Properties

Label 4320.2.a.bb.1.1
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.41421 q^{7} +1.41421 q^{11} +2.24264 q^{13} -5.24264 q^{17} -1.24264 q^{19} +8.65685 q^{23} +1.00000 q^{25} -4.24264 q^{29} +4.07107 q^{31} -1.41421 q^{35} -6.48528 q^{37} +6.24264 q^{41} +10.2426 q^{43} +0.343146 q^{47} -5.00000 q^{49} +1.24264 q^{53} +1.41421 q^{55} -1.07107 q^{59} +1.00000 q^{61} +2.24264 q^{65} +0.343146 q^{67} +10.5858 q^{71} +4.24264 q^{73} -2.00000 q^{77} -1.58579 q^{79} +6.17157 q^{83} -5.24264 q^{85} +2.24264 q^{89} -3.17157 q^{91} -1.24264 q^{95} +16.4853 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 4 q^{13} - 2 q^{17} + 6 q^{19} + 6 q^{23} + 2 q^{25} - 6 q^{31} + 4 q^{37} + 4 q^{41} + 12 q^{43} + 12 q^{47} - 10 q^{49} - 6 q^{53} + 12 q^{59} + 2 q^{61} - 4 q^{65} + 12 q^{67} + 24 q^{71}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.41421 −0.534522 −0.267261 0.963624i \(-0.586119\pi\)
−0.267261 + 0.963624i \(0.586119\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) 2.24264 0.621997 0.310998 0.950410i \(-0.399337\pi\)
0.310998 + 0.950410i \(0.399337\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.24264 −1.27153 −0.635764 0.771884i \(-0.719315\pi\)
−0.635764 + 0.771884i \(0.719315\pi\)
\(18\) 0 0
\(19\) −1.24264 −0.285081 −0.142541 0.989789i \(-0.545527\pi\)
−0.142541 + 0.989789i \(0.545527\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.65685 1.80508 0.902539 0.430607i \(-0.141701\pi\)
0.902539 + 0.430607i \(0.141701\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.24264 −0.787839 −0.393919 0.919145i \(-0.628881\pi\)
−0.393919 + 0.919145i \(0.628881\pi\)
\(30\) 0 0
\(31\) 4.07107 0.731185 0.365593 0.930775i \(-0.380866\pi\)
0.365593 + 0.930775i \(0.380866\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.41421 −0.239046
\(36\) 0 0
\(37\) −6.48528 −1.06617 −0.533087 0.846061i \(-0.678968\pi\)
−0.533087 + 0.846061i \(0.678968\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.24264 0.974937 0.487468 0.873141i \(-0.337920\pi\)
0.487468 + 0.873141i \(0.337920\pi\)
\(42\) 0 0
\(43\) 10.2426 1.56199 0.780994 0.624538i \(-0.214713\pi\)
0.780994 + 0.624538i \(0.214713\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.343146 0.0500530 0.0250265 0.999687i \(-0.492033\pi\)
0.0250265 + 0.999687i \(0.492033\pi\)
\(48\) 0 0
\(49\) −5.00000 −0.714286
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.24264 0.170690 0.0853449 0.996351i \(-0.472801\pi\)
0.0853449 + 0.996351i \(0.472801\pi\)
\(54\) 0 0
\(55\) 1.41421 0.190693
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.07107 −0.139441 −0.0697206 0.997567i \(-0.522211\pi\)
−0.0697206 + 0.997567i \(0.522211\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.24264 0.278165
\(66\) 0 0
\(67\) 0.343146 0.0419219 0.0209610 0.999780i \(-0.493327\pi\)
0.0209610 + 0.999780i \(0.493327\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.5858 1.25630 0.628151 0.778092i \(-0.283812\pi\)
0.628151 + 0.778092i \(0.283812\pi\)
\(72\) 0 0
\(73\) 4.24264 0.496564 0.248282 0.968688i \(-0.420134\pi\)
0.248282 + 0.968688i \(0.420134\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −1.58579 −0.178415 −0.0892075 0.996013i \(-0.528433\pi\)
−0.0892075 + 0.996013i \(0.528433\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.17157 0.677418 0.338709 0.940891i \(-0.390010\pi\)
0.338709 + 0.940891i \(0.390010\pi\)
\(84\) 0 0
\(85\) −5.24264 −0.568644
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.24264 0.237719 0.118860 0.992911i \(-0.462076\pi\)
0.118860 + 0.992911i \(0.462076\pi\)
\(90\) 0 0
\(91\) −3.17157 −0.332471
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.24264 −0.127492
\(96\) 0 0
\(97\) 16.4853 1.67383 0.836913 0.547335i \(-0.184358\pi\)
0.836913 + 0.547335i \(0.184358\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.48528 −0.446302 −0.223151 0.974784i \(-0.571634\pi\)
−0.223151 + 0.974784i \(0.571634\pi\)
\(102\) 0 0
\(103\) −14.1421 −1.39347 −0.696733 0.717331i \(-0.745364\pi\)
−0.696733 + 0.717331i \(0.745364\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 20.1421 1.94721 0.973607 0.228232i \(-0.0732943\pi\)
0.973607 + 0.228232i \(0.0732943\pi\)
\(108\) 0 0
\(109\) 3.00000 0.287348 0.143674 0.989625i \(-0.454108\pi\)
0.143674 + 0.989625i \(0.454108\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.485281 −0.0456514 −0.0228257 0.999739i \(-0.507266\pi\)
−0.0228257 + 0.999739i \(0.507266\pi\)
\(114\) 0 0
\(115\) 8.65685 0.807256
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.41421 0.679660
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −11.6569 −1.03438 −0.517189 0.855871i \(-0.673022\pi\)
−0.517189 + 0.855871i \(0.673022\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.82843 0.771343 0.385672 0.922636i \(-0.373970\pi\)
0.385672 + 0.922636i \(0.373970\pi\)
\(132\) 0 0
\(133\) 1.75736 0.152382
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.24264 0.618781 0.309390 0.950935i \(-0.399875\pi\)
0.309390 + 0.950935i \(0.399875\pi\)
\(138\) 0 0
\(139\) 5.65685 0.479808 0.239904 0.970797i \(-0.422884\pi\)
0.239904 + 0.970797i \(0.422884\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.17157 0.265220
\(144\) 0 0
\(145\) −4.24264 −0.352332
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.24264 0.511417 0.255709 0.966754i \(-0.417691\pi\)
0.255709 + 0.966754i \(0.417691\pi\)
\(150\) 0 0
\(151\) −18.0000 −1.46482 −0.732410 0.680864i \(-0.761604\pi\)
−0.732410 + 0.680864i \(0.761604\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.07107 0.326996
\(156\) 0 0
\(157\) −7.75736 −0.619105 −0.309552 0.950882i \(-0.600179\pi\)
−0.309552 + 0.950882i \(0.600179\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.2426 −0.964855
\(162\) 0 0
\(163\) 20.8284 1.63141 0.815704 0.578469i \(-0.196350\pi\)
0.815704 + 0.578469i \(0.196350\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.17157 0.477571 0.238785 0.971072i \(-0.423251\pi\)
0.238785 + 0.971072i \(0.423251\pi\)
\(168\) 0 0
\(169\) −7.97056 −0.613120
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.2132 1.68884 0.844419 0.535683i \(-0.179946\pi\)
0.844419 + 0.535683i \(0.179946\pi\)
\(174\) 0 0
\(175\) −1.41421 −0.106904
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.17157 0.685516 0.342758 0.939424i \(-0.388639\pi\)
0.342758 + 0.939424i \(0.388639\pi\)
\(180\) 0 0
\(181\) 15.9706 1.18708 0.593541 0.804804i \(-0.297729\pi\)
0.593541 + 0.804804i \(0.297729\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.48528 −0.476807
\(186\) 0 0
\(187\) −7.41421 −0.542181
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.4853 1.04812 0.524059 0.851682i \(-0.324417\pi\)
0.524059 + 0.851682i \(0.324417\pi\)
\(192\) 0 0
\(193\) −10.2426 −0.737281 −0.368641 0.929572i \(-0.620177\pi\)
−0.368641 + 0.929572i \(0.620177\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.24264 0.516017 0.258008 0.966143i \(-0.416934\pi\)
0.258008 + 0.966143i \(0.416934\pi\)
\(198\) 0 0
\(199\) −14.8284 −1.05116 −0.525580 0.850744i \(-0.676152\pi\)
−0.525580 + 0.850744i \(0.676152\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 6.24264 0.436005
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.75736 −0.121559
\(210\) 0 0
\(211\) −1.24264 −0.0855469 −0.0427735 0.999085i \(-0.513619\pi\)
−0.0427735 + 0.999085i \(0.513619\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.2426 0.698542
\(216\) 0 0
\(217\) −5.75736 −0.390835
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.7574 −0.790886
\(222\) 0 0
\(223\) 14.4853 0.970006 0.485003 0.874512i \(-0.338818\pi\)
0.485003 + 0.874512i \(0.338818\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.1716 0.807856 0.403928 0.914791i \(-0.367645\pi\)
0.403928 + 0.914791i \(0.367645\pi\)
\(228\) 0 0
\(229\) −15.4853 −1.02330 −0.511648 0.859195i \(-0.670965\pi\)
−0.511648 + 0.859195i \(0.670965\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) 0.343146 0.0223844
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.7990 1.66880 0.834399 0.551161i \(-0.185815\pi\)
0.834399 + 0.551161i \(0.185815\pi\)
\(240\) 0 0
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.00000 −0.319438
\(246\) 0 0
\(247\) −2.78680 −0.177320
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.7990 −1.24970 −0.624851 0.780744i \(-0.714840\pi\)
−0.624851 + 0.780744i \(0.714840\pi\)
\(252\) 0 0
\(253\) 12.2426 0.769688
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.7279 1.23059 0.615297 0.788295i \(-0.289036\pi\)
0.615297 + 0.788295i \(0.289036\pi\)
\(258\) 0 0
\(259\) 9.17157 0.569894
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.343146 0.0211593 0.0105796 0.999944i \(-0.496632\pi\)
0.0105796 + 0.999944i \(0.496632\pi\)
\(264\) 0 0
\(265\) 1.24264 0.0763348
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.51472 0.580123 0.290061 0.957008i \(-0.406324\pi\)
0.290061 + 0.957008i \(0.406324\pi\)
\(270\) 0 0
\(271\) −19.2426 −1.16891 −0.584454 0.811427i \(-0.698691\pi\)
−0.584454 + 0.811427i \(0.698691\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.41421 0.0852803
\(276\) 0 0
\(277\) 20.7279 1.24542 0.622710 0.782453i \(-0.286032\pi\)
0.622710 + 0.782453i \(0.286032\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.727922 −0.0434242 −0.0217121 0.999764i \(-0.506912\pi\)
−0.0217121 + 0.999764i \(0.506912\pi\)
\(282\) 0 0
\(283\) 22.2426 1.32219 0.661094 0.750303i \(-0.270092\pi\)
0.661094 + 0.750303i \(0.270092\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.82843 −0.521126
\(288\) 0 0
\(289\) 10.4853 0.616781
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −22.2132 −1.29771 −0.648855 0.760912i \(-0.724752\pi\)
−0.648855 + 0.760912i \(0.724752\pi\)
\(294\) 0 0
\(295\) −1.07107 −0.0623600
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.4142 1.12275
\(300\) 0 0
\(301\) −14.4853 −0.834918
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) 17.3137 0.988146 0.494073 0.869421i \(-0.335508\pi\)
0.494073 + 0.869421i \(0.335508\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.10051 0.459338 0.229669 0.973269i \(-0.426236\pi\)
0.229669 + 0.973269i \(0.426236\pi\)
\(312\) 0 0
\(313\) 20.4853 1.15790 0.578948 0.815364i \(-0.303463\pi\)
0.578948 + 0.815364i \(0.303463\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.2132 −1.02296 −0.511478 0.859297i \(-0.670902\pi\)
−0.511478 + 0.859297i \(0.670902\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.51472 0.362489
\(324\) 0 0
\(325\) 2.24264 0.124399
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.485281 −0.0267544
\(330\) 0 0
\(331\) −14.1421 −0.777322 −0.388661 0.921381i \(-0.627062\pi\)
−0.388661 + 0.921381i \(0.627062\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.343146 0.0187481
\(336\) 0 0
\(337\) −30.7279 −1.67386 −0.836928 0.547313i \(-0.815651\pi\)
−0.836928 + 0.547313i \(0.815651\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.75736 0.311778
\(342\) 0 0
\(343\) 16.9706 0.916324
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.97056 −0.266834 −0.133417 0.991060i \(-0.542595\pi\)
−0.133417 + 0.991060i \(0.542595\pi\)
\(348\) 0 0
\(349\) 0.514719 0.0275523 0.0137761 0.999905i \(-0.495615\pi\)
0.0137761 + 0.999905i \(0.495615\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.48528 −0.132278 −0.0661391 0.997810i \(-0.521068\pi\)
−0.0661391 + 0.997810i \(0.521068\pi\)
\(354\) 0 0
\(355\) 10.5858 0.561835
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.6569 −0.615225 −0.307613 0.951512i \(-0.599530\pi\)
−0.307613 + 0.951512i \(0.599530\pi\)
\(360\) 0 0
\(361\) −17.4558 −0.918729
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.24264 0.222070
\(366\) 0 0
\(367\) −16.2426 −0.847859 −0.423929 0.905695i \(-0.639350\pi\)
−0.423929 + 0.905695i \(0.639350\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.75736 −0.0912375
\(372\) 0 0
\(373\) −32.0000 −1.65690 −0.828449 0.560065i \(-0.810776\pi\)
−0.828449 + 0.560065i \(0.810776\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.51472 −0.490033
\(378\) 0 0
\(379\) 4.41421 0.226743 0.113371 0.993553i \(-0.463835\pi\)
0.113371 + 0.993553i \(0.463835\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.3137 −0.731396 −0.365698 0.930734i \(-0.619170\pi\)
−0.365698 + 0.930734i \(0.619170\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −25.7574 −1.30595 −0.652975 0.757379i \(-0.726479\pi\)
−0.652975 + 0.757379i \(0.726479\pi\)
\(390\) 0 0
\(391\) −45.3848 −2.29521
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.58579 −0.0797896
\(396\) 0 0
\(397\) 9.75736 0.489708 0.244854 0.969560i \(-0.421260\pi\)
0.244854 + 0.969560i \(0.421260\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 27.4558 1.37108 0.685540 0.728035i \(-0.259566\pi\)
0.685540 + 0.728035i \(0.259566\pi\)
\(402\) 0 0
\(403\) 9.12994 0.454795
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.17157 −0.454618
\(408\) 0 0
\(409\) −4.51472 −0.223238 −0.111619 0.993751i \(-0.535604\pi\)
−0.111619 + 0.993751i \(0.535604\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.51472 0.0745344
\(414\) 0 0
\(415\) 6.17157 0.302951
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0416 1.17451 0.587255 0.809402i \(-0.300208\pi\)
0.587255 + 0.809402i \(0.300208\pi\)
\(420\) 0 0
\(421\) 2.51472 0.122560 0.0612799 0.998121i \(-0.480482\pi\)
0.0612799 + 0.998121i \(0.480482\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.24264 −0.254305
\(426\) 0 0
\(427\) −1.41421 −0.0684386
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 15.8995 0.765852 0.382926 0.923779i \(-0.374916\pi\)
0.382926 + 0.923779i \(0.374916\pi\)
\(432\) 0 0
\(433\) −6.24264 −0.300002 −0.150001 0.988686i \(-0.547928\pi\)
−0.150001 + 0.988686i \(0.547928\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.7574 −0.514594
\(438\) 0 0
\(439\) −28.4142 −1.35614 −0.678068 0.734999i \(-0.737183\pi\)
−0.678068 + 0.734999i \(0.737183\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.62742 0.362390 0.181195 0.983447i \(-0.442004\pi\)
0.181195 + 0.983447i \(0.442004\pi\)
\(444\) 0 0
\(445\) 2.24264 0.106311
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.75736 0.177321 0.0886604 0.996062i \(-0.471741\pi\)
0.0886604 + 0.996062i \(0.471741\pi\)
\(450\) 0 0
\(451\) 8.82843 0.415714
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.17157 −0.148686
\(456\) 0 0
\(457\) 3.02944 0.141711 0.0708555 0.997487i \(-0.477427\pi\)
0.0708555 + 0.997487i \(0.477427\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.9706 1.06985 0.534923 0.844901i \(-0.320341\pi\)
0.534923 + 0.844901i \(0.320341\pi\)
\(462\) 0 0
\(463\) 38.4853 1.78856 0.894281 0.447505i \(-0.147687\pi\)
0.894281 + 0.447505i \(0.147687\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 29.1421 1.34854 0.674269 0.738486i \(-0.264459\pi\)
0.674269 + 0.738486i \(0.264459\pi\)
\(468\) 0 0
\(469\) −0.485281 −0.0224082
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.4853 0.666034
\(474\) 0 0
\(475\) −1.24264 −0.0570163
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −16.2426 −0.742145 −0.371073 0.928604i \(-0.621010\pi\)
−0.371073 + 0.928604i \(0.621010\pi\)
\(480\) 0 0
\(481\) −14.5442 −0.663156
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.4853 0.748558
\(486\) 0 0
\(487\) −10.9289 −0.495237 −0.247619 0.968858i \(-0.579648\pi\)
−0.247619 + 0.968858i \(0.579648\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.68629 −0.301748 −0.150874 0.988553i \(-0.548209\pi\)
−0.150874 + 0.988553i \(0.548209\pi\)
\(492\) 0 0
\(493\) 22.2426 1.00176
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.9706 −0.671522
\(498\) 0 0
\(499\) 21.7279 0.972675 0.486338 0.873771i \(-0.338332\pi\)
0.486338 + 0.873771i \(0.338332\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.97056 0.355390 0.177695 0.984086i \(-0.443136\pi\)
0.177695 + 0.984086i \(0.443136\pi\)
\(504\) 0 0
\(505\) −4.48528 −0.199592
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.02944 −0.134277 −0.0671387 0.997744i \(-0.521387\pi\)
−0.0671387 + 0.997744i \(0.521387\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14.1421 −0.623177
\(516\) 0 0
\(517\) 0.485281 0.0213427
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.21320 0.316016 0.158008 0.987438i \(-0.449493\pi\)
0.158008 + 0.987438i \(0.449493\pi\)
\(522\) 0 0
\(523\) 19.7574 0.863929 0.431965 0.901891i \(-0.357821\pi\)
0.431965 + 0.901891i \(0.357821\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.3431 −0.929722
\(528\) 0 0
\(529\) 51.9411 2.25831
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 14.0000 0.606407
\(534\) 0 0
\(535\) 20.1421 0.870820
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.07107 −0.304572
\(540\) 0 0
\(541\) −12.4853 −0.536784 −0.268392 0.963310i \(-0.586492\pi\)
−0.268392 + 0.963310i \(0.586492\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) 35.6985 1.52636 0.763178 0.646188i \(-0.223638\pi\)
0.763178 + 0.646188i \(0.223638\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.27208 0.224598
\(552\) 0 0
\(553\) 2.24264 0.0953668
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.5147 0.742122 0.371061 0.928608i \(-0.378994\pi\)
0.371061 + 0.928608i \(0.378994\pi\)
\(558\) 0 0
\(559\) 22.9706 0.971551
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −8.14214 −0.343150 −0.171575 0.985171i \(-0.554886\pi\)
−0.171575 + 0.985171i \(0.554886\pi\)
\(564\) 0 0
\(565\) −0.485281 −0.0204159
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.75736 −0.157517 −0.0787583 0.996894i \(-0.525096\pi\)
−0.0787583 + 0.996894i \(0.525096\pi\)
\(570\) 0 0
\(571\) −25.5858 −1.07073 −0.535366 0.844620i \(-0.679826\pi\)
−0.535366 + 0.844620i \(0.679826\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.65685 0.361016
\(576\) 0 0
\(577\) 28.7279 1.19596 0.597980 0.801511i \(-0.295970\pi\)
0.597980 + 0.801511i \(0.295970\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.72792 −0.362095
\(582\) 0 0
\(583\) 1.75736 0.0727824
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.48528 −0.226402 −0.113201 0.993572i \(-0.536110\pi\)
−0.113201 + 0.993572i \(0.536110\pi\)
\(588\) 0 0
\(589\) −5.05887 −0.208447
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −37.2426 −1.52937 −0.764686 0.644403i \(-0.777106\pi\)
−0.764686 + 0.644403i \(0.777106\pi\)
\(594\) 0 0
\(595\) 7.41421 0.303953
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −42.0416 −1.71777 −0.858887 0.512165i \(-0.828844\pi\)
−0.858887 + 0.512165i \(0.828844\pi\)
\(600\) 0 0
\(601\) 27.9706 1.14094 0.570472 0.821317i \(-0.306760\pi\)
0.570472 + 0.821317i \(0.306760\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.00000 −0.365902
\(606\) 0 0
\(607\) −41.3553 −1.67856 −0.839281 0.543698i \(-0.817024\pi\)
−0.839281 + 0.543698i \(0.817024\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.769553 0.0311328
\(612\) 0 0
\(613\) −12.9706 −0.523876 −0.261938 0.965085i \(-0.584362\pi\)
−0.261938 + 0.965085i \(0.584362\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.2132 −0.813753 −0.406876 0.913483i \(-0.633382\pi\)
−0.406876 + 0.913483i \(0.633382\pi\)
\(618\) 0 0
\(619\) 19.7990 0.795789 0.397894 0.917431i \(-0.369741\pi\)
0.397894 + 0.917431i \(0.369741\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.17157 −0.127066
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 34.0000 1.35567
\(630\) 0 0
\(631\) −43.2426 −1.72146 −0.860731 0.509060i \(-0.829993\pi\)
−0.860731 + 0.509060i \(0.829993\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.6569 −0.462588
\(636\) 0 0
\(637\) −11.2132 −0.444283
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.9706 0.828287 0.414144 0.910212i \(-0.364081\pi\)
0.414144 + 0.910212i \(0.364081\pi\)
\(642\) 0 0
\(643\) 45.8995 1.81010 0.905050 0.425306i \(-0.139833\pi\)
0.905050 + 0.425306i \(0.139833\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.34315 −0.367317 −0.183658 0.982990i \(-0.558794\pi\)
−0.183658 + 0.982990i \(0.558794\pi\)
\(648\) 0 0
\(649\) −1.51472 −0.0594579
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −32.7574 −1.28189 −0.640947 0.767585i \(-0.721458\pi\)
−0.640947 + 0.767585i \(0.721458\pi\)
\(654\) 0 0
\(655\) 8.82843 0.344955
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.2132 −1.52753 −0.763765 0.645495i \(-0.776651\pi\)
−0.763765 + 0.645495i \(0.776651\pi\)
\(660\) 0 0
\(661\) −4.48528 −0.174457 −0.0872286 0.996188i \(-0.527801\pi\)
−0.0872286 + 0.996188i \(0.527801\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.75736 0.0681475
\(666\) 0 0
\(667\) −36.7279 −1.42211
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.41421 0.0545951
\(672\) 0 0
\(673\) −27.6985 −1.06770 −0.533849 0.845580i \(-0.679255\pi\)
−0.533849 + 0.845580i \(0.679255\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.4264 1.47685 0.738423 0.674337i \(-0.235571\pi\)
0.738423 + 0.674337i \(0.235571\pi\)
\(678\) 0 0
\(679\) −23.3137 −0.894698
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −26.6569 −1.02000 −0.509998 0.860176i \(-0.670354\pi\)
−0.509998 + 0.860176i \(0.670354\pi\)
\(684\) 0 0
\(685\) 7.24264 0.276727
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.78680 0.106168
\(690\) 0 0
\(691\) 3.04163 0.115709 0.0578545 0.998325i \(-0.481574\pi\)
0.0578545 + 0.998325i \(0.481574\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.65685 0.214577
\(696\) 0 0
\(697\) −32.7279 −1.23966
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.51472 0.0572101 0.0286051 0.999591i \(-0.490893\pi\)
0.0286051 + 0.999591i \(0.490893\pi\)
\(702\) 0 0
\(703\) 8.05887 0.303946
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.34315 0.238559
\(708\) 0 0
\(709\) 33.4558 1.25646 0.628230 0.778027i \(-0.283780\pi\)
0.628230 + 0.778027i \(0.283780\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 35.2426 1.31985
\(714\) 0 0
\(715\) 3.17157 0.118610
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −33.5980 −1.25299 −0.626497 0.779424i \(-0.715512\pi\)
−0.626497 + 0.779424i \(0.715512\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.24264 −0.157568
\(726\) 0 0
\(727\) −32.4853 −1.20481 −0.602406 0.798190i \(-0.705791\pi\)
−0.602406 + 0.798190i \(0.705791\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −53.6985 −1.98611
\(732\) 0 0
\(733\) −45.4558 −1.67895 −0.839475 0.543398i \(-0.817137\pi\)
−0.839475 + 0.543398i \(0.817137\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.485281 0.0178756
\(738\) 0 0
\(739\) −32.3553 −1.19021 −0.595105 0.803648i \(-0.702890\pi\)
−0.595105 + 0.803648i \(0.702890\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.2843 1.03765 0.518825 0.854881i \(-0.326370\pi\)
0.518825 + 0.854881i \(0.326370\pi\)
\(744\) 0 0
\(745\) 6.24264 0.228713
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −28.4853 −1.04083
\(750\) 0 0
\(751\) −31.2426 −1.14006 −0.570030 0.821624i \(-0.693068\pi\)
−0.570030 + 0.821624i \(0.693068\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −18.0000 −0.655087
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.6985 −0.786569 −0.393285 0.919417i \(-0.628661\pi\)
−0.393285 + 0.919417i \(0.628661\pi\)
\(762\) 0 0
\(763\) −4.24264 −0.153594
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.40202 −0.0867319
\(768\) 0 0
\(769\) −51.4264 −1.85448 −0.927242 0.374463i \(-0.877827\pi\)
−0.927242 + 0.374463i \(0.877827\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.2132 0.870888 0.435444 0.900216i \(-0.356591\pi\)
0.435444 + 0.900216i \(0.356591\pi\)
\(774\) 0 0
\(775\) 4.07107 0.146237
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.75736 −0.277936
\(780\) 0 0
\(781\) 14.9706 0.535689
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.75736 −0.276872
\(786\) 0 0
\(787\) −6.72792 −0.239825 −0.119912 0.992784i \(-0.538261\pi\)
−0.119912 + 0.992784i \(0.538261\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.686292 0.0244017
\(792\) 0 0
\(793\) 2.24264 0.0796385
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.2426 −0.894140 −0.447070 0.894499i \(-0.647533\pi\)
−0.447070 + 0.894499i \(0.647533\pi\)
\(798\) 0 0
\(799\) −1.79899 −0.0636437
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.00000 0.211735
\(804\) 0 0
\(805\) −12.2426 −0.431496
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.2426 0.360112 0.180056 0.983656i \(-0.442372\pi\)
0.180056 + 0.983656i \(0.442372\pi\)
\(810\) 0 0
\(811\) −7.37258 −0.258886 −0.129443 0.991587i \(-0.541319\pi\)
−0.129443 + 0.991587i \(0.541319\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.8284 0.729588
\(816\) 0 0
\(817\) −12.7279 −0.445294
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −26.9706 −0.941279 −0.470640 0.882326i \(-0.655977\pi\)
−0.470640 + 0.882326i \(0.655977\pi\)
\(822\) 0 0
\(823\) 35.6985 1.24437 0.622185 0.782870i \(-0.286245\pi\)
0.622185 + 0.782870i \(0.286245\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22.1127 −0.768934 −0.384467 0.923139i \(-0.625615\pi\)
−0.384467 + 0.923139i \(0.625615\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.2132 0.908234
\(834\) 0 0
\(835\) 6.17157 0.213576
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.85786 −0.340331 −0.170166 0.985415i \(-0.554430\pi\)
−0.170166 + 0.985415i \(0.554430\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.97056 −0.274196
\(846\) 0 0
\(847\) 12.7279 0.437337
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −56.1421 −1.92453
\(852\) 0 0
\(853\) 48.4853 1.66010 0.830052 0.557686i \(-0.188311\pi\)
0.830052 + 0.557686i \(0.188311\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.2132 1.23702 0.618510 0.785777i \(-0.287737\pi\)
0.618510 + 0.785777i \(0.287737\pi\)
\(858\) 0 0
\(859\) −50.6985 −1.72981 −0.864905 0.501936i \(-0.832621\pi\)
−0.864905 + 0.501936i \(0.832621\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.4558 −1.58138 −0.790688 0.612220i \(-0.790277\pi\)
−0.790688 + 0.612220i \(0.790277\pi\)
\(864\) 0 0
\(865\) 22.2132 0.755272
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.24264 −0.0760764
\(870\) 0 0
\(871\) 0.769553 0.0260753
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.41421 −0.0478091
\(876\) 0 0
\(877\) −3.75736 −0.126877 −0.0634385 0.997986i \(-0.520207\pi\)
−0.0634385 + 0.997986i \(0.520207\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −57.2132 −1.92756 −0.963781 0.266695i \(-0.914068\pi\)
−0.963781 + 0.266695i \(0.914068\pi\)
\(882\) 0 0
\(883\) 50.8701 1.71191 0.855957 0.517047i \(-0.172969\pi\)
0.855957 + 0.517047i \(0.172969\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −47.1421 −1.58288 −0.791439 0.611248i \(-0.790668\pi\)
−0.791439 + 0.611248i \(0.790668\pi\)
\(888\) 0 0
\(889\) 16.4853 0.552899
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.426407 −0.0142692
\(894\) 0 0
\(895\) 9.17157 0.306572
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −17.2721 −0.576056
\(900\) 0 0
\(901\) −6.51472 −0.217037
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.9706 0.530879
\(906\) 0 0
\(907\) −42.4264 −1.40875 −0.704373 0.709830i \(-0.748772\pi\)
−0.704373 + 0.709830i \(0.748772\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.0711 0.830642 0.415321 0.909675i \(-0.363669\pi\)
0.415321 + 0.909675i \(0.363669\pi\)
\(912\) 0 0
\(913\) 8.72792 0.288852
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −12.4853 −0.412300
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23.7401 0.781415
\(924\) 0 0
\(925\) −6.48528 −0.213235
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −50.2426 −1.64841 −0.824204 0.566293i \(-0.808377\pi\)
−0.824204 + 0.566293i \(0.808377\pi\)
\(930\) 0 0
\(931\) 6.21320 0.203630
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.41421 −0.242471
\(936\) 0 0
\(937\) 37.9411 1.23948 0.619741 0.784806i \(-0.287238\pi\)
0.619741 + 0.784806i \(0.287238\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −38.9706 −1.27040 −0.635202 0.772346i \(-0.719083\pi\)
−0.635202 + 0.772346i \(0.719083\pi\)
\(942\) 0 0
\(943\) 54.0416 1.75984
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.51472 −0.211700 −0.105850 0.994382i \(-0.533756\pi\)
−0.105850 + 0.994382i \(0.533756\pi\)
\(948\) 0 0
\(949\) 9.51472 0.308861
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −46.9706 −1.52153 −0.760763 0.649030i \(-0.775175\pi\)
−0.760763 + 0.649030i \(0.775175\pi\)
\(954\) 0 0
\(955\) 14.4853 0.468733
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.2426 −0.330752
\(960\) 0 0
\(961\) −14.4264 −0.465368
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.2426 −0.329722
\(966\) 0 0
\(967\) 2.48528 0.0799213 0.0399606 0.999201i \(-0.487277\pi\)
0.0399606 + 0.999201i \(0.487277\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.8579 −0.508903 −0.254452 0.967086i \(-0.581895\pi\)
−0.254452 + 0.967086i \(0.581895\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.4853 1.61517 0.807584 0.589753i \(-0.200775\pi\)
0.807584 + 0.589753i \(0.200775\pi\)
\(978\) 0 0
\(979\) 3.17157 0.101364
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −40.7990 −1.30129 −0.650643 0.759384i \(-0.725500\pi\)
−0.650643 + 0.759384i \(0.725500\pi\)
\(984\) 0 0
\(985\) 7.24264 0.230770
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 88.6690 2.81951
\(990\) 0 0
\(991\) −2.27208 −0.0721749 −0.0360875 0.999349i \(-0.511489\pi\)
−0.0360875 + 0.999349i \(0.511489\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.8284 −0.470093
\(996\) 0 0
\(997\) −8.24264 −0.261047 −0.130524 0.991445i \(-0.541666\pi\)
−0.130524 + 0.991445i \(0.541666\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.bb.1.1 yes 2
3.2 odd 2 4320.2.a.r.1.1 yes 2
4.3 odd 2 4320.2.a.ba.1.2 yes 2
8.3 odd 2 8640.2.a.cp.1.2 2
8.5 even 2 8640.2.a.co.1.1 2
12.11 even 2 4320.2.a.q.1.2 2
24.5 odd 2 8640.2.a.dc.1.1 2
24.11 even 2 8640.2.a.dd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.q.1.2 2 12.11 even 2
4320.2.a.r.1.1 yes 2 3.2 odd 2
4320.2.a.ba.1.2 yes 2 4.3 odd 2
4320.2.a.bb.1.1 yes 2 1.1 even 1 trivial
8640.2.a.co.1.1 2 8.5 even 2
8640.2.a.cp.1.2 2 8.3 odd 2
8640.2.a.dc.1.1 2 24.5 odd 2
8640.2.a.dd.1.2 2 24.11 even 2