Properties

Label 4320.2.a.bh.1.1
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1509.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.47735\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -3.61463 q^{7} +2.34008 q^{11} -3.95470 q^{13} -2.34008 q^{17} -1.61463 q^{19} -2.61463 q^{23} +1.00000 q^{25} -4.61463 q^{29} +0.340078 q^{31} +3.61463 q^{35} +7.61463 q^{37} +9.90941 q^{41} -9.29478 q^{43} -1.38537 q^{47} +6.06553 q^{49} -4.00000 q^{53} -2.34008 q^{55} +11.2293 q^{59} +7.61463 q^{61} +3.95470 q^{65} +8.29478 q^{67} -13.9094 q^{71} +14.8439 q^{73} -8.45851 q^{77} -0.0452953 q^{79} -15.1387 q^{83} +2.34008 q^{85} -2.68016 q^{89} +14.2948 q^{91} +1.61463 q^{95} +4.38537 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + q^{7} + 2 q^{11} + 5 q^{13} - 2 q^{17} + 7 q^{19} + 4 q^{23} + 3 q^{25} - 2 q^{29} - 4 q^{31} - q^{35} + 11 q^{37} - 4 q^{41} - 6 q^{43} - 16 q^{47} + 20 q^{49} - 12 q^{53} - 2 q^{55}+ \cdots + 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −3.61463 −1.36620 −0.683100 0.730325i \(-0.739369\pi\)
−0.683100 + 0.730325i \(0.739369\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.34008 0.705560 0.352780 0.935706i \(-0.385236\pi\)
0.352780 + 0.935706i \(0.385236\pi\)
\(12\) 0 0
\(13\) −3.95470 −1.09684 −0.548419 0.836204i \(-0.684770\pi\)
−0.548419 + 0.836204i \(0.684770\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.34008 −0.567552 −0.283776 0.958891i \(-0.591587\pi\)
−0.283776 + 0.958891i \(0.591587\pi\)
\(18\) 0 0
\(19\) −1.61463 −0.370421 −0.185210 0.982699i \(-0.559297\pi\)
−0.185210 + 0.982699i \(0.559297\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.61463 −0.545187 −0.272594 0.962129i \(-0.587881\pi\)
−0.272594 + 0.962129i \(0.587881\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.61463 −0.856915 −0.428457 0.903562i \(-0.640943\pi\)
−0.428457 + 0.903562i \(0.640943\pi\)
\(30\) 0 0
\(31\) 0.340078 0.0610798 0.0305399 0.999534i \(-0.490277\pi\)
0.0305399 + 0.999534i \(0.490277\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.61463 0.610983
\(36\) 0 0
\(37\) 7.61463 1.25184 0.625918 0.779888i \(-0.284724\pi\)
0.625918 + 0.779888i \(0.284724\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.90941 1.54759 0.773795 0.633436i \(-0.218356\pi\)
0.773795 + 0.633436i \(0.218356\pi\)
\(42\) 0 0
\(43\) −9.29478 −1.41744 −0.708721 0.705489i \(-0.750727\pi\)
−0.708721 + 0.705489i \(0.750727\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.38537 −0.202077 −0.101039 0.994882i \(-0.532217\pi\)
−0.101039 + 0.994882i \(0.532217\pi\)
\(48\) 0 0
\(49\) 6.06553 0.866504
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −2.34008 −0.315536
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.2293 1.46192 0.730962 0.682418i \(-0.239072\pi\)
0.730962 + 0.682418i \(0.239072\pi\)
\(60\) 0 0
\(61\) 7.61463 0.974953 0.487477 0.873136i \(-0.337917\pi\)
0.487477 + 0.873136i \(0.337917\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.95470 0.490521
\(66\) 0 0
\(67\) 8.29478 1.01337 0.506684 0.862132i \(-0.330871\pi\)
0.506684 + 0.862132i \(0.330871\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.9094 −1.65074 −0.825372 0.564590i \(-0.809034\pi\)
−0.825372 + 0.564590i \(0.809034\pi\)
\(72\) 0 0
\(73\) 14.8439 1.73734 0.868672 0.495387i \(-0.164974\pi\)
0.868672 + 0.495387i \(0.164974\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.45851 −0.963936
\(78\) 0 0
\(79\) −0.0452953 −0.00509612 −0.00254806 0.999997i \(-0.500811\pi\)
−0.00254806 + 0.999997i \(0.500811\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.1387 −1.66168 −0.830842 0.556508i \(-0.812141\pi\)
−0.830842 + 0.556508i \(0.812141\pi\)
\(84\) 0 0
\(85\) 2.34008 0.253817
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.68016 −0.284096 −0.142048 0.989860i \(-0.545369\pi\)
−0.142048 + 0.989860i \(0.545369\pi\)
\(90\) 0 0
\(91\) 14.2948 1.49850
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.61463 0.165657
\(96\) 0 0
\(97\) 4.38537 0.445267 0.222634 0.974902i \(-0.428535\pi\)
0.222634 + 0.974902i \(0.428535\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.61463 0.459173 0.229586 0.973288i \(-0.426263\pi\)
0.229586 + 0.973288i \(0.426263\pi\)
\(102\) 0 0
\(103\) 0.934472 0.0920762 0.0460381 0.998940i \(-0.485340\pi\)
0.0460381 + 0.998940i \(0.485340\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 15.2293 1.45870 0.729349 0.684142i \(-0.239823\pi\)
0.729349 + 0.684142i \(0.239823\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.3401 −0.972713 −0.486356 0.873761i \(-0.661674\pi\)
−0.486356 + 0.873761i \(0.661674\pi\)
\(114\) 0 0
\(115\) 2.61463 0.243815
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.45851 0.775390
\(120\) 0 0
\(121\) −5.52404 −0.502185
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 3.31984 0.294589 0.147294 0.989093i \(-0.452944\pi\)
0.147294 + 0.989093i \(0.452944\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.56933 −0.137113 −0.0685566 0.997647i \(-0.521839\pi\)
−0.0685566 + 0.997647i \(0.521839\pi\)
\(132\) 0 0
\(133\) 5.83627 0.506069
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5491 0.901270 0.450635 0.892708i \(-0.351198\pi\)
0.450635 + 0.892708i \(0.351198\pi\)
\(138\) 0 0
\(139\) 0.934472 0.0792608 0.0396304 0.999214i \(-0.487382\pi\)
0.0396304 + 0.999214i \(0.487382\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.25432 −0.773885
\(144\) 0 0
\(145\) 4.61463 0.383224
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.8439 1.46183 0.730914 0.682470i \(-0.239094\pi\)
0.730914 + 0.682470i \(0.239094\pi\)
\(150\) 0 0
\(151\) −4.04530 −0.329201 −0.164601 0.986360i \(-0.552634\pi\)
−0.164601 + 0.986360i \(0.552634\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.340078 −0.0273157
\(156\) 0 0
\(157\) 0.430668 0.0343711 0.0171855 0.999852i \(-0.494529\pi\)
0.0171855 + 0.999852i \(0.494529\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.45090 0.744835
\(162\) 0 0
\(163\) 14.2293 1.11452 0.557261 0.830338i \(-0.311852\pi\)
0.557261 + 0.830338i \(0.311852\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.22925 −0.559416 −0.279708 0.960085i \(-0.590238\pi\)
−0.279708 + 0.960085i \(0.590238\pi\)
\(168\) 0 0
\(169\) 2.63969 0.203053
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −17.2293 −1.30992 −0.654958 0.755665i \(-0.727314\pi\)
−0.654958 + 0.755665i \(0.727314\pi\)
\(174\) 0 0
\(175\) −3.61463 −0.273240
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.4585 1.67863 0.839314 0.543647i \(-0.182957\pi\)
0.839314 + 0.543647i \(0.182957\pi\)
\(180\) 0 0
\(181\) 17.6146 1.30928 0.654642 0.755939i \(-0.272819\pi\)
0.654642 + 0.755939i \(0.272819\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.61463 −0.559839
\(186\) 0 0
\(187\) −5.47596 −0.400442
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.0905906 −0.00655491 −0.00327745 0.999995i \(-0.501043\pi\)
−0.00327745 + 0.999995i \(0.501043\pi\)
\(192\) 0 0
\(193\) 16.1637 1.16349 0.581745 0.813371i \(-0.302370\pi\)
0.581745 + 0.813371i \(0.302370\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.1387 1.50607 0.753034 0.657982i \(-0.228590\pi\)
0.753034 + 0.657982i \(0.228590\pi\)
\(198\) 0 0
\(199\) 27.8641 1.97523 0.987617 0.156882i \(-0.0501443\pi\)
0.987617 + 0.156882i \(0.0501443\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.6802 1.17072
\(204\) 0 0
\(205\) −9.90941 −0.692103
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.77835 −0.261354
\(210\) 0 0
\(211\) −5.52404 −0.380290 −0.190145 0.981756i \(-0.560896\pi\)
−0.190145 + 0.981756i \(0.560896\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.29478 0.633899
\(216\) 0 0
\(217\) −1.22925 −0.0834472
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.25432 0.622513
\(222\) 0 0
\(223\) −6.09059 −0.407856 −0.203928 0.978986i \(-0.565371\pi\)
−0.203928 + 0.978986i \(0.565371\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.45090 0.229044 0.114522 0.993421i \(-0.463466\pi\)
0.114522 + 0.993421i \(0.463466\pi\)
\(228\) 0 0
\(229\) 10.6802 0.705765 0.352882 0.935668i \(-0.385202\pi\)
0.352882 + 0.935668i \(0.385202\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.31984 −0.479539 −0.239769 0.970830i \(-0.577072\pi\)
−0.239769 + 0.970830i \(0.577072\pi\)
\(234\) 0 0
\(235\) 1.38537 0.0903718
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.7707 −0.696702 −0.348351 0.937364i \(-0.613258\pi\)
−0.348351 + 0.937364i \(0.613258\pi\)
\(240\) 0 0
\(241\) 14.3603 0.925029 0.462514 0.886612i \(-0.346947\pi\)
0.462514 + 0.886612i \(0.346947\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.06553 −0.387512
\(246\) 0 0
\(247\) 6.38537 0.406292
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.11082 0.448831 0.224416 0.974494i \(-0.427953\pi\)
0.224416 + 0.974494i \(0.427953\pi\)
\(252\) 0 0
\(253\) −6.11843 −0.384662
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.0278 −1.49882 −0.749408 0.662109i \(-0.769662\pi\)
−0.749408 + 0.662109i \(0.769662\pi\)
\(258\) 0 0
\(259\) −27.5240 −1.71026
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.8188 −1.46873 −0.734366 0.678754i \(-0.762520\pi\)
−0.734366 + 0.678754i \(0.762520\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.74568 0.167407 0.0837036 0.996491i \(-0.473325\pi\)
0.0837036 + 0.996491i \(0.473325\pi\)
\(270\) 0 0
\(271\) −11.5240 −0.700035 −0.350018 0.936743i \(-0.613824\pi\)
−0.350018 + 0.936743i \(0.613824\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.34008 0.141112
\(276\) 0 0
\(277\) 26.3679 1.58429 0.792147 0.610330i \(-0.208963\pi\)
0.792147 + 0.610330i \(0.208963\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.7707 0.881149 0.440574 0.897716i \(-0.354775\pi\)
0.440574 + 0.897716i \(0.354775\pi\)
\(282\) 0 0
\(283\) −14.4585 −0.859469 −0.429735 0.902955i \(-0.641393\pi\)
−0.429735 + 0.902955i \(0.641393\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −35.8188 −2.11432
\(288\) 0 0
\(289\) −11.5240 −0.677884
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.3679 1.07307 0.536533 0.843880i \(-0.319734\pi\)
0.536533 + 0.843880i \(0.319734\pi\)
\(294\) 0 0
\(295\) −11.2293 −0.653792
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.3401 0.597982
\(300\) 0 0
\(301\) 33.5972 1.93651
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.61463 −0.436012
\(306\) 0 0
\(307\) −1.29478 −0.0738971 −0.0369486 0.999317i \(-0.511764\pi\)
−0.0369486 + 0.999317i \(0.511764\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.31984 −0.0748415 −0.0374208 0.999300i \(-0.511914\pi\)
−0.0374208 + 0.999300i \(0.511914\pi\)
\(312\) 0 0
\(313\) 22.2042 1.25506 0.627528 0.778594i \(-0.284067\pi\)
0.627528 + 0.778594i \(0.284067\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 34.2773 1.92521 0.962603 0.270915i \(-0.0873263\pi\)
0.962603 + 0.270915i \(0.0873263\pi\)
\(318\) 0 0
\(319\) −10.7986 −0.604605
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.77835 0.210233
\(324\) 0 0
\(325\) −3.95470 −0.219368
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.00761 0.276078
\(330\) 0 0
\(331\) −15.6146 −0.858258 −0.429129 0.903243i \(-0.641179\pi\)
−0.429129 + 0.903243i \(0.641179\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.29478 −0.453192
\(336\) 0 0
\(337\) 23.5240 1.28144 0.640718 0.767776i \(-0.278637\pi\)
0.640718 + 0.767776i \(0.278637\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.795808 0.0430954
\(342\) 0 0
\(343\) 3.37777 0.182382
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.5491 1.10313 0.551567 0.834131i \(-0.314030\pi\)
0.551567 + 0.834131i \(0.314030\pi\)
\(348\) 0 0
\(349\) −1.74568 −0.0934443 −0.0467222 0.998908i \(-0.514878\pi\)
−0.0467222 + 0.998908i \(0.514878\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −30.2495 −1.61002 −0.805009 0.593263i \(-0.797840\pi\)
−0.805009 + 0.593263i \(0.797840\pi\)
\(354\) 0 0
\(355\) 13.9094 0.738235
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.31984 0.280771 0.140385 0.990097i \(-0.455166\pi\)
0.140385 + 0.990097i \(0.455166\pi\)
\(360\) 0 0
\(361\) −16.3930 −0.862788
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.8439 −0.776964
\(366\) 0 0
\(367\) −13.5240 −0.705949 −0.352974 0.935633i \(-0.614830\pi\)
−0.352974 + 0.935633i \(0.614830\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.4585 0.750648
\(372\) 0 0
\(373\) −19.8641 −1.02852 −0.514262 0.857633i \(-0.671934\pi\)
−0.514262 + 0.857633i \(0.671934\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.2495 0.939896
\(378\) 0 0
\(379\) −2.16373 −0.111143 −0.0555716 0.998455i \(-0.517698\pi\)
−0.0555716 + 0.998455i \(0.517698\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.7457 −0.651274 −0.325637 0.945495i \(-0.605579\pi\)
−0.325637 + 0.945495i \(0.605579\pi\)
\(384\) 0 0
\(385\) 8.45851 0.431085
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.2042 −1.48071 −0.740356 0.672215i \(-0.765343\pi\)
−0.740356 + 0.672215i \(0.765343\pi\)
\(390\) 0 0
\(391\) 6.11843 0.309422
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.0452953 0.00227905
\(396\) 0 0
\(397\) 1.11082 0.0557506 0.0278753 0.999611i \(-0.491126\pi\)
0.0278753 + 0.999611i \(0.491126\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.8188 −0.789954 −0.394977 0.918691i \(-0.629247\pi\)
−0.394977 + 0.918691i \(0.629247\pi\)
\(402\) 0 0
\(403\) −1.34491 −0.0669946
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.8188 0.883246
\(408\) 0 0
\(409\) 26.0481 1.28799 0.643997 0.765028i \(-0.277275\pi\)
0.643997 + 0.765028i \(0.277275\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −40.5896 −1.99728
\(414\) 0 0
\(415\) 15.1387 0.743128
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −32.7986 −1.60232 −0.801158 0.598453i \(-0.795782\pi\)
−0.801158 + 0.598453i \(0.795782\pi\)
\(420\) 0 0
\(421\) −18.2042 −0.887218 −0.443609 0.896220i \(-0.646302\pi\)
−0.443609 + 0.896220i \(0.646302\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.34008 −0.113510
\(426\) 0 0
\(427\) −27.5240 −1.33198
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −32.5896 −1.56978 −0.784892 0.619633i \(-0.787282\pi\)
−0.784892 + 0.619633i \(0.787282\pi\)
\(432\) 0 0
\(433\) 5.45090 0.261954 0.130977 0.991385i \(-0.458189\pi\)
0.130977 + 0.991385i \(0.458189\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.22165 0.201949
\(438\) 0 0
\(439\) −25.3603 −1.21038 −0.605191 0.796080i \(-0.706903\pi\)
−0.605191 + 0.796080i \(0.706903\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 37.9094 1.80113 0.900565 0.434721i \(-0.143153\pi\)
0.900565 + 0.434721i \(0.143153\pi\)
\(444\) 0 0
\(445\) 2.68016 0.127052
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.9094 0.562040 0.281020 0.959702i \(-0.409327\pi\)
0.281020 + 0.959702i \(0.409327\pi\)
\(450\) 0 0
\(451\) 23.1888 1.09192
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.2948 −0.670150
\(456\) 0 0
\(457\) −27.0481 −1.26526 −0.632628 0.774456i \(-0.718024\pi\)
−0.632628 + 0.774456i \(0.718024\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.45851 −0.207653 −0.103827 0.994595i \(-0.533109\pi\)
−0.103827 + 0.994595i \(0.533109\pi\)
\(462\) 0 0
\(463\) 38.1136 1.77129 0.885645 0.464364i \(-0.153717\pi\)
0.885645 + 0.464364i \(0.153717\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.68016 0.124023 0.0620114 0.998075i \(-0.480248\pi\)
0.0620114 + 0.998075i \(0.480248\pi\)
\(468\) 0 0
\(469\) −29.9825 −1.38447
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −21.7505 −1.00009
\(474\) 0 0
\(475\) −1.61463 −0.0740842
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −31.0076 −1.41677 −0.708387 0.705824i \(-0.750577\pi\)
−0.708387 + 0.705824i \(0.750577\pi\)
\(480\) 0 0
\(481\) −30.1136 −1.37306
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.38537 −0.199130
\(486\) 0 0
\(487\) 35.5240 1.60975 0.804874 0.593446i \(-0.202233\pi\)
0.804874 + 0.593446i \(0.202233\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.8689 0.625897 0.312948 0.949770i \(-0.398683\pi\)
0.312948 + 0.949770i \(0.398683\pi\)
\(492\) 0 0
\(493\) 10.7986 0.486344
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 50.2773 2.25525
\(498\) 0 0
\(499\) 30.2773 1.35540 0.677700 0.735339i \(-0.262977\pi\)
0.677700 + 0.735339i \(0.262977\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.6627 0.876716 0.438358 0.898800i \(-0.355560\pi\)
0.438358 + 0.898800i \(0.355560\pi\)
\(504\) 0 0
\(505\) −4.61463 −0.205348
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 42.4334 1.88083 0.940415 0.340030i \(-0.110437\pi\)
0.940415 + 0.340030i \(0.110437\pi\)
\(510\) 0 0
\(511\) −53.6551 −2.37356
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.934472 −0.0411777
\(516\) 0 0
\(517\) −3.24188 −0.142578
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.7784 0.866505 0.433253 0.901272i \(-0.357366\pi\)
0.433253 + 0.901272i \(0.357366\pi\)
\(522\) 0 0
\(523\) 26.6878 1.16697 0.583487 0.812122i \(-0.301688\pi\)
0.583487 + 0.812122i \(0.301688\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.795808 −0.0346660
\(528\) 0 0
\(529\) −16.1637 −0.702771
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −39.1888 −1.69745
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 14.1938 0.611371
\(540\) 0 0
\(541\) −7.06553 −0.303771 −0.151885 0.988398i \(-0.548534\pi\)
−0.151885 + 0.988398i \(0.548534\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.2293 −0.652350
\(546\) 0 0
\(547\) −41.5896 −1.77824 −0.889121 0.457673i \(-0.848683\pi\)
−0.889121 + 0.457673i \(0.848683\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.45090 0.317419
\(552\) 0 0
\(553\) 0.163726 0.00696232
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.4990 −0.953312 −0.476656 0.879090i \(-0.658151\pi\)
−0.476656 + 0.879090i \(0.658151\pi\)
\(558\) 0 0
\(559\) 36.7581 1.55470
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.0405 1.09747 0.548737 0.835995i \(-0.315109\pi\)
0.548737 + 0.835995i \(0.315109\pi\)
\(564\) 0 0
\(565\) 10.3401 0.435010
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.7707 0.535378 0.267689 0.963505i \(-0.413740\pi\)
0.267689 + 0.963505i \(0.413740\pi\)
\(570\) 0 0
\(571\) 43.9825 1.84061 0.920306 0.391199i \(-0.127940\pi\)
0.920306 + 0.391199i \(0.127940\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.61463 −0.109037
\(576\) 0 0
\(577\) −17.0655 −0.710447 −0.355224 0.934781i \(-0.615595\pi\)
−0.355224 + 0.934781i \(0.615595\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 54.7206 2.27019
\(582\) 0 0
\(583\) −9.36031 −0.387664
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.18879 0.214164 0.107082 0.994250i \(-0.465849\pi\)
0.107082 + 0.994250i \(0.465849\pi\)
\(588\) 0 0
\(589\) −0.549099 −0.0226252
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.1108 −0.456267 −0.228133 0.973630i \(-0.573262\pi\)
−0.228133 + 0.973630i \(0.573262\pi\)
\(594\) 0 0
\(595\) −8.45851 −0.346765
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −36.2369 −1.48060 −0.740299 0.672278i \(-0.765316\pi\)
−0.740299 + 0.672278i \(0.765316\pi\)
\(600\) 0 0
\(601\) 20.5240 0.837193 0.418596 0.908172i \(-0.362522\pi\)
0.418596 + 0.908172i \(0.362522\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.52404 0.224584
\(606\) 0 0
\(607\) 32.7533 1.32942 0.664708 0.747104i \(-0.268556\pi\)
0.664708 + 0.747104i \(0.268556\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.47874 0.221646
\(612\) 0 0
\(613\) −20.7255 −0.837093 −0.418547 0.908195i \(-0.637460\pi\)
−0.418547 + 0.908195i \(0.637460\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.1184 −0.970971 −0.485486 0.874245i \(-0.661357\pi\)
−0.485486 + 0.874245i \(0.661357\pi\)
\(618\) 0 0
\(619\) 7.43345 0.298775 0.149388 0.988779i \(-0.452270\pi\)
0.149388 + 0.988779i \(0.452270\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.68776 0.388132
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −17.8188 −0.710483
\(630\) 0 0
\(631\) 13.6551 0.543601 0.271800 0.962354i \(-0.412381\pi\)
0.271800 + 0.962354i \(0.412381\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.31984 −0.131744
\(636\) 0 0
\(637\) −23.9874 −0.950414
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 37.7784 1.49216 0.746078 0.665859i \(-0.231935\pi\)
0.746078 + 0.665859i \(0.231935\pi\)
\(642\) 0 0
\(643\) 0.0655284 0.00258419 0.00129209 0.999999i \(-0.499589\pi\)
0.00129209 + 0.999999i \(0.499589\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 38.2773 1.50484 0.752418 0.658685i \(-0.228887\pi\)
0.752418 + 0.658685i \(0.228887\pi\)
\(648\) 0 0
\(649\) 26.2773 1.03148
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.7282 −1.63295 −0.816476 0.577380i \(-0.804075\pi\)
−0.816476 + 0.577380i \(0.804075\pi\)
\(654\) 0 0
\(655\) 1.56933 0.0613189
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −23.8188 −0.927849 −0.463925 0.885875i \(-0.653559\pi\)
−0.463925 + 0.885875i \(0.653559\pi\)
\(660\) 0 0
\(661\) −3.02506 −0.117661 −0.0588306 0.998268i \(-0.518737\pi\)
−0.0588306 + 0.998268i \(0.518737\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.83627 −0.226321
\(666\) 0 0
\(667\) 12.0655 0.467179
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.8188 0.687888
\(672\) 0 0
\(673\) −39.6551 −1.52859 −0.764296 0.644866i \(-0.776913\pi\)
−0.764296 + 0.644866i \(0.776913\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.9499 −0.997335 −0.498667 0.866793i \(-0.666177\pi\)
−0.498667 + 0.866793i \(0.666177\pi\)
\(678\) 0 0
\(679\) −15.8515 −0.608324
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.8188 −1.37057 −0.685285 0.728275i \(-0.740322\pi\)
−0.685285 + 0.728275i \(0.740322\pi\)
\(684\) 0 0
\(685\) −10.5491 −0.403060
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.8188 0.602649
\(690\) 0 0
\(691\) 20.6802 0.786710 0.393355 0.919387i \(-0.371314\pi\)
0.393355 + 0.919387i \(0.371314\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.934472 −0.0354465
\(696\) 0 0
\(697\) −23.1888 −0.878338
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.4334 1.14946 0.574728 0.818345i \(-0.305108\pi\)
0.574728 + 0.818345i \(0.305108\pi\)
\(702\) 0 0
\(703\) −12.2948 −0.463707
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.6802 −0.627322
\(708\) 0 0
\(709\) 8.88435 0.333659 0.166829 0.985986i \(-0.446647\pi\)
0.166829 + 0.985986i \(0.446647\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.889176 −0.0332999
\(714\) 0 0
\(715\) 9.25432 0.346092
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.13106 0.154062 0.0770312 0.997029i \(-0.475456\pi\)
0.0770312 + 0.997029i \(0.475456\pi\)
\(720\) 0 0
\(721\) −3.37777 −0.125795
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.61463 −0.171383
\(726\) 0 0
\(727\) 22.2773 0.826220 0.413110 0.910681i \(-0.364442\pi\)
0.413110 + 0.910681i \(0.364442\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.7505 0.804472
\(732\) 0 0
\(733\) 7.90941 0.292141 0.146070 0.989274i \(-0.453337\pi\)
0.146070 + 0.989274i \(0.453337\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.4104 0.714993
\(738\) 0 0
\(739\) −33.7282 −1.24071 −0.620356 0.784320i \(-0.713012\pi\)
−0.620356 + 0.784320i \(0.713012\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.7128 1.16343 0.581715 0.813392i \(-0.302382\pi\)
0.581715 + 0.813392i \(0.302382\pi\)
\(744\) 0 0
\(745\) −17.8439 −0.653749
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21.6878 −0.792454
\(750\) 0 0
\(751\) −39.8641 −1.45466 −0.727331 0.686287i \(-0.759240\pi\)
−0.727331 + 0.686287i \(0.759240\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.04530 0.147223
\(756\) 0 0
\(757\) 17.6425 0.641226 0.320613 0.947210i \(-0.396111\pi\)
0.320613 + 0.947210i \(0.396111\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.9094 0.866715 0.433358 0.901222i \(-0.357329\pi\)
0.433358 + 0.901222i \(0.357329\pi\)
\(762\) 0 0
\(763\) −55.0481 −1.99287
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −44.4084 −1.60349
\(768\) 0 0
\(769\) −36.8188 −1.32772 −0.663860 0.747857i \(-0.731083\pi\)
−0.663860 + 0.747857i \(0.731083\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.3198 −0.407147 −0.203573 0.979060i \(-0.565256\pi\)
−0.203573 + 0.979060i \(0.565256\pi\)
\(774\) 0 0
\(775\) 0.340078 0.0122160
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −32.5491 −1.16470
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.430668 −0.0153712
\(786\) 0 0
\(787\) −34.1791 −1.21835 −0.609177 0.793034i \(-0.708500\pi\)
−0.609177 + 0.793034i \(0.708500\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 37.3755 1.32892
\(792\) 0 0
\(793\) −30.1136 −1.06937
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.5491 1.15295 0.576474 0.817115i \(-0.304428\pi\)
0.576474 + 0.817115i \(0.304428\pi\)
\(798\) 0 0
\(799\) 3.24188 0.114689
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 34.7358 1.22580
\(804\) 0 0
\(805\) −9.45090 −0.333101
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −26.2773 −0.923862 −0.461931 0.886916i \(-0.652843\pi\)
−0.461931 + 0.886916i \(0.652843\pi\)
\(810\) 0 0
\(811\) 28.6802 1.00710 0.503548 0.863967i \(-0.332028\pi\)
0.503548 + 0.863967i \(0.332028\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −14.2293 −0.498429
\(816\) 0 0
\(817\) 15.0076 0.525050
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.36031 0.117276 0.0586378 0.998279i \(-0.481324\pi\)
0.0586378 + 0.998279i \(0.481324\pi\)
\(822\) 0 0
\(823\) −2.42584 −0.0845594 −0.0422797 0.999106i \(-0.513462\pi\)
−0.0422797 + 0.999106i \(0.513462\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.458508 −0.0159439 −0.00797194 0.999968i \(-0.502538\pi\)
−0.00797194 + 0.999968i \(0.502538\pi\)
\(828\) 0 0
\(829\) 29.8014 1.03504 0.517522 0.855670i \(-0.326855\pi\)
0.517522 + 0.855670i \(0.326855\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −14.1938 −0.491786
\(834\) 0 0
\(835\) 7.22925 0.250179
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −34.9575 −1.20687 −0.603433 0.797414i \(-0.706201\pi\)
−0.603433 + 0.797414i \(0.706201\pi\)
\(840\) 0 0
\(841\) −7.70522 −0.265697
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.63969 −0.0908081
\(846\) 0 0
\(847\) 19.9673 0.686086
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −19.9094 −0.682486
\(852\) 0 0
\(853\) −16.5443 −0.566465 −0.283232 0.959051i \(-0.591407\pi\)
−0.283232 + 0.959051i \(0.591407\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.8613 0.575972 0.287986 0.957635i \(-0.407014\pi\)
0.287986 + 0.957635i \(0.407014\pi\)
\(858\) 0 0
\(859\) 2.84388 0.0970320 0.0485160 0.998822i \(-0.484551\pi\)
0.0485160 + 0.998822i \(0.484551\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −55.6627 −1.89478 −0.947390 0.320081i \(-0.896290\pi\)
−0.947390 + 0.320081i \(0.896290\pi\)
\(864\) 0 0
\(865\) 17.2293 0.585812
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.105995 −0.00359562
\(870\) 0 0
\(871\) −32.8034 −1.11150
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.61463 0.122197
\(876\) 0 0
\(877\) −52.7811 −1.78229 −0.891146 0.453717i \(-0.850098\pi\)
−0.891146 + 0.453717i \(0.850098\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.4585 1.22832 0.614159 0.789182i \(-0.289495\pi\)
0.614159 + 0.789182i \(0.289495\pi\)
\(882\) 0 0
\(883\) 49.9825 1.68205 0.841023 0.540999i \(-0.181954\pi\)
0.841023 + 0.540999i \(0.181954\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.43345 −0.148861 −0.0744303 0.997226i \(-0.523714\pi\)
−0.0744303 + 0.997226i \(0.523714\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.23686 0.0748537
\(894\) 0 0
\(895\) −22.4585 −0.750705
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.56933 −0.0523401
\(900\) 0 0
\(901\) 9.36031 0.311837
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.6146 −0.585530
\(906\) 0 0
\(907\) −17.0000 −0.564476 −0.282238 0.959344i \(-0.591077\pi\)
−0.282238 + 0.959344i \(0.591077\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −35.8188 −1.18673 −0.593365 0.804933i \(-0.702201\pi\)
−0.593365 + 0.804933i \(0.702201\pi\)
\(912\) 0 0
\(913\) −35.4256 −1.17242
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.67255 0.187324
\(918\) 0 0
\(919\) −7.24188 −0.238888 −0.119444 0.992841i \(-0.538111\pi\)
−0.119444 + 0.992841i \(0.538111\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 55.0076 1.81060
\(924\) 0 0
\(925\) 7.61463 0.250367
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13.9094 0.456353 0.228176 0.973620i \(-0.426724\pi\)
0.228176 + 0.973620i \(0.426724\pi\)
\(930\) 0 0
\(931\) −9.79357 −0.320971
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.47596 0.179083
\(936\) 0 0
\(937\) −4.93447 −0.161202 −0.0806011 0.996746i \(-0.525684\pi\)
−0.0806011 + 0.996746i \(0.525684\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 51.9749 1.69433 0.847167 0.531326i \(-0.178306\pi\)
0.847167 + 0.531326i \(0.178306\pi\)
\(942\) 0 0
\(943\) −25.9094 −0.843726
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.7282 0.641081 0.320541 0.947235i \(-0.396135\pi\)
0.320541 + 0.947235i \(0.396135\pi\)
\(948\) 0 0
\(949\) −58.7032 −1.90559
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −54.5769 −1.76792 −0.883960 0.467562i \(-0.845132\pi\)
−0.883960 + 0.467562i \(0.845132\pi\)
\(954\) 0 0
\(955\) 0.0905906 0.00293144
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −38.1311 −1.23132
\(960\) 0 0
\(961\) −30.8843 −0.996269
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.1637 −0.520329
\(966\) 0 0
\(967\) 5.70522 0.183467 0.0917337 0.995784i \(-0.470759\pi\)
0.0917337 + 0.995784i \(0.470759\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.29961 −0.266347 −0.133174 0.991093i \(-0.542517\pi\)
−0.133174 + 0.991093i \(0.542517\pi\)
\(972\) 0 0
\(973\) −3.37777 −0.108286
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.24949 0.199939 0.0999694 0.994991i \(-0.468126\pi\)
0.0999694 + 0.994991i \(0.468126\pi\)
\(978\) 0 0
\(979\) −6.27177 −0.200447
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 46.5645 1.48518 0.742588 0.669748i \(-0.233598\pi\)
0.742588 + 0.669748i \(0.233598\pi\)
\(984\) 0 0
\(985\) −21.1387 −0.673534
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.3024 0.772771
\(990\) 0 0
\(991\) −30.4132 −0.966108 −0.483054 0.875591i \(-0.660472\pi\)
−0.483054 + 0.875591i \(0.660472\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −27.8641 −0.883352
\(996\) 0 0
\(997\) −22.4711 −0.711668 −0.355834 0.934549i \(-0.615803\pi\)
−0.355834 + 0.934549i \(0.615803\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.bh.1.1 yes 3
3.2 odd 2 4320.2.a.bj.1.1 yes 3
4.3 odd 2 4320.2.a.bg.1.3 3
8.3 odd 2 8640.2.a.dm.1.3 3
8.5 even 2 8640.2.a.dn.1.1 3
12.11 even 2 4320.2.a.bi.1.3 yes 3
24.5 odd 2 8640.2.a.dl.1.1 3
24.11 even 2 8640.2.a.dk.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.bg.1.3 3 4.3 odd 2
4320.2.a.bh.1.1 yes 3 1.1 even 1 trivial
4320.2.a.bi.1.3 yes 3 12.11 even 2
4320.2.a.bj.1.1 yes 3 3.2 odd 2
8640.2.a.dk.1.3 3 24.11 even 2
8640.2.a.dl.1.1 3 24.5 odd 2
8640.2.a.dm.1.3 3 8.3 odd 2
8640.2.a.dn.1.1 3 8.5 even 2