Properties

Label 4320.2.a.ba.1.1
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.41421 q^{7} +1.41421 q^{11} -6.24264 q^{13} +3.24264 q^{17} -7.24264 q^{19} +2.65685 q^{23} +1.00000 q^{25} +4.24264 q^{29} +10.0711 q^{31} -1.41421 q^{35} +10.4853 q^{37} -2.24264 q^{41} -1.75736 q^{43} -11.6569 q^{47} -5.00000 q^{49} -7.24264 q^{53} +1.41421 q^{55} -13.0711 q^{59} +1.00000 q^{61} -6.24264 q^{65} -11.6569 q^{67} -13.4142 q^{71} -4.24264 q^{73} -2.00000 q^{77} +4.41421 q^{79} -11.8284 q^{83} +3.24264 q^{85} -6.24264 q^{89} +8.82843 q^{91} -7.24264 q^{95} -0.485281 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 4 q^{13} - 2 q^{17} - 6 q^{19} - 6 q^{23} + 2 q^{25} + 6 q^{31} + 4 q^{37} + 4 q^{41} - 12 q^{43} - 12 q^{47} - 10 q^{49} - 6 q^{53} - 12 q^{59} + 2 q^{61} - 4 q^{65} - 12 q^{67} - 24 q^{71}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) −6.24264 −1.73140 −0.865699 0.500566i \(-0.833125\pi\)
−0.865699 + 0.500566i \(0.833125\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.24264 0.786456 0.393228 0.919441i \(-0.371358\pi\)
0.393228 + 0.919441i \(0.371358\pi\)
\(18\) 0 0
\(19\) −7.24264 −1.66158 −0.830788 0.556589i \(-0.812110\pi\)
−0.830788 + 0.556589i \(0.812110\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.65685 0.553992 0.276996 0.960871i \(-0.410661\pi\)
0.276996 + 0.960871i \(0.410661\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) 10.0711 1.80882 0.904409 0.426667i \(-0.140313\pi\)
0.904409 + 0.426667i \(0.140313\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) 10.4853 1.72377 0.861885 0.507104i \(-0.169284\pi\)
0.861885 + 0.507104i \(0.169284\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.24264 −0.350242 −0.175121 0.984547i \(-0.556032\pi\)
−0.175121 + 0.984547i \(0.556032\pi\)
\(42\) 0 0
\(43\) −1.75736 −0.267995 −0.133997 0.990982i \(-0.542781\pi\)
−0.133997 + 0.990982i \(0.542781\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.6569 −1.70033 −0.850163 0.526519i \(-0.823497\pi\)
−0.850163 + 0.526519i \(0.823497\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.24264 −0.994853 −0.497427 0.867506i \(-0.665722\pi\)
−0.497427 + 0.867506i \(0.665722\pi\)
\(54\) 0 0
\(55\) 1.41421 0.190693
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.0711 −1.70171 −0.850854 0.525402i \(-0.823915\pi\)
−0.850854 + 0.525402i \(0.823915\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.24264 −0.774304
\(66\) 0 0
\(67\) −11.6569 −1.42411 −0.712056 0.702123i \(-0.752236\pi\)
−0.712056 + 0.702123i \(0.752236\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.4142 −1.59197 −0.795987 0.605314i \(-0.793048\pi\)
−0.795987 + 0.605314i \(0.793048\pi\)
\(72\) 0 0
\(73\) −4.24264 −0.496564 −0.248282 0.968688i \(-0.579866\pi\)
−0.248282 + 0.968688i \(0.579866\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) 4.41421 0.496638 0.248319 0.968678i \(-0.420122\pi\)
0.248319 + 0.968678i \(0.420122\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.8284 −1.29834 −0.649169 0.760644i \(-0.724883\pi\)
−0.649169 + 0.760644i \(0.724883\pi\)
\(84\) 0 0
\(85\) 3.24264 0.351714
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.24264 −0.661719 −0.330859 0.943680i \(-0.607339\pi\)
−0.330859 + 0.943680i \(0.607339\pi\)
\(90\) 0 0
\(91\) 8.82843 0.925471
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.24264 −0.743079
\(96\) 0 0
\(97\) −0.485281 −0.0492729 −0.0246364 0.999696i \(-0.507843\pi\)
−0.0246364 + 0.999696i \(0.507843\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.4853 1.24233 0.621166 0.783679i \(-0.286659\pi\)
0.621166 + 0.783679i \(0.286659\pi\)
\(102\) 0 0
\(103\) −14.1421 −1.39347 −0.696733 0.717331i \(-0.745364\pi\)
−0.696733 + 0.717331i \(0.745364\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.14214 0.787130 0.393565 0.919297i \(-0.371242\pi\)
0.393565 + 0.919297i \(0.371242\pi\)
\(108\) 0 0
\(109\) 3.00000 0.287348 0.143674 0.989625i \(-0.454108\pi\)
0.143674 + 0.989625i \(0.454108\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.4853 1.55080 0.775402 0.631467i \(-0.217547\pi\)
0.775402 + 0.631467i \(0.217547\pi\)
\(114\) 0 0
\(115\) 2.65685 0.247753
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.58579 −0.420378
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.343146 0.0304493 0.0152246 0.999884i \(-0.495154\pi\)
0.0152246 + 0.999884i \(0.495154\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.17157 −0.277102 −0.138551 0.990355i \(-0.544244\pi\)
−0.138551 + 0.990355i \(0.544244\pi\)
\(132\) 0 0
\(133\) 10.2426 0.888150
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.24264 −0.106166 −0.0530830 0.998590i \(-0.516905\pi\)
−0.0530830 + 0.998590i \(0.516905\pi\)
\(138\) 0 0
\(139\) 5.65685 0.479808 0.239904 0.970797i \(-0.422884\pi\)
0.239904 + 0.970797i \(0.422884\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.82843 −0.738270
\(144\) 0 0
\(145\) 4.24264 0.352332
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.24264 −0.183724 −0.0918621 0.995772i \(-0.529282\pi\)
−0.0918621 + 0.995772i \(0.529282\pi\)
\(150\) 0 0
\(151\) 18.0000 1.46482 0.732410 0.680864i \(-0.238396\pi\)
0.732410 + 0.680864i \(0.238396\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.0711 0.808928
\(156\) 0 0
\(157\) −16.2426 −1.29630 −0.648152 0.761511i \(-0.724458\pi\)
−0.648152 + 0.761511i \(0.724458\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.75736 −0.296121
\(162\) 0 0
\(163\) −15.1716 −1.18833 −0.594165 0.804343i \(-0.702517\pi\)
−0.594165 + 0.804343i \(0.702517\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.8284 −0.915311 −0.457656 0.889130i \(-0.651311\pi\)
−0.457656 + 0.889130i \(0.651311\pi\)
\(168\) 0 0
\(169\) 25.9706 1.99774
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −20.2132 −1.53678 −0.768391 0.639981i \(-0.778942\pi\)
−0.768391 + 0.639981i \(0.778942\pi\)
\(174\) 0 0
\(175\) −1.41421 −0.106904
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.8284 −1.10833 −0.554164 0.832407i \(-0.686962\pi\)
−0.554164 + 0.832407i \(0.686962\pi\)
\(180\) 0 0
\(181\) −17.9706 −1.33574 −0.667871 0.744277i \(-0.732794\pi\)
−0.667871 + 0.744277i \(0.732794\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.4853 0.770893
\(186\) 0 0
\(187\) 4.58579 0.335346
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.48528 0.179829 0.0899143 0.995950i \(-0.471341\pi\)
0.0899143 + 0.995950i \(0.471341\pi\)
\(192\) 0 0
\(193\) −1.75736 −0.126497 −0.0632487 0.997998i \(-0.520146\pi\)
−0.0632487 + 0.997998i \(0.520146\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.24264 −0.0885345 −0.0442672 0.999020i \(-0.514095\pi\)
−0.0442672 + 0.999020i \(0.514095\pi\)
\(198\) 0 0
\(199\) 9.17157 0.650156 0.325078 0.945687i \(-0.394610\pi\)
0.325078 + 0.945687i \(0.394610\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −2.24264 −0.156633
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.2426 −0.708498
\(210\) 0 0
\(211\) −7.24264 −0.498604 −0.249302 0.968426i \(-0.580201\pi\)
−0.249302 + 0.968426i \(0.580201\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.75736 −0.119851
\(216\) 0 0
\(217\) −14.2426 −0.966853
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −20.2426 −1.36167
\(222\) 0 0
\(223\) 2.48528 0.166427 0.0832134 0.996532i \(-0.473482\pi\)
0.0832134 + 0.996532i \(0.473482\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.8284 −1.18331 −0.591657 0.806190i \(-0.701526\pi\)
−0.591657 + 0.806190i \(0.701526\pi\)
\(228\) 0 0
\(229\) 1.48528 0.0981502 0.0490751 0.998795i \(-0.484373\pi\)
0.0490751 + 0.998795i \(0.484373\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) −11.6569 −0.760409
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.7990 0.892582 0.446291 0.894888i \(-0.352745\pi\)
0.446291 + 0.894888i \(0.352745\pi\)
\(240\) 0 0
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.00000 −0.319438
\(246\) 0 0
\(247\) 45.2132 2.87685
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.7990 −1.24970 −0.624851 0.780744i \(-0.714840\pi\)
−0.624851 + 0.780744i \(0.714840\pi\)
\(252\) 0 0
\(253\) 3.75736 0.236223
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.72792 −0.357298 −0.178649 0.983913i \(-0.557173\pi\)
−0.178649 + 0.983913i \(0.557173\pi\)
\(258\) 0 0
\(259\) −14.8284 −0.921394
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.6569 −0.718792 −0.359396 0.933185i \(-0.617017\pi\)
−0.359396 + 0.933185i \(0.617017\pi\)
\(264\) 0 0
\(265\) −7.24264 −0.444912
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.4853 1.61484 0.807418 0.589980i \(-0.200864\pi\)
0.807418 + 0.589980i \(0.200864\pi\)
\(270\) 0 0
\(271\) 10.7574 0.653463 0.326732 0.945117i \(-0.394053\pi\)
0.326732 + 0.945117i \(0.394053\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421 0.0852803
\(276\) 0 0
\(277\) −4.72792 −0.284073 −0.142037 0.989861i \(-0.545365\pi\)
−0.142037 + 0.989861i \(0.545365\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.7279 1.47514 0.737572 0.675268i \(-0.235972\pi\)
0.737572 + 0.675268i \(0.235972\pi\)
\(282\) 0 0
\(283\) −13.7574 −0.817790 −0.408895 0.912581i \(-0.634086\pi\)
−0.408895 + 0.912581i \(0.634086\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.17157 0.187212
\(288\) 0 0
\(289\) −6.48528 −0.381487
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 20.2132 1.18087 0.590434 0.807086i \(-0.298957\pi\)
0.590434 + 0.807086i \(0.298957\pi\)
\(294\) 0 0
\(295\) −13.0711 −0.761027
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.5858 −0.959181
\(300\) 0 0
\(301\) 2.48528 0.143249
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) 5.31371 0.303269 0.151635 0.988437i \(-0.451546\pi\)
0.151635 + 0.988437i \(0.451546\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.8995 −1.58204 −0.791018 0.611793i \(-0.790448\pi\)
−0.791018 + 0.611793i \(0.790448\pi\)
\(312\) 0 0
\(313\) 3.51472 0.198664 0.0993318 0.995054i \(-0.468329\pi\)
0.0993318 + 0.995054i \(0.468329\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.2132 1.35995 0.679974 0.733236i \(-0.261991\pi\)
0.679974 + 0.733236i \(0.261991\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −23.4853 −1.30676
\(324\) 0 0
\(325\) −6.24264 −0.346279
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.4853 0.908863
\(330\) 0 0
\(331\) −14.1421 −0.777322 −0.388661 0.921381i \(-0.627062\pi\)
−0.388661 + 0.921381i \(0.627062\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.6569 −0.636882
\(336\) 0 0
\(337\) −5.27208 −0.287188 −0.143594 0.989637i \(-0.545866\pi\)
−0.143594 + 0.989637i \(0.545866\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.2426 0.771282
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −28.9706 −1.55522 −0.777611 0.628746i \(-0.783568\pi\)
−0.777611 + 0.628746i \(0.783568\pi\)
\(348\) 0 0
\(349\) 17.4853 0.935966 0.467983 0.883738i \(-0.344981\pi\)
0.467983 + 0.883738i \(0.344981\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.4853 0.770974 0.385487 0.922713i \(-0.374034\pi\)
0.385487 + 0.922713i \(0.374034\pi\)
\(354\) 0 0
\(355\) −13.4142 −0.711953
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.343146 0.0181105 0.00905527 0.999959i \(-0.497118\pi\)
0.00905527 + 0.999959i \(0.497118\pi\)
\(360\) 0 0
\(361\) 33.4558 1.76083
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.24264 −0.222070
\(366\) 0 0
\(367\) 7.75736 0.404931 0.202465 0.979289i \(-0.435105\pi\)
0.202465 + 0.979289i \(0.435105\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.2426 0.531771
\(372\) 0 0
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −26.4853 −1.36406
\(378\) 0 0
\(379\) −1.58579 −0.0814564 −0.0407282 0.999170i \(-0.512968\pi\)
−0.0407282 + 0.999170i \(0.512968\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.31371 −0.424811 −0.212405 0.977182i \(-0.568130\pi\)
−0.212405 + 0.977182i \(0.568130\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −34.2426 −1.73617 −0.868085 0.496415i \(-0.834649\pi\)
−0.868085 + 0.496415i \(0.834649\pi\)
\(390\) 0 0
\(391\) 8.61522 0.435691
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.41421 0.222103
\(396\) 0 0
\(397\) 18.2426 0.915572 0.457786 0.889062i \(-0.348643\pi\)
0.457786 + 0.889062i \(0.348643\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.4558 −1.17133 −0.585664 0.810554i \(-0.699166\pi\)
−0.585664 + 0.810554i \(0.699166\pi\)
\(402\) 0 0
\(403\) −62.8701 −3.13178
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 14.8284 0.735018
\(408\) 0 0
\(409\) −21.4853 −1.06238 −0.531189 0.847253i \(-0.678255\pi\)
−0.531189 + 0.847253i \(0.678255\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 18.4853 0.909601
\(414\) 0 0
\(415\) −11.8284 −0.580635
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0416 1.17451 0.587255 0.809402i \(-0.300208\pi\)
0.587255 + 0.809402i \(0.300208\pi\)
\(420\) 0 0
\(421\) 19.4853 0.949655 0.474827 0.880079i \(-0.342511\pi\)
0.474827 + 0.880079i \(0.342511\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.24264 0.157291
\(426\) 0 0
\(427\) −1.41421 −0.0684386
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.89949 0.187832 0.0939160 0.995580i \(-0.470061\pi\)
0.0939160 + 0.995580i \(0.470061\pi\)
\(432\) 0 0
\(433\) 2.24264 0.107774 0.0538872 0.998547i \(-0.482839\pi\)
0.0538872 + 0.998547i \(0.482839\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.2426 −0.920500
\(438\) 0 0
\(439\) 25.5858 1.22114 0.610571 0.791961i \(-0.290940\pi\)
0.610571 + 0.791961i \(0.290940\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 37.6274 1.78773 0.893866 0.448334i \(-0.147982\pi\)
0.893866 + 0.448334i \(0.147982\pi\)
\(444\) 0 0
\(445\) −6.24264 −0.295930
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.2426 0.577766 0.288883 0.957364i \(-0.406716\pi\)
0.288883 + 0.957364i \(0.406716\pi\)
\(450\) 0 0
\(451\) −3.17157 −0.149344
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.82843 0.413883
\(456\) 0 0
\(457\) 36.9706 1.72941 0.864705 0.502280i \(-0.167505\pi\)
0.864705 + 0.502280i \(0.167505\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.9706 −0.510950 −0.255475 0.966816i \(-0.582232\pi\)
−0.255475 + 0.966816i \(0.582232\pi\)
\(462\) 0 0
\(463\) −21.5147 −0.999874 −0.499937 0.866062i \(-0.666643\pi\)
−0.499937 + 0.866062i \(0.666643\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.857864 −0.0396972 −0.0198486 0.999803i \(-0.506318\pi\)
−0.0198486 + 0.999803i \(0.506318\pi\)
\(468\) 0 0
\(469\) 16.4853 0.761220
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.48528 −0.114273
\(474\) 0 0
\(475\) −7.24264 −0.332315
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.75736 0.354443 0.177221 0.984171i \(-0.443289\pi\)
0.177221 + 0.984171i \(0.443289\pi\)
\(480\) 0 0
\(481\) −65.4558 −2.98453
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.485281 −0.0220355
\(486\) 0 0
\(487\) 25.0711 1.13608 0.568039 0.823001i \(-0.307702\pi\)
0.568039 + 0.823001i \(0.307702\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 29.3137 1.32291 0.661455 0.749985i \(-0.269939\pi\)
0.661455 + 0.749985i \(0.269939\pi\)
\(492\) 0 0
\(493\) 13.7574 0.619600
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.9706 0.850946
\(498\) 0 0
\(499\) 3.72792 0.166885 0.0834424 0.996513i \(-0.473409\pi\)
0.0834424 + 0.996513i \(0.473409\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.9706 1.15797 0.578985 0.815338i \(-0.303449\pi\)
0.578985 + 0.815338i \(0.303449\pi\)
\(504\) 0 0
\(505\) 12.4853 0.555588
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.9706 −1.63869 −0.819346 0.573300i \(-0.805663\pi\)
−0.819346 + 0.573300i \(0.805663\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14.1421 −0.623177
\(516\) 0 0
\(517\) −16.4853 −0.725022
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −35.2132 −1.54272 −0.771359 0.636400i \(-0.780423\pi\)
−0.771359 + 0.636400i \(0.780423\pi\)
\(522\) 0 0
\(523\) −28.2426 −1.23496 −0.617482 0.786585i \(-0.711847\pi\)
−0.617482 + 0.786585i \(0.711847\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 32.6569 1.42255
\(528\) 0 0
\(529\) −15.9411 −0.693092
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.0000 0.606407
\(534\) 0 0
\(535\) 8.14214 0.352015
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.07107 −0.304572
\(540\) 0 0
\(541\) 4.48528 0.192837 0.0964187 0.995341i \(-0.469261\pi\)
0.0964187 + 0.995341i \(0.469261\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) 23.6985 1.01327 0.506637 0.862159i \(-0.330888\pi\)
0.506637 + 0.862159i \(0.330888\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −30.7279 −1.30905
\(552\) 0 0
\(553\) −6.24264 −0.265464
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 34.4853 1.46119 0.730594 0.682812i \(-0.239243\pi\)
0.730594 + 0.682812i \(0.239243\pi\)
\(558\) 0 0
\(559\) 10.9706 0.464005
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.1421 −0.848890 −0.424445 0.905454i \(-0.639531\pi\)
−0.424445 + 0.905454i \(0.639531\pi\)
\(564\) 0 0
\(565\) 16.4853 0.693541
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.2426 −0.513238 −0.256619 0.966513i \(-0.582609\pi\)
−0.256619 + 0.966513i \(0.582609\pi\)
\(570\) 0 0
\(571\) 28.4142 1.18910 0.594549 0.804059i \(-0.297331\pi\)
0.594549 + 0.804059i \(0.297331\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.65685 0.110798
\(576\) 0 0
\(577\) 3.27208 0.136218 0.0681092 0.997678i \(-0.478303\pi\)
0.0681092 + 0.997678i \(0.478303\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.7279 0.693991
\(582\) 0 0
\(583\) −10.2426 −0.424207
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.4853 −0.474048 −0.237024 0.971504i \(-0.576172\pi\)
−0.237024 + 0.971504i \(0.576172\pi\)
\(588\) 0 0
\(589\) −72.9411 −3.00549
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.7574 −1.18092 −0.590462 0.807066i \(-0.701054\pi\)
−0.590462 + 0.807066i \(0.701054\pi\)
\(594\) 0 0
\(595\) −4.58579 −0.187999
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.04163 −0.246854 −0.123427 0.992354i \(-0.539389\pi\)
−0.123427 + 0.992354i \(0.539389\pi\)
\(600\) 0 0
\(601\) −5.97056 −0.243544 −0.121772 0.992558i \(-0.538858\pi\)
−0.121772 + 0.992558i \(0.538858\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.00000 −0.365902
\(606\) 0 0
\(607\) −29.3553 −1.19150 −0.595748 0.803171i \(-0.703144\pi\)
−0.595748 + 0.803171i \(0.703144\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 72.7696 2.94394
\(612\) 0 0
\(613\) 20.9706 0.846993 0.423497 0.905898i \(-0.360803\pi\)
0.423497 + 0.905898i \(0.360803\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.2132 0.894270 0.447135 0.894467i \(-0.352444\pi\)
0.447135 + 0.894467i \(0.352444\pi\)
\(618\) 0 0
\(619\) 19.7990 0.795789 0.397894 0.917431i \(-0.369741\pi\)
0.397894 + 0.917431i \(0.369741\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.82843 0.353703
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 34.0000 1.35567
\(630\) 0 0
\(631\) 34.7574 1.38367 0.691834 0.722056i \(-0.256803\pi\)
0.691834 + 0.722056i \(0.256803\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.343146 0.0136173
\(636\) 0 0
\(637\) 31.2132 1.23671
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.9706 −0.512306 −0.256153 0.966636i \(-0.582455\pi\)
−0.256153 + 0.966636i \(0.582455\pi\)
\(642\) 0 0
\(643\) −26.1005 −1.02930 −0.514652 0.857399i \(-0.672079\pi\)
−0.514652 + 0.857399i \(0.672079\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.6569 0.812105 0.406052 0.913850i \(-0.366905\pi\)
0.406052 + 0.913850i \(0.366905\pi\)
\(648\) 0 0
\(649\) −18.4853 −0.725611
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.2426 −1.61395 −0.806975 0.590586i \(-0.798897\pi\)
−0.806975 + 0.590586i \(0.798897\pi\)
\(654\) 0 0
\(655\) −3.17157 −0.123924
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.21320 −0.125169 −0.0625843 0.998040i \(-0.519934\pi\)
−0.0625843 + 0.998040i \(0.519934\pi\)
\(660\) 0 0
\(661\) 12.4853 0.485621 0.242811 0.970074i \(-0.421931\pi\)
0.242811 + 0.970074i \(0.421931\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.2426 0.397193
\(666\) 0 0
\(667\) 11.2721 0.436457
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.41421 0.0545951
\(672\) 0 0
\(673\) 31.6985 1.22189 0.610943 0.791674i \(-0.290790\pi\)
0.610943 + 0.791674i \(0.290790\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −46.4264 −1.78431 −0.892156 0.451728i \(-0.850808\pi\)
−0.892156 + 0.451728i \(0.850808\pi\)
\(678\) 0 0
\(679\) 0.686292 0.0263375
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.3431 0.587089 0.293545 0.955945i \(-0.405165\pi\)
0.293545 + 0.955945i \(0.405165\pi\)
\(684\) 0 0
\(685\) −1.24264 −0.0474789
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 45.2132 1.72249
\(690\) 0 0
\(691\) 45.0416 1.71346 0.856732 0.515762i \(-0.172491\pi\)
0.856732 + 0.515762i \(0.172491\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.65685 0.214577
\(696\) 0 0
\(697\) −7.27208 −0.275450
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.4853 0.698179 0.349090 0.937089i \(-0.386491\pi\)
0.349090 + 0.937089i \(0.386491\pi\)
\(702\) 0 0
\(703\) −75.9411 −2.86417
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −17.6569 −0.664054
\(708\) 0 0
\(709\) −17.4558 −0.655568 −0.327784 0.944753i \(-0.606302\pi\)
−0.327784 + 0.944753i \(0.606302\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 26.7574 1.00207
\(714\) 0 0
\(715\) −8.82843 −0.330164
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −45.5980 −1.70052 −0.850259 0.526365i \(-0.823555\pi\)
−0.850259 + 0.526365i \(0.823555\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.24264 0.157568
\(726\) 0 0
\(727\) 15.5147 0.575409 0.287705 0.957719i \(-0.407108\pi\)
0.287705 + 0.957719i \(0.407108\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.69848 −0.210766
\(732\) 0 0
\(733\) 5.45584 0.201516 0.100758 0.994911i \(-0.467873\pi\)
0.100758 + 0.994911i \(0.467873\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.4853 −0.607243
\(738\) 0 0
\(739\) −38.3553 −1.41092 −0.705462 0.708748i \(-0.749260\pi\)
−0.705462 + 0.708748i \(0.749260\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.2843 1.03765 0.518825 0.854881i \(-0.326370\pi\)
0.518825 + 0.854881i \(0.326370\pi\)
\(744\) 0 0
\(745\) −2.24264 −0.0821640
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.5147 −0.420739
\(750\) 0 0
\(751\) 22.7574 0.830428 0.415214 0.909724i \(-0.363707\pi\)
0.415214 + 0.909724i \(0.363707\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.0000 0.655087
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 37.6985 1.36657 0.683285 0.730152i \(-0.260551\pi\)
0.683285 + 0.730152i \(0.260551\pi\)
\(762\) 0 0
\(763\) −4.24264 −0.153594
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 81.5980 2.94633
\(768\) 0 0
\(769\) 33.4264 1.20539 0.602694 0.797973i \(-0.294094\pi\)
0.602694 + 0.797973i \(0.294094\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.2132 −0.655083 −0.327542 0.944837i \(-0.606220\pi\)
−0.327542 + 0.944837i \(0.606220\pi\)
\(774\) 0 0
\(775\) 10.0711 0.361763
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.2426 0.581953
\(780\) 0 0
\(781\) −18.9706 −0.678820
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.2426 −0.579725
\(786\) 0 0
\(787\) −18.7279 −0.667578 −0.333789 0.942648i \(-0.608327\pi\)
−0.333789 + 0.942648i \(0.608327\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −23.3137 −0.828940
\(792\) 0 0
\(793\) −6.24264 −0.221683
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.7574 −0.593576 −0.296788 0.954943i \(-0.595915\pi\)
−0.296788 + 0.954943i \(0.595915\pi\)
\(798\) 0 0
\(799\) −37.7990 −1.33723
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) −3.75736 −0.132430
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.75736 0.0617855 0.0308927 0.999523i \(-0.490165\pi\)
0.0308927 + 0.999523i \(0.490165\pi\)
\(810\) 0 0
\(811\) 52.6274 1.84800 0.923999 0.382394i \(-0.124900\pi\)
0.923999 + 0.382394i \(0.124900\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.1716 −0.531437
\(816\) 0 0
\(817\) 12.7279 0.445294
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.97056 0.243274 0.121637 0.992575i \(-0.461186\pi\)
0.121637 + 0.992575i \(0.461186\pi\)
\(822\) 0 0
\(823\) 23.6985 0.826077 0.413039 0.910714i \(-0.364467\pi\)
0.413039 + 0.910714i \(0.364467\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −40.1127 −1.39486 −0.697428 0.716655i \(-0.745672\pi\)
−0.697428 + 0.716655i \(0.745672\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −16.2132 −0.561754
\(834\) 0 0
\(835\) −11.8284 −0.409340
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38.1421 1.31681 0.658406 0.752663i \(-0.271231\pi\)
0.658406 + 0.752663i \(0.271231\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 25.9706 0.893415
\(846\) 0 0
\(847\) 12.7279 0.437337
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27.8579 0.954955
\(852\) 0 0
\(853\) 31.5147 1.07904 0.539522 0.841972i \(-0.318605\pi\)
0.539522 + 0.841972i \(0.318605\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.21320 −0.212239 −0.106119 0.994353i \(-0.533843\pi\)
−0.106119 + 0.994353i \(0.533843\pi\)
\(858\) 0 0
\(859\) −8.69848 −0.296788 −0.148394 0.988928i \(-0.547410\pi\)
−0.148394 + 0.988928i \(0.547410\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.45584 −0.151679 −0.0758393 0.997120i \(-0.524164\pi\)
−0.0758393 + 0.997120i \(0.524164\pi\)
\(864\) 0 0
\(865\) −20.2132 −0.687270
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.24264 0.211767
\(870\) 0 0
\(871\) 72.7696 2.46570
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.41421 −0.0478091
\(876\) 0 0
\(877\) −12.2426 −0.413405 −0.206702 0.978404i \(-0.566273\pi\)
−0.206702 + 0.978404i \(0.566273\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.7868 −0.498180 −0.249090 0.968480i \(-0.580131\pi\)
−0.249090 + 0.968480i \(0.580131\pi\)
\(882\) 0 0
\(883\) 2.87006 0.0965851 0.0482926 0.998833i \(-0.484622\pi\)
0.0482926 + 0.998833i \(0.484622\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.8579 0.633185 0.316593 0.948562i \(-0.397461\pi\)
0.316593 + 0.948562i \(0.397461\pi\)
\(888\) 0 0
\(889\) −0.485281 −0.0162758
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 84.4264 2.82522
\(894\) 0 0
\(895\) −14.8284 −0.495660
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 42.7279 1.42506
\(900\) 0 0
\(901\) −23.4853 −0.782408
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.9706 −0.597362
\(906\) 0 0
\(907\) −42.4264 −1.40875 −0.704373 0.709830i \(-0.748772\pi\)
−0.704373 + 0.709830i \(0.748772\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.9289 −0.362092 −0.181046 0.983475i \(-0.557948\pi\)
−0.181046 + 0.983475i \(0.557948\pi\)
\(912\) 0 0
\(913\) −16.7279 −0.553613
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.48528 0.148117
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 83.7401 2.75634
\(924\) 0 0
\(925\) 10.4853 0.344754
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −41.7574 −1.37001 −0.685007 0.728536i \(-0.740201\pi\)
−0.685007 + 0.728536i \(0.740201\pi\)
\(930\) 0 0
\(931\) 36.2132 1.18684
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.58579 0.149971
\(936\) 0 0
\(937\) −29.9411 −0.978134 −0.489067 0.872246i \(-0.662663\pi\)
−0.489067 + 0.872246i \(0.662663\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5.02944 −0.163955 −0.0819775 0.996634i \(-0.526124\pi\)
−0.0819775 + 0.996634i \(0.526124\pi\)
\(942\) 0 0
\(943\) −5.95837 −0.194031
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.4853 0.763169 0.381585 0.924334i \(-0.375379\pi\)
0.381585 + 0.924334i \(0.375379\pi\)
\(948\) 0 0
\(949\) 26.4853 0.859749
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −13.0294 −0.422065 −0.211032 0.977479i \(-0.567683\pi\)
−0.211032 + 0.977479i \(0.567683\pi\)
\(954\) 0 0
\(955\) 2.48528 0.0804218
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.75736 0.0567481
\(960\) 0 0
\(961\) 70.4264 2.27182
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.75736 −0.0565714
\(966\) 0 0
\(967\) 14.4853 0.465815 0.232908 0.972499i \(-0.425176\pi\)
0.232908 + 0.972499i \(0.425176\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.1421 1.41659 0.708294 0.705917i \(-0.249465\pi\)
0.708294 + 0.705917i \(0.249465\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 33.5147 1.07223 0.536115 0.844145i \(-0.319891\pi\)
0.536115 + 0.844145i \(0.319891\pi\)
\(978\) 0 0
\(979\) −8.82843 −0.282158
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.20101 0.0383063 0.0191531 0.999817i \(-0.493903\pi\)
0.0191531 + 0.999817i \(0.493903\pi\)
\(984\) 0 0
\(985\) −1.24264 −0.0395938
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.66905 −0.148467
\(990\) 0 0
\(991\) 27.7279 0.880806 0.440403 0.897800i \(-0.354835\pi\)
0.440403 + 0.897800i \(0.354835\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.17157 0.290758
\(996\) 0 0
\(997\) 0.242641 0.00768451 0.00384225 0.999993i \(-0.498777\pi\)
0.00384225 + 0.999993i \(0.498777\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.ba.1.1 yes 2
3.2 odd 2 4320.2.a.q.1.1 2
4.3 odd 2 4320.2.a.bb.1.2 yes 2
8.3 odd 2 8640.2.a.co.1.2 2
8.5 even 2 8640.2.a.cp.1.1 2
12.11 even 2 4320.2.a.r.1.2 yes 2
24.5 odd 2 8640.2.a.dd.1.1 2
24.11 even 2 8640.2.a.dc.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.q.1.1 2 3.2 odd 2
4320.2.a.r.1.2 yes 2 12.11 even 2
4320.2.a.ba.1.1 yes 2 1.1 even 1 trivial
4320.2.a.bb.1.2 yes 2 4.3 odd 2
8640.2.a.co.1.2 2 8.3 odd 2
8640.2.a.cp.1.1 2 8.5 even 2
8640.2.a.dc.1.2 2 24.11 even 2
8640.2.a.dd.1.1 2 24.5 odd 2