Properties

Label 432.8.a.i
Level 432432
Weight 88
Character orbit 432.a
Self dual yes
Analytic conductor 134.950134.950
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,8,Mod(1,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 432=2433 432 = 2^{4} \cdot 3^{3}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 432.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-324,0,980] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 134.950331009134.950331009
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1289)\Q(\sqrt{1289})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x322 x^{2} - x - 322 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 232 2\cdot 3^{2}
Twist minimal: no (minimal twist has level 108)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=91289\beta = 9\sqrt{1289}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β162)q5+(3β+490)q7+(4β+405)q11+(24β3940)q13+(40β+10368)q17+(30β5228)q19+(40β30294)q23+(324β+52528)q25++(18552β+1494455)q97+O(q100) q + ( - \beta - 162) q^{5} + (3 \beta + 490) q^{7} + (4 \beta + 405) q^{11} + ( - 24 \beta - 3940) q^{13} + (40 \beta + 10368) q^{17} + ( - 30 \beta - 5228) q^{19} + ( - 40 \beta - 30294) q^{23} + (324 \beta + 52528) q^{25}+ \cdots + (18552 \beta + 1494455) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q324q5+980q7+810q117880q13+20736q1710456q1960588q23+105056q2532400q29+145988q31785214q3510460q37+1085400q41+606440q43++2988910q97+O(q100) 2 q - 324 q^{5} + 980 q^{7} + 810 q^{11} - 7880 q^{13} + 20736 q^{17} - 10456 q^{19} - 60588 q^{23} + 105056 q^{25} - 32400 q^{29} + 145988 q^{31} - 785214 q^{35} - 10460 q^{37} + 1085400 q^{41} + 606440 q^{43}+ \cdots + 2988910 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
18.4513
−17.4513
0 0 0 −485.124 0 1459.37 0 0 0
1.2 0 0 0 161.124 0 −479.371 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.8.a.i 2
3.b odd 2 1 432.8.a.r 2
4.b odd 2 1 108.8.a.b 2
12.b even 2 1 108.8.a.e yes 2
36.f odd 6 2 324.8.e.j 4
36.h even 6 2 324.8.e.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.8.a.b 2 4.b odd 2 1
108.8.a.e yes 2 12.b even 2 1
324.8.e.g 4 36.h even 6 2
324.8.e.j 4 36.f odd 6 2
432.8.a.i 2 1.a even 1 1 trivial
432.8.a.r 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(Γ0(432))S_{8}^{\mathrm{new}}(\Gamma_0(432)):

T52+324T578165 T_{5}^{2} + 324T_{5} - 78165 Copy content Toggle raw display
T72980T7699581 T_{7}^{2} - 980T_{7} - 699581 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+324T78165 T^{2} + 324T - 78165 Copy content Toggle raw display
77 T2980T699581 T^{2} - 980T - 699581 Copy content Toggle raw display
1111 T2810T1506519 T^{2} - 810 T - 1506519 Copy content Toggle raw display
1313 T2+7880T44615984 T^{2} + 7880 T - 44615984 Copy content Toggle raw display
1717 T220736T59558976 T^{2} - 20736 T - 59558976 Copy content Toggle raw display
1919 T2+10456T66636116 T^{2} + 10456 T - 66636116 Copy content Toggle raw display
2323 T2+60588T+750672036 T^{2} + 60588 T + 750672036 Copy content Toggle raw display
2929 T2+40131731556 T^{2} + \cdots - 40131731556 Copy content Toggle raw display
3131 T2+11797562189 T^{2} + \cdots - 11797562189 Copy content Toggle raw display
3737 T2+3821580476 T^{2} + \cdots - 3821580476 Copy content Toggle raw display
4141 T2++276972137100 T^{2} + \cdots + 276972137100 Copy content Toggle raw display
4343 T2+239610916916 T^{2} + \cdots - 239610916916 Copy content Toggle raw display
4747 T2++485764195716 T^{2} + \cdots + 485764195716 Copy content Toggle raw display
5353 T2++883947989259 T^{2} + \cdots + 883947989259 Copy content Toggle raw display
5959 T2++1945901264400 T^{2} + \cdots + 1945901264400 Copy content Toggle raw display
6161 T2+572702600000 T^{2} + \cdots - 572702600000 Copy content Toggle raw display
6767 T2++894770581324 T^{2} + \cdots + 894770581324 Copy content Toggle raw display
7171 T2++473739274944 T^{2} + \cdots + 473739274944 Copy content Toggle raw display
7373 T2+4430654478791 T^{2} + \cdots - 4430654478791 Copy content Toggle raw display
7979 T2++211199920000 T^{2} + \cdots + 211199920000 Copy content Toggle raw display
8383 T2++1188922519881 T^{2} + \cdots + 1188922519881 Copy content Toggle raw display
8989 T2++3197429581356 T^{2} + \cdots + 3197429581356 Copy content Toggle raw display
9797 T2+33701749740911 T^{2} + \cdots - 33701749740911 Copy content Toggle raw display
show more
show less