gp: [N,k,chi] = [432,8,Mod(1,432)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(432, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("432.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,-324,0,980]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 9 1289 \beta = 9\sqrt{1289} β = 9 1 2 8 9 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 8 n e w ( Γ 0 ( 432 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(432)) S 8 n e w ( Γ 0 ( 4 3 2 ) ) :
T 5 2 + 324 T 5 − 78165 T_{5}^{2} + 324T_{5} - 78165 T 5 2 + 3 2 4 T 5 − 7 8 1 6 5
T5^2 + 324*T5 - 78165
T 7 2 − 980 T 7 − 699581 T_{7}^{2} - 980T_{7} - 699581 T 7 2 − 9 8 0 T 7 − 6 9 9 5 8 1
T7^2 - 980*T7 - 699581
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 + 324 T − 78165 T^{2} + 324T - 78165 T 2 + 3 2 4 T − 7 8 1 6 5
T^2 + 324*T - 78165
7 7 7
T 2 − 980 T − 699581 T^{2} - 980T - 699581 T 2 − 9 8 0 T − 6 9 9 5 8 1
T^2 - 980*T - 699581
11 11 1 1
T 2 − 810 T − 1506519 T^{2} - 810 T - 1506519 T 2 − 8 1 0 T − 1 5 0 6 5 1 9
T^2 - 810*T - 1506519
13 13 1 3
T 2 + 7880 T − 44615984 T^{2} + 7880 T - 44615984 T 2 + 7 8 8 0 T − 4 4 6 1 5 9 8 4
T^2 + 7880*T - 44615984
17 17 1 7
T 2 − 20736 T − 59558976 T^{2} - 20736 T - 59558976 T 2 − 2 0 7 3 6 T − 5 9 5 5 8 9 7 6
T^2 - 20736*T - 59558976
19 19 1 9
T 2 + 10456 T − 66636116 T^{2} + 10456 T - 66636116 T 2 + 1 0 4 5 6 T − 6 6 6 3 6 1 1 6
T^2 + 10456*T - 66636116
23 23 2 3
T 2 + 60588 T + 750672036 T^{2} + 60588 T + 750672036 T 2 + 6 0 5 8 8 T + 7 5 0 6 7 2 0 3 6
T^2 + 60588*T + 750672036
29 29 2 9
T 2 + ⋯ − 40131731556 T^{2} + \cdots - 40131731556 T 2 + ⋯ − 4 0 1 3 1 7 3 1 5 5 6
T^2 + 32400*T - 40131731556
31 31 3 1
T 2 + ⋯ − 11797562189 T^{2} + \cdots - 11797562189 T 2 + ⋯ − 1 1 7 9 7 5 6 2 1 8 9
T^2 - 145988*T - 11797562189
37 37 3 7
T 2 + ⋯ − 3821580476 T^{2} + \cdots - 3821580476 T 2 + ⋯ − 3 8 2 1 5 8 0 4 7 6
T^2 + 10460*T - 3821580476
41 41 4 1
T 2 + ⋯ + 276972137100 T^{2} + \cdots + 276972137100 T 2 + ⋯ + 2 7 6 9 7 2 1 3 7 1 0 0
T^2 - 1085400*T + 276972137100
43 43 4 3
T 2 + ⋯ − 239610916916 T^{2} + \cdots - 239610916916 T 2 + ⋯ − 2 3 9 6 1 0 9 1 6 9 1 6
T^2 - 606440*T - 239610916916
47 47 4 7
T 2 + ⋯ + 485764195716 T^{2} + \cdots + 485764195716 T 2 + ⋯ + 4 8 5 7 6 4 1 9 5 7 1 6
T^2 + 1495908*T + 485764195716
53 53 5 3
T 2 + ⋯ + 883947989259 T^{2} + \cdots + 883947989259 T 2 + ⋯ + 8 8 3 9 4 7 9 8 9 2 5 9
T^2 - 2079756*T + 883947989259
59 59 5 9
T 2 + ⋯ + 1945901264400 T^{2} + \cdots + 1945901264400 T 2 + ⋯ + 1 9 4 5 9 0 1 2 6 4 4 0 0
T^2 + 3074760*T + 1945901264400
61 61 6 1
T 2 + ⋯ − 572702600000 T^{2} + \cdots - 572702600000 T 2 + ⋯ − 5 7 2 7 0 2 6 0 0 0 0 0
T^2 - 601120*T - 572702600000
67 67 6 7
T 2 + ⋯ + 894770581324 T^{2} + \cdots + 894770581324 T 2 + ⋯ + 8 9 4 7 7 0 5 8 1 3 2 4
T^2 - 2429240*T + 894770581324
71 71 7 1
T 2 + ⋯ + 473739274944 T^{2} + \cdots + 473739274944 T 2 + ⋯ + 4 7 3 7 3 9 2 7 4 9 4 4
T^2 + 3201120*T + 473739274944
73 73 7 3
T 2 + ⋯ − 4430654478791 T^{2} + \cdots - 4430654478791 T 2 + ⋯ − 4 4 3 0 6 5 4 4 7 8 7 9 1
T^2 - 1097530*T - 4430654478791
79 79 7 9
T 2 + ⋯ + 211199920000 T^{2} + \cdots + 211199920000 T 2 + ⋯ + 2 1 1 1 9 9 9 2 0 0 0 0
T^2 - 1513160*T + 211199920000
83 83 8 3
T 2 + ⋯ + 1188922519881 T^{2} + \cdots + 1188922519881 T 2 + ⋯ + 1 1 8 8 9 2 2 5 1 9 8 8 1
T^2 + 3760182*T + 1188922519881
89 89 8 9
T 2 + ⋯ + 3197429581356 T^{2} + \cdots + 3197429581356 T 2 + ⋯ + 3 1 9 7 4 2 9 5 8 1 3 5 6
T^2 + 10785960*T + 3197429581356
97 97 9 7
T 2 + ⋯ − 33701749740911 T^{2} + \cdots - 33701749740911 T 2 + ⋯ − 3 3 7 0 1 7 4 9 7 4 0 9 1 1
T^2 - 2988910*T - 33701749740911
show more
show less