Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [432,2,Mod(37,432)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(432, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("432.37");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 432 = 2^{4} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 432.y (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.44953736732\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 144) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −1.41364 | − | 0.0402314i | 0 | 1.99676 | + | 0.113746i | 2.21121 | − | 0.592492i | 0 | 2.67054 | − | 1.54184i | −2.81813 | − | 0.241128i | 0 | −3.14970 | + | 0.748611i | ||||||
37.2 | −1.30266 | − | 0.550520i | 0 | 1.39386 | + | 1.43428i | −2.73721 | + | 0.733432i | 0 | −1.14487 | + | 0.660988i | −1.02612 | − | 2.63573i | 0 | 3.96942 | + | 0.551472i | ||||||
37.3 | −1.11640 | − | 0.868135i | 0 | 0.492685 | + | 1.93837i | 2.41406 | − | 0.646846i | 0 | 2.82197 | − | 1.62927i | 1.13273 | − | 2.59170i | 0 | −3.25660 | − | 1.37359i | ||||||
37.4 | −1.10904 | + | 0.877514i | 0 | 0.459938 | − | 1.94640i | 1.98415 | − | 0.531653i | 0 | −1.54969 | + | 0.894715i | 1.19790 | + | 2.56223i | 0 | −1.73397 | + | 2.33075i | ||||||
37.5 | −1.05869 | − | 0.937649i | 0 | 0.241628 | + | 1.98535i | 0.491749 | − | 0.131764i | 0 | −2.40518 | + | 1.38863i | 1.60575 | − | 2.32842i | 0 | −0.644156 | − | 0.321592i | ||||||
37.6 | −0.902916 | + | 1.08846i | 0 | −0.369486 | − | 1.96557i | −1.21694 | + | 0.326078i | 0 | −0.707732 | + | 0.408609i | 2.47306 | + | 1.37258i | 0 | 0.743871 | − | 1.61901i | ||||||
37.7 | −0.297230 | − | 1.38263i | 0 | −1.82331 | + | 0.821916i | 0.0112878 | − | 0.00302457i | 0 | 1.05753 | − | 0.610563i | 1.67835 | + | 2.27665i | 0 | −0.00753693 | − | 0.0147079i | ||||||
37.8 | −0.268956 | − | 1.38840i | 0 | −1.85533 | + | 0.746838i | −2.97932 | + | 0.798307i | 0 | 1.78208 | − | 1.02889i | 1.53591 | + | 2.37507i | 0 | 1.90968 | + | 3.92179i | ||||||
37.9 | 0.0882790 | + | 1.41146i | 0 | −1.98441 | + | 0.249204i | −2.90072 | + | 0.777246i | 0 | −1.04527 | + | 0.603486i | −0.526922 | − | 2.77891i | 0 | −1.35312 | − | 4.02562i | ||||||
37.10 | 0.174715 | − | 1.40338i | 0 | −1.93895 | − | 0.490384i | −0.174734 | + | 0.0468197i | 0 | −4.04791 | + | 2.33706i | −1.02696 | + | 2.63540i | 0 | 0.0351772 | + | 0.253398i | ||||||
37.11 | 0.704761 | + | 1.22610i | 0 | −1.00662 | + | 1.72821i | −2.53632 | + | 0.679606i | 0 | 0.614293 | − | 0.354662i | −2.82838 | − | 0.0162452i | 0 | −2.62076 | − | 2.63082i | ||||||
37.12 | 0.751042 | − | 1.19831i | 0 | −0.871873 | − | 1.79995i | 1.60558 | − | 0.430214i | 0 | 3.62762 | − | 2.09441i | −2.81171 | − | 0.307071i | 0 | 0.690330 | − | 2.24708i | ||||||
37.13 | 0.812713 | + | 1.15737i | 0 | −0.678997 | + | 1.88121i | 2.69708 | − | 0.722679i | 0 | −2.89314 | + | 1.67035i | −2.72908 | + | 0.743037i | 0 | 3.02835 | + | 2.53418i | ||||||
37.14 | 1.18142 | − | 0.777339i | 0 | 0.791487 | − | 1.83672i | −3.30105 | + | 0.884514i | 0 | 2.63210 | − | 1.51965i | −0.492680 | − | 2.78519i | 0 | −3.21235 | + | 3.61102i | ||||||
37.15 | 1.20757 | − | 0.736049i | 0 | 0.916464 | − | 1.77767i | 4.10876 | − | 1.10094i | 0 | −1.63313 | + | 0.942891i | −0.201751 | − | 2.82122i | 0 | 4.15129 | − | 4.35372i | ||||||
37.16 | 1.35510 | + | 0.404605i | 0 | 1.67259 | + | 1.09656i | −3.32531 | + | 0.891015i | 0 | −3.95817 | + | 2.28525i | 1.82285 | + | 2.16269i | 0 | −4.86664 | − | 0.138025i | ||||||
37.17 | 1.38700 | − | 0.276075i | 0 | 1.84757 | − | 0.765835i | 0.0691269 | − | 0.0185225i | 0 | 1.28192 | − | 0.740118i | 2.35115 | − | 1.57228i | 0 | 0.0907658 | − | 0.0447750i | ||||||
37.18 | 1.40500 | + | 0.161164i | 0 | 1.94805 | + | 0.452871i | 0.846545 | − | 0.226831i | 0 | −0.567074 | + | 0.327400i | 2.66403 | + | 0.950239i | 0 | 1.22595 | − | 0.182265i | ||||||
181.1 | −1.41328 | − | 0.0512684i | 0 | 1.99474 | + | 0.144914i | −0.430214 | + | 1.60558i | 0 | −3.62762 | − | 2.09441i | −2.81171 | − | 0.307071i | 0 | 0.690330 | − | 2.24708i | ||||||
181.2 | −1.30272 | + | 0.550382i | 0 | 1.39416 | − | 1.43399i | 0.0468197 | − | 0.174734i | 0 | 4.04791 | + | 2.33706i | −1.02696 | + | 2.63540i | 0 | 0.0351772 | + | 0.253398i | ||||||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
16.e | even | 4 | 1 | inner |
144.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 432.2.y.e | 72 | |
3.b | odd | 2 | 1 | 144.2.x.e | ✓ | 72 | |
4.b | odd | 2 | 1 | 1728.2.bc.e | 72 | ||
9.c | even | 3 | 1 | inner | 432.2.y.e | 72 | |
9.d | odd | 6 | 1 | 144.2.x.e | ✓ | 72 | |
12.b | even | 2 | 1 | 576.2.bb.e | 72 | ||
16.e | even | 4 | 1 | inner | 432.2.y.e | 72 | |
16.f | odd | 4 | 1 | 1728.2.bc.e | 72 | ||
36.f | odd | 6 | 1 | 1728.2.bc.e | 72 | ||
36.h | even | 6 | 1 | 576.2.bb.e | 72 | ||
48.i | odd | 4 | 1 | 144.2.x.e | ✓ | 72 | |
48.k | even | 4 | 1 | 576.2.bb.e | 72 | ||
144.u | even | 12 | 1 | 576.2.bb.e | 72 | ||
144.v | odd | 12 | 1 | 1728.2.bc.e | 72 | ||
144.w | odd | 12 | 1 | 144.2.x.e | ✓ | 72 | |
144.x | even | 12 | 1 | inner | 432.2.y.e | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
144.2.x.e | ✓ | 72 | 3.b | odd | 2 | 1 | |
144.2.x.e | ✓ | 72 | 9.d | odd | 6 | 1 | |
144.2.x.e | ✓ | 72 | 48.i | odd | 4 | 1 | |
144.2.x.e | ✓ | 72 | 144.w | odd | 12 | 1 | |
432.2.y.e | 72 | 1.a | even | 1 | 1 | trivial | |
432.2.y.e | 72 | 9.c | even | 3 | 1 | inner | |
432.2.y.e | 72 | 16.e | even | 4 | 1 | inner | |
432.2.y.e | 72 | 144.x | even | 12 | 1 | inner | |
576.2.bb.e | 72 | 12.b | even | 2 | 1 | ||
576.2.bb.e | 72 | 36.h | even | 6 | 1 | ||
576.2.bb.e | 72 | 48.k | even | 4 | 1 | ||
576.2.bb.e | 72 | 144.u | even | 12 | 1 | ||
1728.2.bc.e | 72 | 4.b | odd | 2 | 1 | ||
1728.2.bc.e | 72 | 16.f | odd | 4 | 1 | ||
1728.2.bc.e | 72 | 36.f | odd | 6 | 1 | ||
1728.2.bc.e | 72 | 144.v | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{72} + 4 T_{5}^{71} + 8 T_{5}^{70} + 48 T_{5}^{69} - 362 T_{5}^{68} - 1784 T_{5}^{67} + \cdots + 65536 \) acting on \(S_{2}^{\mathrm{new}}(432, [\chi])\).