505500 0.424165i 0.354042 0.935229i \(-0.384807\pi\)
−0.859542 + 0.511065i \(0.829251\pi\)
\(44\) 0 0
\(45\) −3.63373 + 3.77173i −0.541684 + 0.562257i
\(46\) 0 0
\(47\) −4.98256 + 1.81351i −0.726782 + 0.264527i −0.678802 0.734321i \(-0.737501\pi\)
−0.0479798 + 0.998848i \(0.515278\pi\)
\(48\) 0 0
\(49\) −0.729356 + 0.612002i −0.104194 + 0.0874289i
\(50\) 0 0
\(51\) 6.27625 + 9.65211i 0.878851 + 1.35157i
\(52\) 0 0
\(53\) −10.4841 −1.44010 −0.720052 0.693920i \(-0.755882\pi\)
−0.720052 + 0.693920i \(0.755882\pi\)
\(54\) 0 0
\(55\) −2.18959 −0.295244
\(56\) 0 0
\(57\) 0.195693 0.384630i 0.0259202 0.0509456i
\(58\) 0 0
\(59\) 2.30289 1.93235i 0.299810 0.251571i −0.480455 0.877019i \(-0.659529\pi\)
0.780265 + 0.625449i \(0.215084\pi\)
\(60\) 0 0
\(61\) −2.70930 + 0.986103i −0.346890 + 0.126258i −0.509589 0.860418i \(-0.670202\pi\)
0.162699 + 0.986676i \(0.447980\pi\)
\(62\) 0 0
\(63\) 6.62725 3.24201i 0.834955 0.408455i
\(64\) 0 0
\(65\) 6.08365 + 5.10479i 0.754584 + 0.633171i
\(66\) 0 0
\(67\) −1.75146 9.93303i −0.213975 1.21351i −0.882676 0.469982i \(-0.844261\pi\)
0.668701 0.743531i \(-0.266851\pi\)
\(68\) 0 0
\(69\) 1.39492 + 0.425568i 0.167928 + 0.0512324i
\(70\) 0 0
\(71\) 0.0447378 + 0.0774882i 0.00530940 + 0.00919615i 0.868668 0.495395i \(-0.164977\pi\)
−0.863358 + 0.504591i \(0.831643\pi\)
\(72\) 0 0
\(73\) 2.66057 4.60824i 0.311396 0.539354i −0.667269 0.744817i \(-0.732537\pi\)
0.978665 + 0.205463i \(0.0658701\pi\)
\(74\) 0 0
\(75\) −0.410103 + 3.35640i −0.0473546 + 0.387563i
\(76\) 0 0
\(77\) 2.89841 + 1.05493i 0.330304 + 0.120221i
\(78\) 0 0
\(79\) −0.829503 + 4.70435i −0.0933264 + 0.529280i 0.901921 + 0.431901i \(0.142157\pi\)
−0.995247 + 0.0973792i \(0.968954\pi\)
\(80\) 0 0
\(81\) 8.79889 1.89198i 0.977654 0.210220i
\(82\) 0 0
\(83\) −1.39625 + 7.91851i −0.153258 + 0.869169i 0.807103 + 0.590410i \(0.201034\pi\)
−0.960361 + 0.278759i \(0.910077\pi\)
\(84\) 0 0
\(85\) −10.9047 3.96899i −1.18278 0.430497i
\(86\) 0 0
\(87\) −0.107636 + 0.880922i −0.0115398 + 0.0944448i
\(88\) 0 0
\(89\) −3.35189 + 5.80564i −0.355299 + 0.615396i −0.987169 0.159678i \(-0.948954\pi\)
0.631870 + 0.775074i \(0.282288\pi\)
\(90\) 0 0
\(91\) −5.59359 9.68839i −0.586368 1.01562i
\(92\) 0 0
\(93\) −1.35847 0.414450i −0.140867 0.0429765i
\(94\) 0 0
\(95\) 0.0755324 + 0.428365i 0.00774946 + 0.0439494i
\(96\) 0 0
\(97\) 4.20603 + 3.52928i 0.427057 + 0.358344i 0.830840 0.556511i \(-0.187860\pi\)
−0.403783 + 0.914855i \(0.632305\pi\)
\(98\) 0 0
\(99\) 3.12185 + 2.10036i 0.313758 + 0.211094i
\(100\) 0 0
\(101\) −4.70360 + 1.71197i −0.468025 + 0.170347i −0.565258 0.824914i \(-0.691223\pi\)
0.0972322 + 0.995262i \(0.469001\pi\)
\(102\) 0 0
\(103\) −8.90079 + 7.46865i −0.877021 + 0.735908i −0.965564 0.260164i \(-0.916223\pi\)
0.0885431 + 0.996072i \(0.471779\pi\)
\(104\) 0 0
\(105\) −3.37208 + 6.62774i −0.329081 + 0.646801i
\(106\) 0 0
\(107\) −19.4581 −1.88109 −0.940544 0.339673i \(-0.889684\pi\)
−0.940544 + 0.339673i \(0.889684\pi\)
\(108\) 0 0
\(109\) 6.31515 0.604881 0.302441 0.953168i \(-0.402199\pi\)
0.302441 + 0.953168i \(0.402199\pi\)
\(110\) 0 0
\(111\) −2.46253 3.78707i −0.233733 0.359453i
\(112\) 0 0
\(113\) −5.29775 + 4.44534i −0.498371 + 0.418183i −0.857015 0.515292i \(-0.827684\pi\)
0.358644 + 0.933474i \(0.383239\pi\)
\(114\) 0 0
\(115\) −1.38131 + 0.502754i −0.128807 + 0.0468821i
\(116\) 0 0
\(117\) −3.77713 13.1140i −0.349196 1.21239i
\(118\) 0 0
\(119\) 12.5226 + 10.5077i 1.14794 + 0.963236i
\(120\) 0 0
\(121\) −1.63697 9.28373i −0.148816 0.843976i
\(122\) 0 0
\(123\) −3.18467 13.7573i −0.287152 1.24045i
\(124\) 0 0
\(125\) −6.06855 10.5110i −0.542788 0.940136i
\(126\) 0 0
\(127\) 6.01162 10.4124i 0.533445 0.923954i −0.465792 0.884894i \(-0.654230\pi\)
0.999237 0.0390598i \(-0.0124363\pi\)
\(128\) 0 0
\(129\) −5.98830 4.50697i −0.527240 0.396817i
\(130\) 0 0
\(131\) −13.2354 4.81728i −1.15638 0.420888i −0.308577 0.951199i \(-0.599853\pi\)
−0.847803 + 0.530311i \(0.822075\pi\)
\(132\) 0 0
\(133\) 0.106401 0.603428i 0.00922610 0.0523238i
\(134\) 0 0
\(135\) −5.93923 + 6.85678i −0.511167 + 0.590138i
\(136\) 0 0
\(137\) 0.392122 2.22383i 0.0335012 0.189995i −0.963465 0.267836i \(-0.913692\pi\)
0.996966 + 0.0778409i \(0.0248026\pi\)
\(138\) 0 0
\(139\) −7.49414 2.72764i −0.635644 0.231356i 0.00404179 0.999992i \(-0.498713\pi\)
−0.639686 + 0.768636i \(0.720936\pi\)
\(140\) 0 0
\(141\) −8.45172 + 3.59343i −0.711763 + 0.302621i
\(142\) 0 0
\(143\) 2.85273 4.94107i 0.238557 0.413193i
\(144\) 0 0
\(145\) −0.447256 0.774670i −0.0371426 0.0643328i
\(146\) 0 0
\(147\) −1.20541 + 1.12539i −0.0994204 + 0.0928208i
\(148\) 0 0
\(149\) −0.0185697 0.105314i −0.00152129 0.00862764i 0.984038 0.177960i \(-0.0569499\pi\)
−0.985559 + 0.169333i \(0.945839\pi\)
\(150\) 0 0
\(151\) 15.5196 + 13.0225i 1.26297 + 1.05976i 0.995359 + 0.0962282i \(0.0306779\pi\)
0.267609 + 0.963528i \(0.413767\pi\)
\(152\) 0 0
\(153\) 11.7404 + 16.1192i 0.949152 + 1.30316i
\(154\) 0 0
\(155\) 1.34522 0.489620i 0.108051 0.0393272i
\(156\) 0 0
\(157\) −15.8953 + 13.3377i −1.26858 + 1.06447i −0.273871 + 0.961767i \(0.588304\pi\)
−0.994712 + 0.102701i \(0.967252\pi\)
\(158\) 0 0
\(159\) −18.1336 + 0.961071i −1.43809 + 0.0762179i
\(160\) 0 0
\(161\) 2.07069 0.163193
\(162\) 0 0
\(163\) 20.1346 1.57706 0.788531 0.614995i \(-0.210842\pi\)
0.788531 + 0.614995i \(0.210842\pi\)
\(164\) 0 0
\(165\) −3.78716 + 0.200718i −0.294830 + 0.0156259i
\(166\) 0 0
\(167\) 15.2156 12.7674i 1.17742 0.987974i 0.177429 0.984134i \(-0.443222\pi\)
0.999993 0.00383999i \(-0.00122231\pi\)
\(168\) 0 0
\(169\) −7.22968 + 2.63139i −0.556130 + 0.202415i
\(170\) 0 0
\(171\) 0.303217 0.683205i 0.0231876 0.0522460i
\(172\) 0 0
\(173\) 14.4975 + 12.1648i 1.10222 + 0.924875i 0.997573 0.0696342i \(-0.0221832\pi\)
0.104650 + 0.994509i \(0.466628\pi\)
\(174\) 0 0
\(175\) 0.833686 + 4.72807i 0.0630208 + 0.357409i
\(176\) 0 0
\(177\) 3.80599 3.55334i 0.286075 0.267085i
\(178\) 0 0
\(179\) 5.45683 + 9.45151i 0.407863 + 0.706439i 0.994650 0.103302i \(-0.0329409\pi\)
−0.586787 + 0.809741i \(0.699608\pi\)
\(180\) 0 0
\(181\) 8.97393 15.5433i 0.667027 1.15532i −0.311704 0.950179i \(-0.600900\pi\)
0.978731 0.205146i \(-0.0657668\pi\)
\(182\) 0 0
\(183\) −4.59567 + 1.95395i −0.339721 + 0.144440i
\(184\) 0 0
\(185\) 4.27853 + 1.55726i 0.314564 + 0.114492i
\(186\) 0 0
\(187\) −1.44770 + 8.21031i −0.105866 + 0.600397i
\(188\) 0 0
\(189\) 11.1654 6.21498i 0.812167 0.452073i
\(190\) 0 0
\(191\) 4.68261 26.5564i 0.338822 1.92155i −0.0468192 0.998903i \(-0.514908\pi\)
0.385641 0.922649i \(-0.373980\pi\)
\(192\) 0 0
\(193\) 16.1202 + 5.86729i 1.16036 + 0.422337i 0.849226 0.528029i \(-0.177069\pi\)
0.311135 + 0.950366i \(0.399291\pi\)
\(194\) 0 0
\(195\) 10.9904 + 8.27167i 0.787037 + 0.592347i
\(196\) 0 0
\(197\) −1.25612 + 2.17567i −0.0894951 + 0.155010i −0.907298 0.420489i \(-0.861859\pi\)
0.817803 + 0.575499i \(0.195192\pi\)
\(198\) 0 0
\(199\) 9.26942 + 16.0551i 0.657092 + 1.13812i 0.981365 + 0.192153i \(0.0615470\pi\)
−0.324273 + 0.945964i \(0.605120\pi\)
\(200\) 0 0
\(201\) −3.93992 17.0198i −0.277901 1.20049i
\(202\) 0 0
\(203\) 0.218810 + 1.24093i 0.0153574 + 0.0870964i
\(204\) 0 0
\(205\) 10.9032 + 9.14885i 0.761510 + 0.638983i
\(206\) 0 0
\(207\) 2.45169 + 0.608202i 0.170404 + 0.0422730i
\(208\) 0 0
\(209\) 0.293649 0.106880i 0.0203121 0.00739301i
\(210\) 0 0
\(211\) 2.82761 2.37264i 0.194661 0.163340i −0.540248 0.841506i \(-0.681670\pi\)
0.734908 + 0.678166i \(0.237225\pi\)
\(212\) 0 0
\(213\) 0.0844829 + 0.129924i 0.00578867 + 0.00890226i
\(214\) 0 0
\(215\) 7.55427 0.515197
\(216\) 0 0
\(217\) −2.01659 −0.136895
\(218\) 0 0
\(219\) 4.17935 8.21441i 0.282414 0.555079i
\(220\) 0 0
\(221\) 23.1638 19.4367i 1.55816 1.30746i
\(222\) 0 0
\(223\) −19.9601 + 7.26487i −1.33662 + 0.486491i −0.908748 0.417346i \(-0.862960\pi\)
−0.427876 + 0.903837i \(0.640738\pi\)
\(224\) 0 0
\(225\) −0.401646 + 5.84289i −0.0267764 + 0.389526i
\(226\) 0 0
\(227\) 10.9851 + 9.21761i 0.729108 + 0.611794i 0.929888 0.367842i \(-0.119903\pi\)
−0.200781 + 0.979636i \(0.564348\pi\)
\(228\) 0 0
\(229\) 2.93219 + 16.6293i 0.193765 + 1.09889i 0.914167 + 0.405337i \(0.132846\pi\)
−0.720403 + 0.693556i \(0.756043\pi\)
\(230\) 0 0
\(231\) 5.10985 + 1.55894i 0.336204 + 0.102571i
\(232\) 0 0
\(233\) −2.79972 4.84926i −0.183416 0.317686i 0.759626 0.650361i \(-0.225382\pi\)
−0.943042 + 0.332675i \(0.892049\pi\)
\(234\) 0 0
\(235\) 4.62837 8.01658i 0.301922 0.522944i
\(236\) 0 0
\(237\) −1.00348 + 8.21279i −0.0651833 + 0.533478i
\(238\) 0 0
\(239\) −4.95620 1.80391i −0.320590 0.116685i 0.176712 0.984263i \(-0.443454\pi\)
−0.497302 + 0.867577i \(0.665676\pi\)
\(240\) 0 0
\(241\) −1.54590 + 8.76723i −0.0995801 + 0.564747i 0.893667 + 0.448730i \(0.148124\pi\)
−0.993247 + 0.116017i \(0.962987\pi\)
\(242\) 0 0
\(243\) 15.0453 4.07900i 0.965158 0.261668i
\(244\) 0 0
\(245\) 0.288634 1.63692i 0.0184401 0.104579i
\(246\) 0 0
\(247\) −1.06507 0.387652i −0.0677685 0.0246657i
\(248\) 0 0
\(249\) −1.68910 + 13.8240i −0.107042 + 0.876062i
\(250\) 0 0
\(251\) −3.89010 + 6.73786i −0.245541 + 0.425290i −0.962284 0.272048i \(-0.912299\pi\)
0.716742 + 0.697338i \(0.245632\pi\)
\(252\) 0 0
\(253\) 0.528024 + 0.914565i 0.0331966 + 0.0574982i
\(254\) 0 0
\(255\) −19.2249 5.86523i −1.20391 0.367295i
\(256\) 0 0
\(257\) −3.54877 20.1261i −0.221366 1.25543i −0.869511 0.493913i \(-0.835566\pi\)
0.648145 0.761517i \(-0.275545\pi\)
\(258\) 0 0
\(259\) −4.91331 4.12275i −0.305298 0.256175i
\(260\) 0 0
\(261\) −0.105416 + 1.53353i −0.00652510 + 0.0949231i
\(262\) 0 0
\(263\) 10.5996 3.85792i 0.653596 0.237890i 0.00612723 0.999981i \(-0.498050\pi\)
0.647469 + 0.762092i \(0.275827\pi\)
\(264\) 0 0
\(265\) 14.0209 11.7650i 0.861299 0.722716i
\(266\) 0 0
\(267\) −5.26530 + 10.3488i −0.322231 + 0.633338i
\(268\) 0 0
\(269\) −0.307761 −0.0187645 −0.00938226 0.999956i \(-0.502987\pi\)
−0.00938226 + 0.999956i \(0.502987\pi\)
\(270\) 0 0
\(271\) 2.22251 0.135008 0.0675040 0.997719i \(-0.478496\pi\)
0.0675040 + 0.997719i \(0.478496\pi\)
\(272\) 0 0
\(273\) −10.5629 16.2445i −0.639298 0.983162i
\(274\) 0 0
\(275\) −1.87567 + 1.57387i −0.113107 + 0.0949080i
\(276\) 0 0
\(277\) 21.9228 7.97924i 1.31721 0.479426i 0.414648 0.909982i \(-0.363905\pi\)
0.902564 + 0.430556i \(0.141683\pi\)
\(278\) 0 0
\(279\) −2.38764 0.592313i −0.142944 0.0354608i
\(280\) 0 0
\(281\) 5.53502 + 4.64443i 0.330192 + 0.277064i 0.792778 0.609511i \(-0.208634\pi\)
−0.462586 + 0.886574i \(0.653078\pi\)
\(282\) 0 0
\(283\) −1.23643 7.01212i −0.0734979 0.416827i −0.999251 0.0386985i \(-0.987679\pi\)
0.925753 0.378129i \(-0.123432\pi\)
\(284\) 0 0
\(285\) 0.169911 + 0.733987i 0.0100646 + 0.0434776i
\(286\) 0 0
\(287\) −10.0249 17.3636i −0.591751 1.02494i
\(288\) 0 0
\(289\) −13.5924 + 23.5428i −0.799555 + 1.38487i
\(290\) 0 0
\(291\) 7.59837 + 5.71875i 0.445424 + 0.335239i
\(292\) 0 0
\(293\) −0.519166 0.188961i −0.0303300 0.0110392i 0.326811 0.945090i \(-0.394026\pi\)
−0.357141 + 0.934051i \(0.616248\pi\)
\(294\) 0 0
\(295\) −0.911339 + 5.16846i −0.0530602 + 0.300919i
\(296\) 0 0
\(297\) 5.59216 + 3.34665i 0.324490 + 0.194192i
\(298\) 0 0
\(299\) 0.665122 3.77210i 0.0384650 0.218146i
\(300\) 0 0
\(301\) −9.99975 3.63961i −0.576376 0.209784i
\(302\) 0 0
\(303\) −7.97852 + 3.39224i −0.458354 + 0.194879i
\(304\) 0 0
\(305\) 2.51670 4.35906i 0.144106 0.249599i
\(306\) 0 0
\(307\) 3.36438 + 5.82728i 0.192015 + 0.332580i 0.945918 0.324406i \(-0.105164\pi\)
−0.753903 + 0.656986i \(0.771831\pi\)
\(308\) 0 0
\(309\) −14.7104 + 13.7339i −0.836844 + 0.781293i
\(310\) 0 0
\(311\) −2.67825 15.1891i −0.151870 0.861297i −0.961592 0.274483i \(-0.911493\pi\)
0.809722 0.586814i \(-0.199618\pi\)
\(312\) 0 0
\(313\) −18.0487 15.1446i −1.02017 0.856025i −0.0305223 0.999534i \(-0.509717\pi\)
−0.989649 + 0.143509i \(0.954162\pi\)
\(314\) 0 0
\(315\) −5.22486 + 11.7726i −0.294388 + 0.663311i
\(316\) 0 0
\(317\) −6.81469 + 2.48034i −0.382751 + 0.139310i −0.526228 0.850344i \(-0.676394\pi\)
0.143477 + 0.989654i \(0.454172\pi\)
\(318\) 0 0
\(319\) −0.492289 + 0.413079i −0.0275629 + 0.0231280i
\(320\) 0 0
\(321\) −33.6552 + 1.78371i −1.87845 + 0.0995571i
\(322\) 0 0
\(323\) 1.65618 0.0921525
\(324\) 0 0
\(325\) 8.88074 0.492615
\(326\) 0 0
\(327\) 10.9228 0.578905i 0.604034 0.0320135i
\(328\) 0 0
\(329\) −9.98903 + 8.38179i −0.550713 + 0.462103i
\(330\) 0 0
\(331\) 27.2835 9.93037i 1.49964 0.545823i 0.543669 0.839300i \(-0.317035\pi\)
0.955966 + 0.293477i \(0.0948124\pi\)
\(332\) 0 0
\(333\) −4.60641 6.32447i −0.252430 0.346579i
\(334\) 0 0
\(335\) 13.4889 + 11.3185i 0.736976 + 0.618396i
\(336\) 0 0
\(337\) −0.201275 1.14149i −0.0109641 0.0621807i 0.978835 0.204652i \(-0.0656063\pi\)
−0.989799 + 0.142471i \(0.954495\pi\)
\(338\) 0 0
\(339\) −8.75561 + 8.17441i −0.475540 + 0.443973i
\(340\) 0 0
\(341\) −0.514230 0.890672i −0.0278471 0.0482326i
\(342\) 0 0
\(343\) −9.77810 + 16.9362i −0.527968 + 0.914467i
\(344\) 0 0
\(345\) −2.34305 + 0.996198i −0.126146 + 0.0536335i
\(346\) 0 0
\(347\) 5.53452 + 2.01440i 0.297108 + 0.108139i 0.486273 0.873807i \(-0.338356\pi\)
−0.189165 + 0.981945i \(0.560578\pi\)
\(348\) 0 0
\(349\) −5.31237 + 30.1279i −0.284364 + 1.61271i 0.423183 + 0.906044i \(0.360913\pi\)
−0.707547 + 0.706666i \(0.750198\pi\)
\(350\) 0 0
\(351\) −7.73516 22.3360i −0.412872 1.19221i
\(352\) 0 0
\(353\) 6.41826 36.3997i 0.341609 1.93736i −0.00668455 0.999978i \(-0.502128\pi\)
0.348294 0.937385i \(-0.386761\pi\)
\(354\) 0 0
\(355\) −0.146785 0.0534254i −0.00779054 0.00283553i
\(356\) 0 0
\(357\) 22.6225 + 17.0264i 1.19731 + 0.901131i
\(358\) 0 0
\(359\) −13.1880 + 22.8423i −0.696037 + 1.20557i 0.273792 + 0.961789i \(0.411722\pi\)
−0.969830 + 0.243783i \(0.921611\pi\)
\(360\) 0 0
\(361\) 9.46896 + 16.4007i 0.498366 + 0.863196i
\(362\) 0 0
\(363\) −3.68238 15.9073i −0.193275 0.834917i
\(364\) 0 0
\(365\) 1.61312 + 9.14845i 0.0844345 + 0.478852i
\(366\) 0 0
\(367\) 8.66636 + 7.27194i 0.452380 + 0.379592i 0.840318 0.542093i \(-0.182368\pi\)
−0.387938 + 0.921685i \(0.626813\pi\)
\(368\) 0 0
\(369\) −6.76941 23.5030i −0.352401 1.22352i
\(370\) 0 0
\(371\) −24.2281 + 8.81831i −1.25786 + 0.457824i
\(372\) 0 0
\(373\) 4.47682 3.75650i 0.231801 0.194504i −0.519487 0.854478i \(-0.673877\pi\)
0.751289 + 0.659974i \(0.229433\pi\)
\(374\) 0 0
\(375\) −11.4599 17.6238i −0.591784 0.910092i
\(376\) 0 0
\(377\) 2.33085 0.120045
\(378\) 0 0
\(379\) −24.3265 −1.24957 −0.624783 0.780798i \(-0.714813\pi\)
−0.624783 + 0.780798i \(0.714813\pi\)
\(380\) 0 0
\(381\) 9.44334 18.5607i 0.483797 0.950892i
\(382\) 0 0
\(383\) 2.92326 2.45291i 0.149372 0.125338i −0.565039 0.825064i \(-0.691139\pi\)
0.714411 + 0.699726i \(0.246695\pi\)
\(384\) 0 0
\(385\) −5.06000 + 1.84169i −0.257881 + 0.0938612i
\(386\) 0 0
\(387\) −10.7707 7.24642i −0.547503 0.368356i
\(388\) 0 0
\(389\) 8.30534 + 6.96901i 0.421097 + 0.353343i 0.828580 0.559870i \(-0.189149\pi\)
−0.407483 + 0.913213i \(0.633593\pi\)
\(390\) 0 0
\(391\) 0.971896 + 5.51189i 0.0491509 + 0.278748i
\(392\) 0 0
\(393\) −23.3338 7.11881i −1.17704 0.359096i
\(394\) 0 0
\(395\) −4.16974 7.22221i −0.209802 0.363389i
\(396\) 0 0
\(397\) 5.25461 9.10124i 0.263721 0.456778i −0.703507 0.710689i \(-0.748383\pi\)
0.967228 + 0.253910i \(0.0817168\pi\)
\(398\) 0 0
\(399\) 0.128717 1.05346i 0.00644392 0.0527388i
\(400\) 0 0
\(401\) −13.4992 4.91332i −0.674119 0.245359i −0.0177987 0.999842i \(-0.505666\pi\)
−0.656320 + 0.754482i \(0.727888\pi\)
\(402\) 0 0
\(403\) −0.647746 + 3.67355i −0.0322665 + 0.182993i
\(404\) 0 0
\(405\) −9.64407 + 12.4041i −0.479218 + 0.616364i
\(406\) 0 0
\(407\) 0.568014 3.22137i 0.0281554 0.159677i
\(408\) 0 0
\(409\) −16.6159 6.04769i −0.821603 0.299039i −0.103195 0.994661i \(-0.532907\pi\)
−0.718408 + 0.695622i \(0.755129\pi\)
\(410\) 0 0
\(411\) 0.474366 3.88234i 0.0233988 0.191502i
\(412\) 0 0
\(413\) 3.69650 6.40252i 0.181893 0.315047i
\(414\) 0 0
\(415\) −7.01864 12.1566i −0.344532 0.596746i
\(416\) 0 0
\(417\) −13.2121 4.03081i −0.646998 0.197390i
\(418\) 0 0
\(419\) −1.58606 8.99500i −0.0774842 0.439435i −0.998727 0.0504461i \(-0.983936\pi\)
0.921243 0.388988i \(-0.127175\pi\)
\(420\) 0 0
\(421\) 18.5344 + 15.5522i 0.903310 + 0.757967i 0.970835 0.239750i \(-0.0770656\pi\)
−0.0675243 + 0.997718i \(0.521510\pi\)
\(422\) 0 0
\(423\) −14.2889 + 6.99004i −0.694749 + 0.339867i
\(424\) 0 0
\(425\) −12.1942 + 4.43832i −0.591505 + 0.215290i
\(426\) 0 0
\(427\) −5.43159 + 4.55764i −0.262853 + 0.220560i
\(428\) 0 0
\(429\) 4.48120 8.80769i 0.216354 0.425239i
\(430\) 0 0
\(431\) 29.5332 1.42256 0.711282 0.702907i \(-0.248115\pi\)
0.711282 + 0.702907i \(0.248115\pi\)
\(432\) 0 0
\(433\) 0.669754 0.0321863 0.0160932 0.999870i \(-0.494877\pi\)
0.0160932 + 0.999870i \(0.494877\pi\)
\(434\) 0 0
\(435\) −0.844598 1.29889i −0.0404954 0.0622769i
\(436\) 0 0
\(437\) 0.160708 0.134850i 0.00768772 0.00645076i
\(438\) 0 0
\(439\) −5.96599 + 2.17144i −0.284741 + 0.103637i −0.480442 0.877026i \(-0.659524\pi\)
0.195701 + 0.980664i \(0.437302\pi\)
\(440\) 0 0
\(441\) −1.98174 + 2.05700i −0.0943685 + 0.0979526i
\(442\) 0 0
\(443\) −11.7618 9.86931i −0.558819 0.468905i 0.319095 0.947723i \(-0.396621\pi\)
−0.877914 + 0.478818i \(0.841066\pi\)
\(444\) 0 0
\(445\) −2.03227 11.5256i −0.0963387 0.546364i
\(446\) 0 0
\(447\) −0.0417726 0.180451i −0.00197577 0.00853503i
\(448\) 0 0
\(449\) 16.0199 + 27.7473i 0.756027 + 1.30948i 0.944862 + 0.327468i \(0.106195\pi\)
−0.188836 + 0.982009i \(0.560471\pi\)
\(450\) 0 0
\(451\) 5.11268 8.85543i 0.240747 0.416986i
\(452\) 0 0
\(453\) 28.0368 + 21.1013i 1.31729 + 0.991428i
\(454\) 0 0
\(455\) 18.3526 + 6.67980i 0.860384 + 0.313154i
\(456\) 0 0
\(457\) 3.32849 18.8768i 0.155700 0.883021i −0.802442 0.596730i \(-0.796466\pi\)
0.958143 0.286291i \(-0.0924225\pi\)
\(458\) 0 0
\(459\) 21.7840 + 26.8039i 1.01679 + 1.25110i
\(460\) 0 0
\(461\) −0.906494 + 5.14098i −0.0422196 + 0.239440i −0.998614 0.0526405i \(-0.983236\pi\)
0.956394 + 0.292080i \(0.0943474\pi\)
\(462\) 0 0
\(463\) 1.59502 + 0.580541i 0.0741271 + 0.0269800i 0.378818 0.925471i \(-0.376331\pi\)
−0.304690 + 0.952451i \(0.598553\pi\)
\(464\) 0 0
\(465\) 2.28184 0.970173i 0.105818 0.0449907i
\(466\) 0 0
\(467\) 9.84136 17.0457i 0.455404 0.788783i −0.543307 0.839534i \(-0.682828\pi\)
0.998711 + 0.0507511i \(0.0161615\pi\)
\(468\) 0 0
\(469\) −12.4023 21.4814i −0.572685 0.991920i
\(470\) 0 0
\(471\) −26.2702 + 24.5264i −1.21047 + 1.13012i
\(472\) 0 0
\(473\) −0.942416 5.34471i −0.0433324 0.245750i
\(474\) 0 0
\(475\) 0.372611 + 0.312658i 0.0170966 + 0.0143457i
\(476\) 0 0
\(477\) −31.2761 + 3.32458i −1.43204 + 0.152222i
\(478\) 0 0
\(479\) −27.4892 + 10.0053i −1.25601 + 0.457152i −0.882430 0.470444i \(-0.844094\pi\)
−0.373585 + 0.927596i \(0.621872\pi\)
\(480\) 0 0
\(481\) −9.08847 + 7.62613i −0.414398 + 0.347722i
\(482\) 0 0
\(483\) 3.58151 0.189818i 0.162964 0.00863704i
\(484\) 0 0
\(485\) −9.58538 −0.435250
\(486\) 0 0
\(487\) 20.5056 0.929199 0.464600 0.885521i \(-0.346198\pi\)
0.464600 + 0.885521i \(0.346198\pi\)
\(488\) 0 0
\(489\) 34.8252 1.84572i 1.57485 0.0834664i
\(490\) 0 0
\(491\) −13.4265 + 11.2661i −0.605927 + 0.508433i −0.893345 0.449372i \(-0.851648\pi\)
0.287417 + 0.957805i \(0.407203\pi\)
\(492\) 0 0
\(493\) −3.20050 + 1.16489i −0.144143 + 0.0524638i
\(494\) 0 0
\(495\) −6.53197 + 0.694333i −0.293590 + 0.0312080i
\(496\) 0 0
\(497\) 0.168562 + 0.141441i 0.00756106 + 0.00634448i
\(498\) 0 0
\(499\) 3.31772 + 18.8157i 0.148522 + 0.842307i 0.964472 + 0.264185i \(0.0851031\pi\)
−0.815950 + 0.578122i \(0.803786\pi\)
\(500\) 0 0
\(501\) 25.1469 23.4777i 1.12348 1.04890i
\(502\) 0 0
\(503\) −5.48381 9.49824i −0.244511 0.423506i 0.717483 0.696576i \(-0.245294\pi\)
−0.961994 + 0.273070i \(0.911961\pi\)
\(504\) 0 0
\(505\) 4.36924 7.56774i 0.194429 0.336760i
\(506\) 0 0
\(507\) −12.2634 + 5.21405i −0.544637 + 0.231564i
\(508\) 0 0
\(509\) 18.6993 + 6.80598i 0.828831 + 0.301670i 0.721379 0.692540i \(-0.243509\pi\)
0.107452 + 0.994210i \(0.465731\pi\)
\(510\) 0 0
\(511\) 2.27236 12.8872i 0.100523 0.570096i
\(512\) 0 0
\(513\) 0.461822 1.20948i 0.0203899 0.0534000i
\(514\) 0 0
\(515\) 3.52238 19.9764i 0.155215 0.880266i
\(516\) 0 0
\(517\) −6.24920 2.27452i −0.274839 0.100033i
\(518\) 0 0
\(519\) 26.1903 + 19.7116i 1.14963 + 0.865243i
\(520\) 0 0
\(521\) −17.5583 + 30.4119i −0.769244 + 1.33237i 0.168729 + 0.985662i \(0.446034\pi\)
−0.937973 + 0.346708i \(0.887300\pi\)
\(522\) 0 0
\(523\) −7.12269 12.3369i −0.311453 0.539453i 0.667224 0.744857i \(-0.267482\pi\)
−0.978677 + 0.205404i \(0.934149\pi\)
\(524\) 0 0
\(525\) 1.87538 + 8.10136i 0.0818484 + 0.353572i
\(526\) 0 0
\(527\) −0.946505 5.36789i −0.0412304 0.233829i
\(528\) 0 0
\(529\) −17.0759 14.3284i −0.742431 0.622974i
\(530\) 0 0
\(531\) 6.25719 6.49483i 0.271539 0.281852i
\(532\) 0 0
\(533\) −34.8507 + 12.6846i −1.50955 + 0.549433i
\(534\) 0 0
\(535\) 26.0223 21.8353i 1.12504 0.944023i
\(536\) 0 0
\(537\) 10.3047 + 15.8473i 0.444679 + 0.683862i
\(538\) 0 0
\(539\) −1.19414 −0.0514354
\(540\) 0 0
\(541\) −13.2368 −0.569094 −0.284547 0.958662i \(-0.591843\pi\)
−0.284547 + 0.958662i \(0.591843\pi\)
\(542\) 0 0
\(543\) 14.0967 27.7067i 0.604946 1.18901i
\(544\) 0 0
\(545\) −8.44557 + 7.08667i −0.361768 + 0.303560i
\(546\) 0 0
\(547\) −15.3216 + 5.57661i −0.655105 + 0.238439i −0.648121 0.761537i \(-0.724445\pi\)
−0.00698326 + 0.999976i \(0.502223\pi\)
\(548\) 0 0
\(549\) −7.76965 + 3.80087i −0.331601 + 0.162217i
\(550\) 0 0
\(551\) 0.0977958 + 0.0820605i 0.00416624 + 0.00349589i
\(552\) 0 0
\(553\) 2.03995 + 11.5692i 0.0867476 + 0.491970i
\(554\) 0 0
\(555\) 7.54300 + 2.30126i 0.320183 + 0.0976831i
\(556\) 0 0
\(557\) −15.4486 26.7577i −0.654577 1.13376i −0.982000 0.188883i \(-0.939513\pi\)
0.327422 0.944878i \(-0.393820\pi\)
\(558\) 0 0
\(559\) −9.84215 + 17.0471i −0.416279 + 0.721016i
\(560\) 0 0
\(561\) −1.75134 + 14.3335i −0.0739417 + 0.605159i
\(562\) 0 0
\(563\) 25.1612 + 9.15791i 1.06042 + 0.385960i 0.812585 0.582843i \(-0.198060\pi\)
0.247832 + 0.968803i \(0.420282\pi\)
\(564\) 0 0
\(565\) 2.09652 11.8900i 0.0882013 0.500214i
\(566\) 0 0
\(567\) 18.7423 11.7731i 0.787102 0.494423i
\(568\) 0 0
\(569\) 3.30985 18.7711i 0.138756 0.786924i −0.833414 0.552649i \(-0.813617\pi\)
0.972170 0.234275i \(-0.0752717\pi\)
\(570\) 0 0
\(571\) −17.6420 6.42116i −0.738294 0.268717i −0.0546227 0.998507i \(-0.517396\pi\)
−0.683671 + 0.729790i \(0.739618\pi\)
\(572\) 0 0
\(573\) 5.66474 46.3618i 0.236648 1.93679i
\(574\) 0 0
\(575\) −0.821889 + 1.42355i −0.0342751 + 0.0593663i
\(576\) 0 0
\(577\) 2.42981 + 4.20856i 0.101154 + 0.175204i 0.912161 0.409833i \(-0.134413\pi\)
−0.811006 + 0.585038i \(0.801080\pi\)
\(578\) 0 0
\(579\) 28.4198 + 8.67047i 1.18109 + 0.360332i
\(580\) 0 0
\(581\) 3.43371 + 19.4736i 0.142454 + 0.807899i
\(582\) 0 0
\(583\) −10.0730 8.45221i −0.417179 0.350055i
\(584\) 0 0
\(585\) 19.7675 + 13.2994i 0.817284 + 0.549862i
\(586\) 0 0
\(587\) −30.8194 + 11.2174i −1.27205 + 0.462990i −0.887796 0.460236i \(-0.847765\pi\)
−0.384257 + 0.923226i \(0.625542\pi\)
\(588\) 0 0
\(589\) −0.156510 + 0.131327i −0.00644887 + 0.00541125i
\(590\) 0 0
\(591\) −1.97318 + 3.87824i −0.0811657 + 0.159529i
\(592\) 0 0
\(593\) 17.3446 0.712258 0.356129 0.934437i \(-0.384096\pi\)
0.356129 + 0.934437i \(0.384096\pi\)
\(594\) 0 0
\(595\) −28.5384 −1.16996
\(596\) 0 0
\(597\) 17.5044 + 26.9196i 0.716406 + 1.10174i
\(598\) 0 0
\(599\) −18.6975 + 15.6891i −0.763961 + 0.641039i −0.939155 0.343495i \(-0.888389\pi\)
0.175194 + 0.984534i \(0.443945\pi\)
\(600\) 0 0
\(601\) −7.39563 + 2.69179i −0.301674 + 0.109800i −0.488422 0.872607i \(-0.662427\pi\)
0.186748 + 0.982408i \(0.440205\pi\)
\(602\) 0 0
\(603\) −8.37478 29.0768i −0.341047 1.18410i
\(604\) 0 0
\(605\) 12.6071 + 10.5786i 0.512553 + 0.430083i
\(606\) 0 0
\(607\) 1.77772 + 10.0819i 0.0721553 + 0.409213i 0.999396 + 0.0347476i \(0.0110627\pi\)
−0.927241 + 0.374466i \(0.877826\pi\)
\(608\) 0 0
\(609\) 0.492214 + 2.12629i 0.0199455 + 0.0861615i
\(610\) 0 0
\(611\) 12.0602 + 20.8889i 0.487905 + 0.845076i
\(612\) 0 0
\(613\) −1.11753 + 1.93563i −0.0451368 + 0.0781792i −0.887711 0.460401i \(-0.847706\pi\)
0.842574 + 0.538580i \(0.181039\pi\)
\(614\) 0 0
\(615\) 19.6970 + 14.8246i 0.794262 + 0.597784i
\(616\) 0 0
\(617\) −31.9267 11.6204i −1.28532 0.467818i −0.393132 0.919482i \(-0.628609\pi\)
−0.892188 + 0.451664i \(0.850831\pi\)
\(618\) 0 0
\(619\) 5.01079 28.4176i 0.201401 1.14220i −0.701604 0.712567i \(-0.747532\pi\)
0.903004 0.429632i \(-0.141357\pi\)
\(620\) 0 0
\(621\) 4.29625 + 0.827216i 0.172403 + 0.0331950i
\(622\) 0 0
\(623\) −2.86280 + 16.2358i −0.114696 + 0.650472i
\(624\) 0 0
\(625\) 10.7385 + 3.90849i 0.429540 + 0.156340i
\(626\) 0 0
\(627\) 0.498105 0.211780i 0.0198924 0.00845768i
\(628\) 0 0
\(629\) 8.66811 15.0136i 0.345620 0.598632i
\(630\) 0 0
\(631\) −1.57039 2.71999i −0.0625162 0.108281i 0.833073 0.553163i \(-0.186579\pi\)
−0.895590 + 0.444881i \(0.853246\pi\)
\(632\) 0 0
\(633\) 4.67320 4.36299i 0.185743 0.173413i
\(634\) 0 0
\(635\) 3.64488 + 20.6711i 0.144643 + 0.820309i
\(636\) 0 0
\(637\) 3.31786 + 2.78402i 0.131458 + 0.110307i
\(638\) 0 0
\(639\) 0.158034 + 0.216976i 0.00625171 + 0.00858342i
\(640\) 0 0
\(641\) 29.9034 10.8839i 1.18111 0.429890i 0.324518 0.945879i \(-0.394798\pi\)
0.856595 + 0.515989i \(0.172576\pi\)
\(642\) 0 0
\(643\) 9.84142 8.25794i 0.388108 0.325661i −0.427768 0.903889i \(-0.640700\pi\)
0.815876 + 0.578228i \(0.196255\pi\)
\(644\) 0 0
\(645\) 13.0660 0.692495i 0.514475 0.0272669i
\(646\) 0 0
\(647\) −28.2444 −1.11040 −0.555200 0.831717i \(-0.687358\pi\)
−0.555200 + 0.831717i \(0.687358\pi\)
\(648\) 0 0
\(649\) 3.77042 0.148002
\(650\) 0 0
\(651\) −3.48794 + 0.184859i −0.136703 + 0.00724521i
\(652\) 0 0
\(653\) 19.9099 16.7064i 0.779134 0.653771i −0.163897 0.986477i \(-0.552406\pi\)
0.943030 + 0.332707i \(0.107962\pi\)
\(654\) 0 0
\(655\) 23.1062 8.40995i 0.902832 0.328604i
\(656\) 0 0
\(657\) 6.47569 14.5910i 0.252641 0.569248i
\(658\) 0 0
\(659\) 36.4774 + 30.6081i 1.42096 + 1.19232i 0.950826 + 0.309727i \(0.100238\pi\)
0.470131 + 0.882597i \(0.344207\pi\)
\(660\) 0 0
\(661\) −0.152204 0.863192i −0.00592005 0.0335743i 0.981705 0.190410i \(-0.0609818\pi\)
−0.987625 + 0.156836i \(0.949871\pi\)
\(662\) 0 0
\(663\) 38.2829 35.7416i 1.48678 1.38809i
\(664\) 0 0
\(665\) 0.534854 + 0.926394i 0.0207407 + 0.0359240i
\(666\) 0 0
\(667\) −0.215714 + 0.373627i −0.00835246 + 0.0144669i
\(668\) 0 0
\(669\) −33.8574 + 14.3952i −1.30900 + 0.556551i
\(670\) 0 0
\(671\) −3.39803 1.23678i −0.131180 0.0477455i
\(672\) 0 0
\(673\) 6.48393 36.7722i 0.249937 1.41746i −0.558805 0.829299i \(-0.688740\pi\)
0.808742 0.588164i \(-0.200149\pi\)
\(674\) 0 0
\(675\) −0.159082 + 10.1428i −0.00612306 + 0.390397i
\(676\) 0 0
\(677\) −2.38231 + 13.5107i −0.0915596 + 0.519260i 0.904188 + 0.427135i \(0.140477\pi\)
−0.995747 + 0.0921251i \(0.970634\pi\)
\(678\) 0 0
\(679\) 12.6884 + 4.61819i 0.486935 + 0.177230i
\(680\) 0 0
\(681\) 19.8451 + 14.9360i 0.760465 + 0.572348i
\(682\) 0 0
\(683\) 24.9943 43.2914i 0.956381 1.65650i 0.225206 0.974311i \(-0.427694\pi\)
0.731175 0.682190i \(-0.238972\pi\)
\(684\) 0 0
\(685\) 1.97112 + 3.41407i 0.0753125 + 0.130445i
\(686\) 0 0
\(687\) 6.59598 + 28.4936i 0.251652 + 1.08710i
\(688\) 0 0
\(689\) 8.28172 + 46.9680i 0.315509 + 1.78934i
\(690\) 0 0
\(691\) −18.2434 15.3080i −0.694011 0.582345i 0.226052 0.974115i \(-0.427418\pi\)
−0.920063 + 0.391771i \(0.871863\pi\)
\(692\) 0 0
\(693\) 8.98103 + 2.22797i 0.341161 + 0.0846335i
\(694\) 0 0
\(695\) 13.0832 4.76188i 0.496273 0.180629i
\(696\) 0 0
\(697\) 41.5144 34.8347i 1.57247 1.31946i
\(698\) 0 0
\(699\) −5.28700 8.13075i −0.199973 0.307533i
\(700\) 0 0
\(701\) 34.4493 1.30113 0.650565 0.759450i \(-0.274532\pi\)
0.650565 + 0.759450i \(0.274532\pi\)
\(702\) 0 0
\(703\) −0.649815 −0.0245082
\(704\) 0 0
\(705\) 7.27047 14.2899i 0.273822 0.538190i
\(706\) 0 0
\(707\) −9.42975 + 7.91250i −0.354642 + 0.297580i
\(708\) 0 0
\(709\) −14.5871 + 5.30927i −0.547830 + 0.199394i −0.601082 0.799187i \(-0.705264\pi\)
0.0532520 + 0.998581i \(0.483041\pi\)
\(710\) 0 0
\(711\) −0.982789 + 14.2970i −0.0368575 + 0.536180i
\(712\) 0 0
\(713\) −0.528911 0.443809i −0.0198079 0.0166208i
\(714\) 0 0
\(715\) 1.72962 + 9.80918i 0.0646842 + 0.366843i
\(716\) 0 0
\(717\) −8.73772 2.66575i −0.326316 0.0995543i
\(718\) 0 0
\(719\) 6.02686 + 10.4388i 0.224764 + 0.389303i 0.956249 0.292555i \(-0.0945056\pi\)
−0.731485 + 0.681858i \(0.761172\pi\)
\(720\) 0 0
\(721\) −14.2872 + 24.7461i −0.532083 + 0.921594i
\(722\) 0 0
\(723\) −1.87014 + 15.3057i −0.0695512 + 0.569226i
\(724\) 0 0
\(725\) −0.939963 0.342119i −0.0349094 0.0127060i
\(726\) 0 0
\(727\) 5.49253 31.1497i 0.203707 1.15528i −0.695755 0.718279i \(-0.744930\pi\)
0.899462 0.437000i \(-0.143959\pi\)
\(728\) 0 0
\(729\) 25.6488 8.43433i 0.949956 0.312383i
\(730\) 0 0
\(731\) 4.99469 28.3263i 0.184735 1.04769i
\(732\) 0 0
\(733\) 17.8831 + 6.50891i 0.660527 + 0.240412i 0.650464 0.759537i \(-0.274575\pi\)
0.0100630 + 0.999949i \(0.496797\pi\)
\(734\) 0 0
\(735\) 0.349172 2.85772i 0.0128794 0.105409i
\(736\) 0 0
\(737\) 6.32516 10.9555i 0.232990 0.403551i
\(738\) 0 0
\(739\) 8.30036 + 14.3767i 0.305334 + 0.528854i 0.977336 0.211696i \(-0.0678986\pi\)
−0.672002 + 0.740550i \(0.734565\pi\)
\(740\) 0 0
\(741\) −1.87770 0.572858i −0.0689789 0.0210445i
\(742\) 0 0
\(743\) 5.78310 + 32.7976i 0.212161 + 1.20323i 0.885765 + 0.464134i \(0.153634\pi\)
−0.673604 + 0.739093i \(0.735255\pi\)
\(744\) 0 0
\(745\) 0.143014 + 0.120003i 0.00523963 + 0.00439657i
\(746\) 0 0
\(747\) −1.65426 + 24.0652i −0.0605263 + 0.880499i
\(748\) 0 0
\(749\) −44.9665 + 16.3665i −1.64304 + 0.598017i
\(750\) 0 0
\(751\) −21.2819 + 17.8577i −0.776589 + 0.651636i −0.942387 0.334524i \(-0.891424\pi\)
0.165798 + 0.986160i \(0.446980\pi\)
\(752\) 0 0
\(753\) −6.11076 + 12.0106i −0.222688 + 0.437689i
\(754\) 0 0
\(755\) −35.3686 −1.28720
\(756\) 0 0
\(757\) −3.12036 −0.113411 −0.0567057 0.998391i \(-0.518060\pi\)
−0.0567057 + 0.998391i \(0.518060\pi\)
\(758\) 0 0
\(759\) 0.997121 + 1.53345i 0.0361932 + 0.0556607i
\(760\) 0 0
\(761\) −33.6747 + 28.2564i −1.22071 + 1.02429i −0.221919 + 0.975065i \(0.571232\pi\)
−0.998787 + 0.0492297i \(0.984323\pi\)
\(762\) 0 0
\(763\) 14.5939 5.31175i 0.528335 0.192298i
\(764\) 0 0
\(765\) −33.7894 8.38230i −1.22166 0.303063i
\(766\) 0 0
\(767\) −10.4759 8.79032i −0.378263 0.317400i
\(768\) 0 0
\(769\) 0.644731 + 3.65645i 0.0232496 + 0.131855i 0.994223 0.107331i \(-0.0342305\pi\)
−0.970974 + 0.239186i \(0.923119\pi\)
\(770\) 0 0
\(771\) −7.98298 34.4852i −0.287500 1.24195i
\(772\) 0 0
\(773\) 4.48452 + 7.76741i 0.161297 + 0.279374i 0.935334 0.353766i \(-0.115099\pi\)
−0.774037 + 0.633140i \(0.781766\pi\)
\(774\) 0 0
\(775\) 0.800417 1.38636i 0.0287518 0.0497996i
\(776\) 0 0
\(777\) −8.87610 6.68041i −0.318428 0.239658i
\(778\) 0 0
\(779\) −1.90882 0.694754i −0.0683906 0.0248921i
\(780\) 0 0
\(781\) −0.0194871 + 0.110517i −0.000697302 + 0.00395459i
\(782\) 0 0
\(783\) −0.0417527 + 2.66209i −0.00149212 + 0.0951354i
\(784\) 0 0
\(785\) 6.29037 35.6745i 0.224513 1.27328i
\(786\) 0 0
\(787\) 41.2069 + 14.9981i 1.46887 + 0.534624i 0.947792 0.318888i \(-0.103309\pi\)
0.521074 + 0.853512i \(0.325532\pi\)
\(788\) 0 0
\(789\) 17.9796 7.64441i 0.640090 0.272148i
\(790\) 0 0
\(791\) −8.50374 + 14.7289i −0.302358 + 0.523699i
\(792\) 0 0
\(793\) 6.55782 + 11.3585i 0.232875 + 0.403351i
\(794\) 0 0
\(795\) 23.1724 21.6342i 0.821842 0.767287i
\(796\) 0 0
\(797\) 2.08656 + 11.8335i 0.0739097 + 0.419163i 0.999203 + 0.0399111i \(0.0127075\pi\)
−0.925294 + 0.379252i \(0.876181\pi\)
\(798\) 0 0
\(799\) −26.9996 22.6554i −0.955178 0.801490i
\(800\) 0 0
\(801\) −8.15832 + 18.3822i −0.288260 + 0.649504i
\(802\) 0 0
\(803\) 6.27136 2.28259i 0.221311 0.0805508i
\(804\) 0 0
\(805\) −2.76924 + 2.32366i −0.0976027 + 0.0818984i
\(806\) 0 0
\(807\) −0.532311 + 0.0282122i −0.0187382 + 0.000993117i
\(808\) 0 0
\(809\) −8.02937 −0.282298 −0.141149 0.989988i \(-0.545080\pi\)
−0.141149 + 0.989988i \(0.545080\pi\)
\(810\) 0 0
\(811\) 12.8345 0.450681 0.225341 0.974280i \(-0.427651\pi\)
0.225341 + 0.974280i \(0.427651\pi\)
\(812\) 0 0
\(813\) 3.84411 0.203736i 0.134819 0.00714534i
\(814\) 0 0
\(815\) −26.9270 + 22.5944i −0.943211 + 0.791448i
\(816\) 0 0
\(817\) −1.01312 + 0.368744i −0.0354444 + 0.0129007i
\(818\) 0 0
\(819\) −19.7590 27.1286i −0.690436 0.947949i
\(820\) 0 0
\(821\) −22.7250 19.0685i −0.793108 0.665497i 0.153404 0.988163i \(-0.450976\pi\)
−0.946513 + 0.322667i \(0.895421\pi\)
\(822\) 0 0
\(823\) −8.60266 48.7881i −0.299870 1.70065i −0.646722 0.762726i \(-0.723861\pi\)
0.346852 0.937920i \(-0.387251\pi\)
\(824\) 0 0
\(825\) −3.09992 + 2.89415i −0.107925 + 0.100761i
\(826\) 0 0
\(827\) 20.4215 + 35.3711i 0.710126 + 1.22997i 0.964809 + 0.262950i \(0.0846955\pi\)
−0.254683 + 0.967025i \(0.581971\pi\)
\(828\) 0 0
\(829\) 4.72638 8.18633i 0.164154 0.284323i −0.772201 0.635379i \(-0.780844\pi\)
0.936355 + 0.351056i \(0.114177\pi\)
\(830\) 0 0
\(831\) 37.1867 15.8107i 1.28999 0.548468i
\(832\) 0 0
\(833\) −5.94714 2.16458i −0.206056 0.0749983i
\(834\) 0 0
\(835\) −6.02140 + 34.1491i −0.208379 + 1.18178i
\(836\) 0 0
\(837\) −4.18401 0.805605i −0.144621 0.0278458i
\(838\) 0 0
\(839\) 2.13360 12.1002i 0.0736599 0.417746i −0.925572 0.378571i \(-0.876416\pi\)
0.999232 0.0391756i \(-0.0124732\pi\)
\(840\) 0 0
\(841\) 27.0044 + 9.82879i 0.931186 + 0.338924i
\(842\) 0 0
\(843\) 9.99925 + 7.52573i 0.344392 + 0.259200i
\(844\) 0 0
\(845\) 6.71575 11.6320i 0.231029 0.400154i
\(846\) 0 0
\(847\) −11.5916 20.0772i −0.398292 0.689862i
\(848\) 0 0
\(849\) −2.78135 12.0150i −0.0954556 0.412353i
\(850\) 0 0
\(851\) −0.381330 2.16263i −0.0130718 0.0741339i
\(852\) 0 0
\(853\) −23.6446 19.8402i −0.809576 0.679315i 0.140930 0.990020i \(-0.454991\pi\)
−0.950507 + 0.310704i \(0.899435\pi\)
\(854\) 0 0
\(855\) 0.361165 + 1.25395i 0.0123516 + 0.0428840i
\(856\) 0 0
\(857\) −10.4738 + 3.81217i −0.357780 + 0.130221i −0.514655 0.857397i \(-0.672080\pi\)
0.156876 + 0.987618i \(0.449858\pi\)
\(858\) 0 0
\(859\) −3.17807 + 2.66672i −0.108434 + 0.0909872i −0.695393 0.718630i \(-0.744770\pi\)
0.586958 + 0.809617i \(0.300325\pi\)
\(860\) 0 0
\(861\) −18.9310 29.1135i −0.645167 0.992187i
\(862\) 0 0
\(863\) 47.2534 1.60852 0.804262 0.594275i \(-0.202561\pi\)
0.804262 + 0.594275i \(0.202561\pi\)
\(864\) 0 0
\(865\) −33.0392 −1.12337
\(866\) 0 0
\(867\) −21.3516 + 41.9662i −0.725140 + 1.42525i
\(868\) 0 0
\(869\) −4.58958 + 3.85112i −0.155691 + 0.130640i
\(870\) 0 0
\(871\) −43.1156 + 15.6928i −1.46092 + 0.531731i
\(872\) 0 0
\(873\) 13.6665 + 9.19475i 0.462543 + 0.311195i
\(874\) 0 0
\(875\) −22.8650 19.1860i −0.772978 0.648606i
\(876\) 0 0
\(877\) 6.10381 + 34.6164i 0.206111 + 1.16891i 0.895682 + 0.444695i \(0.146688\pi\)
−0.689571 + 0.724218i \(0.742201\pi\)
\(878\) 0 0
\(879\) −0.915284 0.279240i −0.0308718 0.00941852i
\(880\) 0 0
\(881\) 9.67981 + 16.7659i 0.326121 + 0.564858i 0.981739 0.190235i \(-0.0609250\pi\)
−0.655618 + 0.755093i \(0.727592\pi\)
\(882\) 0 0
\(883\) −6.89302 + 11.9391i −0.231969 + 0.401781i −0.958387 0.285471i \(-0.907850\pi\)
0.726419 + 0.687252i \(0.241183\pi\)
\(884\) 0 0
\(885\) −1.10248 + 9.02303i −0.0370596 + 0.303306i
\(886\) 0 0
\(887\) −28.0192 10.1982i −0.940794 0.342421i −0.174315 0.984690i \(-0.555771\pi\)
−0.766479 + 0.642269i \(0.777993\pi\)
\(888\) 0 0
\(889\) 5.13445 29.1189i 0.172204 0.976617i
\(890\) 0 0
\(891\) 9.97912 + 5.27581i 0.334313 + 0.176746i
\(892\) 0 0
\(893\) −0.229408 + 1.30104i −0.00767685 + 0.0435376i
\(894\) 0 0
\(895\) −17.9039 6.51649i −0.598461 0.217822i
\(896\) 0 0
\(897\) 0.804626 6.58528i 0.0268657 0.219876i
\(898\) 0 0
\(899\) 0.210078 0.363866i 0.00700649 0.0121356i
\(900\) 0 0
\(901\) −34.8448 60.3530i −1.16085 2.01065i
\(902\) 0 0
\(903\) −17.6294 5.37849i −0.586671 0.178985i
\(904\) 0 0
\(905\) 5.44094 + 30.8571i 0.180863 + 1.02573i
\(906\) 0 0
\(907\) 4.77366 + 4.00558i 0.158507 + 0.133003i 0.718592 0.695432i \(-0.244787\pi\)
−0.560085 + 0.828435i \(0.689231\pi\)
\(908\) 0 0
\(909\) −13.4889 + 6.59868i −0.447397 + 0.218864i
\(910\) 0 0
\(911\) −29.7314 + 10.8213i −0.985044 + 0.358527i −0.783799 0.621014i \(-0.786721\pi\)
−0.201245 + 0.979541i \(0.564499\pi\)
\(912\) 0 0
\(913\) −7.72533 + 6.48232i −0.255671 + 0.214534i
\(914\) 0 0
\(915\) 3.95336 7.77023i 0.130694 0.256876i
\(916\) 0 0
\(917\) −34.6380 −1.14385
\(918\) 0 0
\(919\) −36.0031 −1.18763 −0.593816 0.804601i \(-0.702379\pi\)
−0.593816 + 0.804601i \(0.702379\pi\)
\(920\) 0 0
\(921\) 6.35329 + 9.77058i 0.209348 + 0.321952i
\(922\) 0 0
\(923\) 0.311801 0.261632i 0.0102631 0.00861173i
\(924\) 0 0
\(925\) 4.78447 1.74141i 0.157313 0.0572571i
\(926\) 0 0
\(927\) −24.1844 + 25.1029i −0.794321 + 0.824489i
\(928\) 0 0
\(929\) 19.4941 + 16.3575i 0.639580 + 0.536672i 0.903889 0.427767i \(-0.140699\pi\)
−0.264309 + 0.964438i \(0.585144\pi\)
\(930\) 0 0
\(931\) 0.0411934 + 0.233619i 0.00135006 + 0.00765656i
\(932\) 0 0
\(933\) −6.02475 26.0260i −0.197241 0.852052i
\(934\) 0 0
\(935\) −7.27728 12.6046i −0.237993 0.412215i
\(936\) 0 0
\(937\) −14.1524 + 24.5127i −0.462338 + 0.800794i −0.999077 0.0429549i \(-0.986323\pi\)
0.536739 + 0.843749i \(0.319656\pi\)
\(938\) 0 0
\(939\) −32.6057 24.5400i −1.06405 0.800833i
\(940\) 0 0
\(941\) −7.79422 2.83687i −0.254084 0.0924792i 0.211838 0.977305i \(-0.432055\pi\)
−0.465922 + 0.884826i \(0.654277\pi\)
\(942\) 0 0
\(943\) 1.19204 6.76039i 0.0388181 0.220149i
\(944\) 0 0
\(945\) −7.95786 + 20.8411i −0.258869 + 0.677962i
\(946\) 0 0
\(947\) 7.71877 43.7753i 0.250826 1.42251i −0.555737 0.831358i \(-0.687564\pi\)
0.806563 0.591148i \(-0.201325\pi\)
\(948\) 0 0
\(949\) −22.7462 8.27895i −0.738373 0.268746i
\(950\) 0 0
\(951\) −11.5595 + 4.91476i −0.374842 + 0.159372i
\(952\) 0 0
\(953\) 4.83574 8.37576i 0.156645 0.271317i −0.777012 0.629486i \(-0.783265\pi\)
0.933657 + 0.358169i \(0.116599\pi\)
\(954\) 0 0
\(955\) 23.5385 + 40.7699i 0.761688 + 1.31928i
\(956\) 0 0
\(957\) −0.813608 + 0.759599i −0.0263002 + 0.0245544i
\(958\) 0 0
\(959\) −0.964325 5.46896i −0.0311397 0.176602i
\(960\) 0 0
\(961\) −23.2323 19.4942i −0.749429 0.628845i
\(962\) 0 0
\(963\) −58.0473 + 6.17030i −1.87055 + 0.198835i
\(964\) 0 0
\(965\) −28.1425 + 10.2430i −0.905940 + 0.329735i
\(966\) 0 0
\(967\) 25.3676 21.2860i 0.815768 0.684510i −0.136209 0.990680i \(-0.543492\pi\)
0.951977 + 0.306170i \(0.0990475\pi\)
\(968\) 0 0
\(969\) 2.86457 0.151821i 0.0920234 0.00487720i
\(970\) 0 0
\(971\) 27.4309 0.880298 0.440149 0.897925i \(-0.354926\pi\)
0.440149 + 0.897925i \(0.354926\pi\)
\(972\) 0 0
\(973\) −19.6127 −0.628755
\(974\) 0 0
\(975\) 15.3603 0.814091i 0.491924 0.0260718i
\(976\) 0 0
\(977\) 27.8668 23.3831i 0.891539 0.748090i −0.0769792 0.997033i \(-0.524527\pi\)
0.968518 + 0.248943i \(0.0800830\pi\)
\(978\) 0 0
\(979\) −7.90089 + 2.87569i −0.252514 + 0.0919075i
\(980\) 0 0
\(981\) 18.8393 2.00258i 0.601493 0.0639373i
\(982\) 0 0
\(983\) −32.2790 27.0853i −1.02954 0.863886i −0.0387434 0.999249i \(-0.512335\pi\)
−0.990796 + 0.135363i \(0.956780\pi\)
\(984\) 0 0
\(985\) −0.761595 4.31922i −0.0242664 0.137622i
\(986\) 0 0
\(987\) −16.5089 + 15.4130i −0.525484 + 0.490602i
\(988\) 0 0
\(989\) −1.82173 3.15533i −0.0579276 0.100334i
\(990\) 0 0
\(991\) 12.7705 22.1191i 0.405667 0.702635i −0.588732 0.808328i \(-0.700373\pi\)
0.994399 + 0.105693i \(0.0337060\pi\)
\(992\) 0 0
\(993\) 46.2798 19.6769i 1.46865 0.624426i
\(994\) 0 0
\(995\) −30.4130 11.0694i −0.964158 0.350925i
\(996\) 0 0
\(997\) 4.08644 23.1754i 0.129419 0.733971i −0.849166 0.528126i \(-0.822895\pi\)
0.978585 0.205845i \(-0.0659942\pi\)
\(998\) 0 0
\(999\) −8.54711 10.5167i −0.270419 0.332733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.u.c.241.2 12
4.3 odd 2 27.2.e.a.25.2 yes 12
12.11 even 2 81.2.e.a.73.1 12
20.3 even 4 675.2.u.b.349.2 24
20.7 even 4 675.2.u.b.349.3 24
20.19 odd 2 675.2.l.c.376.1 12
27.13 even 9 inner 432.2.u.c.337.2 12
36.7 odd 6 243.2.e.d.55.1 12
36.11 even 6 243.2.e.a.55.2 12
36.23 even 6 243.2.e.b.136.1 12
36.31 odd 6 243.2.e.c.136.2 12
108.7 odd 18 729.2.c.e.244.2 12
108.11 even 18 729.2.a.d.1.2 6
108.23 even 18 243.2.e.b.109.1 12
108.31 odd 18 243.2.e.c.109.2 12
108.43 odd 18 729.2.a.a.1.5 6
108.47 even 18 729.2.c.b.244.5 12
108.59 even 18 243.2.e.a.190.2 12
108.67 odd 18 27.2.e.a.13.2 12
108.79 odd 18 729.2.c.e.487.2 12
108.83 even 18 729.2.c.b.487.5 12
108.95 even 18 81.2.e.a.10.1 12
108.103 odd 18 243.2.e.d.190.1 12
540.67 even 36 675.2.u.b.499.2 24
540.283 even 36 675.2.u.b.499.3 24
540.499 odd 18 675.2.l.c.526.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.13.2 12 108.67 odd 18
27.2.e.a.25.2 yes 12 4.3 odd 2
81.2.e.a.10.1 12 108.95 even 18
81.2.e.a.73.1 12 12.11 even 2
243.2.e.a.55.2 12 36.11 even 6
243.2.e.a.190.2 12 108.59 even 18
243.2.e.b.109.1 12 108.23 even 18
243.2.e.b.136.1 12 36.23 even 6
243.2.e.c.109.2 12 108.31 odd 18
243.2.e.c.136.2 12 36.31 odd 6
243.2.e.d.55.1 12 36.7 odd 6
243.2.e.d.190.1 12 108.103 odd 18
432.2.u.c.241.2 12 1.1 even 1 trivial
432.2.u.c.337.2 12 27.13 even 9 inner
675.2.l.c.376.1 12 20.19 odd 2
675.2.l.c.526.1 12 540.499 odd 18
675.2.u.b.349.2 24 20.3 even 4
675.2.u.b.349.3 24 20.7 even 4
675.2.u.b.499.2 24 540.67 even 36
675.2.u.b.499.3 24 540.283 even 36
729.2.a.a.1.5 6 108.43 odd 18
729.2.a.d.1.2 6 108.11 even 18
729.2.c.b.244.5 12 108.47 even 18
729.2.c.b.487.5 12 108.83 even 18
729.2.c.e.244.2 12 108.7 odd 18
729.2.c.e.487.2 12 108.79 odd 18