Properties

Label 4320.2.a.m.1.1
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.16228\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} -5.16228 q^{7} -1.16228 q^{11} -3.16228 q^{13} -4.16228 q^{17} +4.16228 q^{19} +1.00000 q^{23} +1.00000 q^{25} -5.16228 q^{29} +2.16228 q^{31} +5.16228 q^{35} -8.32456 q^{37} -9.48683 q^{41} -7.16228 q^{43} +6.00000 q^{47} +19.6491 q^{49} -3.83772 q^{53} +1.16228 q^{55} +11.1623 q^{59} -7.00000 q^{61} +3.16228 q^{65} +6.00000 q^{67} +5.16228 q^{71} -9.16228 q^{73} +6.00000 q^{77} -14.4868 q^{79} +0.675445 q^{83} +4.16228 q^{85} +7.16228 q^{89} +16.3246 q^{91} -4.16228 q^{95} +2.32456 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 4 q^{7} + 4 q^{11} - 2 q^{17} + 2 q^{19} + 2 q^{23} + 2 q^{25} - 4 q^{29} - 2 q^{31} + 4 q^{35} - 4 q^{37} - 8 q^{43} + 12 q^{47} + 14 q^{49} - 14 q^{53} - 4 q^{55} + 16 q^{59} - 14 q^{61}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −5.16228 −1.95116 −0.975579 0.219650i \(-0.929509\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.16228 −0.350440 −0.175220 0.984529i \(-0.556064\pi\)
−0.175220 + 0.984529i \(0.556064\pi\)
\(12\) 0 0
\(13\) −3.16228 −0.877058 −0.438529 0.898717i \(-0.644500\pi\)
−0.438529 + 0.898717i \(0.644500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.16228 −1.00950 −0.504750 0.863265i \(-0.668415\pi\)
−0.504750 + 0.863265i \(0.668415\pi\)
\(18\) 0 0
\(19\) 4.16228 0.954892 0.477446 0.878661i \(-0.341563\pi\)
0.477446 + 0.878661i \(0.341563\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.16228 −0.958611 −0.479305 0.877648i \(-0.659111\pi\)
−0.479305 + 0.877648i \(0.659111\pi\)
\(30\) 0 0
\(31\) 2.16228 0.388357 0.194178 0.980966i \(-0.437796\pi\)
0.194178 + 0.980966i \(0.437796\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.16228 0.872584
\(36\) 0 0
\(37\) −8.32456 −1.36855 −0.684274 0.729225i \(-0.739881\pi\)
−0.684274 + 0.729225i \(0.739881\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9.48683 −1.48159 −0.740797 0.671729i \(-0.765552\pi\)
−0.740797 + 0.671729i \(0.765552\pi\)
\(42\) 0 0
\(43\) −7.16228 −1.09224 −0.546119 0.837708i \(-0.683895\pi\)
−0.546119 + 0.837708i \(0.683895\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 19.6491 2.80702
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.83772 −0.527152 −0.263576 0.964639i \(-0.584902\pi\)
−0.263576 + 0.964639i \(0.584902\pi\)
\(54\) 0 0
\(55\) 1.16228 0.156721
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.1623 1.45320 0.726602 0.687058i \(-0.241098\pi\)
0.726602 + 0.687058i \(0.241098\pi\)
\(60\) 0 0
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.16228 0.392232
\(66\) 0 0
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.16228 0.612650 0.306325 0.951927i \(-0.400901\pi\)
0.306325 + 0.951927i \(0.400901\pi\)
\(72\) 0 0
\(73\) −9.16228 −1.07236 −0.536182 0.844103i \(-0.680134\pi\)
−0.536182 + 0.844103i \(0.680134\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) −14.4868 −1.62990 −0.814948 0.579534i \(-0.803235\pi\)
−0.814948 + 0.579534i \(0.803235\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.675445 0.0741397 0.0370698 0.999313i \(-0.488198\pi\)
0.0370698 + 0.999313i \(0.488198\pi\)
\(84\) 0 0
\(85\) 4.16228 0.451462
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.16228 0.759200 0.379600 0.925151i \(-0.376062\pi\)
0.379600 + 0.925151i \(0.376062\pi\)
\(90\) 0 0
\(91\) 16.3246 1.71128
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.16228 −0.427041
\(96\) 0 0
\(97\) 2.32456 0.236023 0.118011 0.993012i \(-0.462348\pi\)
0.118011 + 0.993012i \(0.462348\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.3246 1.42535 0.712673 0.701496i \(-0.247484\pi\)
0.712673 + 0.701496i \(0.247484\pi\)
\(102\) 0 0
\(103\) −5.67544 −0.559218 −0.279609 0.960114i \(-0.590205\pi\)
−0.279609 + 0.960114i \(0.590205\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.3246 1.57815 0.789077 0.614294i \(-0.210559\pi\)
0.789077 + 0.614294i \(0.210559\pi\)
\(108\) 0 0
\(109\) 19.6491 1.88204 0.941022 0.338346i \(-0.109867\pi\)
0.941022 + 0.338346i \(0.109867\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.9737 1.78489 0.892446 0.451154i \(-0.148987\pi\)
0.892446 + 0.451154i \(0.148987\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 21.4868 1.96969
\(120\) 0 0
\(121\) −9.64911 −0.877192
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 20.3246 1.77576 0.887882 0.460071i \(-0.152176\pi\)
0.887882 + 0.460071i \(0.152176\pi\)
\(132\) 0 0
\(133\) −21.4868 −1.86314
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.16228 0.526479 0.263239 0.964731i \(-0.415209\pi\)
0.263239 + 0.964731i \(0.415209\pi\)
\(138\) 0 0
\(139\) −4.64911 −0.394332 −0.197166 0.980370i \(-0.563174\pi\)
−0.197166 + 0.980370i \(0.563174\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.67544 0.307356
\(144\) 0 0
\(145\) 5.16228 0.428704
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.1623 0.914449 0.457225 0.889351i \(-0.348844\pi\)
0.457225 + 0.889351i \(0.348844\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.16228 −0.173678
\(156\) 0 0
\(157\) 10.8377 0.864944 0.432472 0.901647i \(-0.357641\pi\)
0.432472 + 0.901647i \(0.357641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.16228 −0.406844
\(162\) 0 0
\(163\) −0.324555 −0.0254211 −0.0127106 0.999919i \(-0.504046\pi\)
−0.0127106 + 0.999919i \(0.504046\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −15.9737 −1.23608 −0.618040 0.786147i \(-0.712073\pi\)
−0.618040 + 0.786147i \(0.712073\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.48683 −0.645242 −0.322621 0.946528i \(-0.604564\pi\)
−0.322621 + 0.946528i \(0.604564\pi\)
\(174\) 0 0
\(175\) −5.16228 −0.390232
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.9737 −1.41816 −0.709079 0.705129i \(-0.750889\pi\)
−0.709079 + 0.705129i \(0.750889\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.32456 0.612033
\(186\) 0 0
\(187\) 4.83772 0.353769
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.324555 −0.0234840 −0.0117420 0.999931i \(-0.503738\pi\)
−0.0117420 + 0.999931i \(0.503738\pi\)
\(192\) 0 0
\(193\) −1.48683 −0.107025 −0.0535123 0.998567i \(-0.517042\pi\)
−0.0535123 + 0.998567i \(0.517042\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.83772 −0.130932 −0.0654661 0.997855i \(-0.520853\pi\)
−0.0654661 + 0.997855i \(0.520853\pi\)
\(198\) 0 0
\(199\) 10.9737 0.777903 0.388951 0.921258i \(-0.372837\pi\)
0.388951 + 0.921258i \(0.372837\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 26.6491 1.87040
\(204\) 0 0
\(205\) 9.48683 0.662589
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.83772 −0.334632
\(210\) 0 0
\(211\) 24.1623 1.66340 0.831700 0.555225i \(-0.187368\pi\)
0.831700 + 0.555225i \(0.187368\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.16228 0.488463
\(216\) 0 0
\(217\) −11.1623 −0.757745
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.1623 0.885391
\(222\) 0 0
\(223\) −7.67544 −0.513986 −0.256993 0.966413i \(-0.582732\pi\)
−0.256993 + 0.966413i \(0.582732\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.32456 0.220658 0.110329 0.993895i \(-0.464809\pi\)
0.110329 + 0.993895i \(0.464809\pi\)
\(228\) 0 0
\(229\) 10.6754 0.705453 0.352727 0.935726i \(-0.385255\pi\)
0.352727 + 0.935726i \(0.385255\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.3246 1.31469 0.657343 0.753591i \(-0.271680\pi\)
0.657343 + 0.753591i \(0.271680\pi\)
\(240\) 0 0
\(241\) −15.6491 −1.00805 −0.504024 0.863690i \(-0.668148\pi\)
−0.504024 + 0.863690i \(0.668148\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −19.6491 −1.25534
\(246\) 0 0
\(247\) −13.1623 −0.837496
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.6754 0.863186 0.431593 0.902068i \(-0.357952\pi\)
0.431593 + 0.902068i \(0.357952\pi\)
\(252\) 0 0
\(253\) −1.16228 −0.0730718
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.8114 −1.79721 −0.898603 0.438764i \(-0.855417\pi\)
−0.898603 + 0.438764i \(0.855417\pi\)
\(258\) 0 0
\(259\) 42.9737 2.67025
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 31.2982 1.92993 0.964966 0.262377i \(-0.0845063\pi\)
0.964966 + 0.262377i \(0.0845063\pi\)
\(264\) 0 0
\(265\) 3.83772 0.235749
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.3246 −0.751441 −0.375721 0.926733i \(-0.622605\pi\)
−0.375721 + 0.926733i \(0.622605\pi\)
\(270\) 0 0
\(271\) −19.1359 −1.16243 −0.581213 0.813752i \(-0.697422\pi\)
−0.581213 + 0.813752i \(0.697422\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.16228 −0.0700880
\(276\) 0 0
\(277\) −6.83772 −0.410839 −0.205419 0.978674i \(-0.565856\pi\)
−0.205419 + 0.978674i \(0.565856\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −19.4868 −1.16249 −0.581243 0.813730i \(-0.697434\pi\)
−0.581243 + 0.813730i \(0.697434\pi\)
\(282\) 0 0
\(283\) −6.51317 −0.387168 −0.193584 0.981084i \(-0.562011\pi\)
−0.193584 + 0.981084i \(0.562011\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 48.9737 2.89082
\(288\) 0 0
\(289\) 0.324555 0.0190915
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.8114 −1.21581 −0.607907 0.794008i \(-0.707991\pi\)
−0.607907 + 0.794008i \(0.707991\pi\)
\(294\) 0 0
\(295\) −11.1623 −0.649893
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.16228 −0.182879
\(300\) 0 0
\(301\) 36.9737 2.13113
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.00000 0.400819
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.1623 −0.632955 −0.316477 0.948600i \(-0.602500\pi\)
−0.316477 + 0.948600i \(0.602500\pi\)
\(312\) 0 0
\(313\) −30.3246 −1.71405 −0.857023 0.515279i \(-0.827688\pi\)
−0.857023 + 0.515279i \(0.827688\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.4868 0.701330 0.350665 0.936501i \(-0.385956\pi\)
0.350665 + 0.936501i \(0.385956\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.3246 −0.963964
\(324\) 0 0
\(325\) −3.16228 −0.175412
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −30.9737 −1.70763
\(330\) 0 0
\(331\) 13.6754 0.751670 0.375835 0.926687i \(-0.377356\pi\)
0.375835 + 0.926687i \(0.377356\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) 17.4868 0.952568 0.476284 0.879291i \(-0.341983\pi\)
0.476284 + 0.879291i \(0.341983\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.51317 −0.136096
\(342\) 0 0
\(343\) −65.2982 −3.52577
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.6491 −1.32323 −0.661617 0.749842i \(-0.730129\pi\)
−0.661617 + 0.749842i \(0.730129\pi\)
\(348\) 0 0
\(349\) −12.6754 −0.678501 −0.339250 0.940696i \(-0.610173\pi\)
−0.339250 + 0.940696i \(0.610173\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.6754 0.834320 0.417160 0.908833i \(-0.363026\pi\)
0.417160 + 0.908833i \(0.363026\pi\)
\(354\) 0 0
\(355\) −5.16228 −0.273985
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.2982 −1.44075 −0.720373 0.693587i \(-0.756029\pi\)
−0.720373 + 0.693587i \(0.756029\pi\)
\(360\) 0 0
\(361\) −1.67544 −0.0881813
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.16228 0.479576
\(366\) 0 0
\(367\) 34.4605 1.79882 0.899412 0.437102i \(-0.143995\pi\)
0.899412 + 0.437102i \(0.143995\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.8114 1.02856
\(372\) 0 0
\(373\) 28.6491 1.48339 0.741697 0.670735i \(-0.234021\pi\)
0.741697 + 0.670735i \(0.234021\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.3246 0.840757
\(378\) 0 0
\(379\) −28.4868 −1.46327 −0.731635 0.681696i \(-0.761243\pi\)
−0.731635 + 0.681696i \(0.761243\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.0000 0.970855 0.485427 0.874277i \(-0.338664\pi\)
0.485427 + 0.874277i \(0.338664\pi\)
\(384\) 0 0
\(385\) −6.00000 −0.305788
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.81139 0.396053 0.198027 0.980197i \(-0.436547\pi\)
0.198027 + 0.980197i \(0.436547\pi\)
\(390\) 0 0
\(391\) −4.16228 −0.210495
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.4868 0.728912
\(396\) 0 0
\(397\) 19.8114 0.994305 0.497153 0.867663i \(-0.334379\pi\)
0.497153 + 0.867663i \(0.334379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.6754 −0.782794 −0.391397 0.920222i \(-0.628008\pi\)
−0.391397 + 0.920222i \(0.628008\pi\)
\(402\) 0 0
\(403\) −6.83772 −0.340611
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.67544 0.479594
\(408\) 0 0
\(409\) −7.97367 −0.394272 −0.197136 0.980376i \(-0.563164\pi\)
−0.197136 + 0.980376i \(0.563164\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −57.6228 −2.83543
\(414\) 0 0
\(415\) −0.675445 −0.0331563
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.1359 1.17912 0.589559 0.807725i \(-0.299302\pi\)
0.589559 + 0.807725i \(0.299302\pi\)
\(420\) 0 0
\(421\) −18.6754 −0.910185 −0.455093 0.890444i \(-0.650394\pi\)
−0.455093 + 0.890444i \(0.650394\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.16228 −0.201900
\(426\) 0 0
\(427\) 36.1359 1.74874
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.188612 −0.00908511 −0.00454255 0.999990i \(-0.501446\pi\)
−0.00454255 + 0.999990i \(0.501446\pi\)
\(432\) 0 0
\(433\) 7.16228 0.344197 0.172099 0.985080i \(-0.444945\pi\)
0.172099 + 0.985080i \(0.444945\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.16228 0.199109
\(438\) 0 0
\(439\) −36.8114 −1.75691 −0.878456 0.477824i \(-0.841426\pi\)
−0.878456 + 0.477824i \(0.841426\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.64911 −0.458443 −0.229222 0.973374i \(-0.573618\pi\)
−0.229222 + 0.973374i \(0.573618\pi\)
\(444\) 0 0
\(445\) −7.16228 −0.339525
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.8377 1.64409 0.822047 0.569420i \(-0.192832\pi\)
0.822047 + 0.569420i \(0.192832\pi\)
\(450\) 0 0
\(451\) 11.0263 0.519210
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −16.3246 −0.765307
\(456\) 0 0
\(457\) −4.00000 −0.187112 −0.0935561 0.995614i \(-0.529823\pi\)
−0.0935561 + 0.995614i \(0.529823\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 27.2982 1.27140 0.635702 0.771934i \(-0.280711\pi\)
0.635702 + 0.771934i \(0.280711\pi\)
\(462\) 0 0
\(463\) −36.3246 −1.68815 −0.844073 0.536229i \(-0.819848\pi\)
−0.844073 + 0.536229i \(0.819848\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.9737 0.739173 0.369587 0.929196i \(-0.379499\pi\)
0.369587 + 0.929196i \(0.379499\pi\)
\(468\) 0 0
\(469\) −30.9737 −1.43023
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.32456 0.382763
\(474\) 0 0
\(475\) 4.16228 0.190978
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.8114 −0.813823 −0.406912 0.913468i \(-0.633394\pi\)
−0.406912 + 0.913468i \(0.633394\pi\)
\(480\) 0 0
\(481\) 26.3246 1.20030
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.32456 −0.105553
\(486\) 0 0
\(487\) −25.4868 −1.15492 −0.577459 0.816419i \(-0.695956\pi\)
−0.577459 + 0.816419i \(0.695956\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.64911 −0.119553 −0.0597763 0.998212i \(-0.519039\pi\)
−0.0597763 + 0.998212i \(0.519039\pi\)
\(492\) 0 0
\(493\) 21.4868 0.967718
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −26.6491 −1.19538
\(498\) 0 0
\(499\) 1.51317 0.0677387 0.0338693 0.999426i \(-0.489217\pi\)
0.0338693 + 0.999426i \(0.489217\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −36.2982 −1.61846 −0.809229 0.587494i \(-0.800115\pi\)
−0.809229 + 0.587494i \(0.800115\pi\)
\(504\) 0 0
\(505\) −14.3246 −0.637434
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.6491 1.09255 0.546276 0.837605i \(-0.316045\pi\)
0.546276 + 0.837605i \(0.316045\pi\)
\(510\) 0 0
\(511\) 47.2982 2.09235
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.67544 0.250090
\(516\) 0 0
\(517\) −6.97367 −0.306701
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11.1623 0.489028 0.244514 0.969646i \(-0.421372\pi\)
0.244514 + 0.969646i \(0.421372\pi\)
\(522\) 0 0
\(523\) 9.81139 0.429022 0.214511 0.976722i \(-0.431184\pi\)
0.214511 + 0.976722i \(0.431184\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.00000 −0.392046
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 30.0000 1.29944
\(534\) 0 0
\(535\) −16.3246 −0.705772
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22.8377 −0.983690
\(540\) 0 0
\(541\) −27.6228 −1.18760 −0.593798 0.804614i \(-0.702372\pi\)
−0.593798 + 0.804614i \(0.702372\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.6491 −0.841675
\(546\) 0 0
\(547\) 6.51317 0.278483 0.139241 0.990258i \(-0.455534\pi\)
0.139241 + 0.990258i \(0.455534\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.4868 −0.915370
\(552\) 0 0
\(553\) 74.7851 3.18018
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.9737 0.549712 0.274856 0.961485i \(-0.411370\pi\)
0.274856 + 0.961485i \(0.411370\pi\)
\(558\) 0 0
\(559\) 22.6491 0.957955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −28.3246 −1.19374 −0.596869 0.802339i \(-0.703589\pi\)
−0.596869 + 0.802339i \(0.703589\pi\)
\(564\) 0 0
\(565\) −18.9737 −0.798228
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.8377 −1.12510 −0.562548 0.826765i \(-0.690179\pi\)
−0.562548 + 0.826765i \(0.690179\pi\)
\(570\) 0 0
\(571\) −10.4868 −0.438860 −0.219430 0.975628i \(-0.570420\pi\)
−0.219430 + 0.975628i \(0.570420\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) −16.1359 −0.671748 −0.335874 0.941907i \(-0.609032\pi\)
−0.335874 + 0.941907i \(0.609032\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.48683 −0.144658
\(582\) 0 0
\(583\) 4.46050 0.184735
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −45.9737 −1.89754 −0.948768 0.315973i \(-0.897669\pi\)
−0.948768 + 0.315973i \(0.897669\pi\)
\(588\) 0 0
\(589\) 9.00000 0.370839
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.1359 1.36073 0.680365 0.732873i \(-0.261821\pi\)
0.680365 + 0.732873i \(0.261821\pi\)
\(594\) 0 0
\(595\) −21.4868 −0.880874
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 44.4605 1.81661 0.908303 0.418312i \(-0.137378\pi\)
0.908303 + 0.418312i \(0.137378\pi\)
\(600\) 0 0
\(601\) 24.2982 0.991145 0.495573 0.868567i \(-0.334958\pi\)
0.495573 + 0.868567i \(0.334958\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.64911 0.392292
\(606\) 0 0
\(607\) 0.188612 0.00765551 0.00382776 0.999993i \(-0.498782\pi\)
0.00382776 + 0.999993i \(0.498782\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.9737 −0.767592
\(612\) 0 0
\(613\) 0.649111 0.0262173 0.0131087 0.999914i \(-0.495827\pi\)
0.0131087 + 0.999914i \(0.495827\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.7851 1.44065 0.720326 0.693636i \(-0.243992\pi\)
0.720326 + 0.693636i \(0.243992\pi\)
\(618\) 0 0
\(619\) 38.9737 1.56648 0.783242 0.621717i \(-0.213565\pi\)
0.783242 + 0.621717i \(0.213565\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −36.9737 −1.48132
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 34.6491 1.38155
\(630\) 0 0
\(631\) 35.4605 1.41166 0.705830 0.708381i \(-0.250574\pi\)
0.705830 + 0.708381i \(0.250574\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) −62.1359 −2.46192
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 40.6491 1.60554 0.802772 0.596287i \(-0.203358\pi\)
0.802772 + 0.596287i \(0.203358\pi\)
\(642\) 0 0
\(643\) 3.48683 0.137507 0.0687536 0.997634i \(-0.478098\pi\)
0.0687536 + 0.997634i \(0.478098\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.9473 1.45255 0.726275 0.687405i \(-0.241250\pi\)
0.726275 + 0.687405i \(0.241250\pi\)
\(648\) 0 0
\(649\) −12.9737 −0.509261
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.1623 0.710745 0.355372 0.934725i \(-0.384354\pi\)
0.355372 + 0.934725i \(0.384354\pi\)
\(654\) 0 0
\(655\) −20.3246 −0.794146
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.1359 1.01811 0.509056 0.860733i \(-0.329995\pi\)
0.509056 + 0.860733i \(0.329995\pi\)
\(660\) 0 0
\(661\) 29.6754 1.15424 0.577121 0.816659i \(-0.304176\pi\)
0.577121 + 0.816659i \(0.304176\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 21.4868 0.833224
\(666\) 0 0
\(667\) −5.16228 −0.199884
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.13594 0.314085
\(672\) 0 0
\(673\) 18.1359 0.699089 0.349545 0.936920i \(-0.386336\pi\)
0.349545 + 0.936920i \(0.386336\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.97367 −0.268020 −0.134010 0.990980i \(-0.542785\pi\)
−0.134010 + 0.990980i \(0.542785\pi\)
\(678\) 0 0
\(679\) −12.0000 −0.460518
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34.9473 1.33722 0.668611 0.743612i \(-0.266889\pi\)
0.668611 + 0.743612i \(0.266889\pi\)
\(684\) 0 0
\(685\) −6.16228 −0.235449
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.1359 0.462343
\(690\) 0 0
\(691\) 27.5132 1.04665 0.523325 0.852133i \(-0.324691\pi\)
0.523325 + 0.852133i \(0.324691\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.64911 0.176351
\(696\) 0 0
\(697\) 39.4868 1.49567
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.6754 −0.592053 −0.296027 0.955180i \(-0.595662\pi\)
−0.296027 + 0.955180i \(0.595662\pi\)
\(702\) 0 0
\(703\) −34.6491 −1.30682
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −73.9473 −2.78108
\(708\) 0 0
\(709\) −47.6228 −1.78851 −0.894255 0.447557i \(-0.852294\pi\)
−0.894255 + 0.447557i \(0.852294\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.16228 0.0809779
\(714\) 0 0
\(715\) −3.67544 −0.137454
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.35089 −0.0503797 −0.0251898 0.999683i \(-0.508019\pi\)
−0.0251898 + 0.999683i \(0.508019\pi\)
\(720\) 0 0
\(721\) 29.2982 1.09112
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.16228 −0.191722
\(726\) 0 0
\(727\) −14.9737 −0.555343 −0.277671 0.960676i \(-0.589563\pi\)
−0.277671 + 0.960676i \(0.589563\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 29.8114 1.10261
\(732\) 0 0
\(733\) −26.9737 −0.996295 −0.498148 0.867092i \(-0.665986\pi\)
−0.498148 + 0.867092i \(0.665986\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.97367 −0.256878
\(738\) 0 0
\(739\) 17.1886 0.632293 0.316147 0.948710i \(-0.397611\pi\)
0.316147 + 0.948710i \(0.397611\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.35089 −0.122932 −0.0614661 0.998109i \(-0.519578\pi\)
−0.0614661 + 0.998109i \(0.519578\pi\)
\(744\) 0 0
\(745\) −11.1623 −0.408954
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −84.2719 −3.07923
\(750\) 0 0
\(751\) 46.1623 1.68449 0.842243 0.539099i \(-0.181235\pi\)
0.842243 + 0.539099i \(0.181235\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) 35.9473 1.30653 0.653264 0.757130i \(-0.273399\pi\)
0.653264 + 0.757130i \(0.273399\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.8377 −0.682867 −0.341433 0.939906i \(-0.610912\pi\)
−0.341433 + 0.939906i \(0.610912\pi\)
\(762\) 0 0
\(763\) −101.434 −3.67216
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −35.2982 −1.27454
\(768\) 0 0
\(769\) −15.3246 −0.552618 −0.276309 0.961069i \(-0.589111\pi\)
−0.276309 + 0.961069i \(0.589111\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.18861 −0.330491 −0.165246 0.986252i \(-0.552842\pi\)
−0.165246 + 0.986252i \(0.552842\pi\)
\(774\) 0 0
\(775\) 2.16228 0.0776713
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −39.4868 −1.41476
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.8377 −0.386815
\(786\) 0 0
\(787\) −8.46050 −0.301584 −0.150792 0.988565i \(-0.548182\pi\)
−0.150792 + 0.988565i \(0.548182\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −97.9473 −3.48261
\(792\) 0 0
\(793\) 22.1359 0.786070
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.8377 0.702688 0.351344 0.936246i \(-0.385725\pi\)
0.351344 + 0.936246i \(0.385725\pi\)
\(798\) 0 0
\(799\) −24.9737 −0.883505
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.6491 0.375799
\(804\) 0 0
\(805\) 5.16228 0.181946
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.5132 0.369623 0.184812 0.982774i \(-0.440832\pi\)
0.184812 + 0.982774i \(0.440832\pi\)
\(810\) 0 0
\(811\) 47.2982 1.66087 0.830433 0.557119i \(-0.188093\pi\)
0.830433 + 0.557119i \(0.188093\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.324555 0.0113687
\(816\) 0 0
\(817\) −29.8114 −1.04297
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.9473 −0.696167 −0.348083 0.937464i \(-0.613167\pi\)
−0.348083 + 0.937464i \(0.613167\pi\)
\(822\) 0 0
\(823\) −41.4868 −1.44614 −0.723070 0.690775i \(-0.757270\pi\)
−0.723070 + 0.690775i \(0.757270\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19.3246 −0.671981 −0.335990 0.941865i \(-0.609071\pi\)
−0.335990 + 0.941865i \(0.609071\pi\)
\(828\) 0 0
\(829\) −44.6491 −1.55073 −0.775364 0.631515i \(-0.782434\pi\)
−0.775364 + 0.631515i \(0.782434\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −81.7851 −2.83368
\(834\) 0 0
\(835\) 15.9737 0.552792
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10.3246 −0.356443 −0.178222 0.983990i \(-0.557034\pi\)
−0.178222 + 0.983990i \(0.557034\pi\)
\(840\) 0 0
\(841\) −2.35089 −0.0810652
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 49.8114 1.71154
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.32456 −0.285362
\(852\) 0 0
\(853\) 48.2719 1.65280 0.826399 0.563085i \(-0.190386\pi\)
0.826399 + 0.563085i \(0.190386\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.8114 0.642585 0.321292 0.946980i \(-0.395883\pi\)
0.321292 + 0.946980i \(0.395883\pi\)
\(858\) 0 0
\(859\) 7.13594 0.243475 0.121738 0.992562i \(-0.461153\pi\)
0.121738 + 0.992562i \(0.461153\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.32456 −0.317412 −0.158706 0.987326i \(-0.550732\pi\)
−0.158706 + 0.987326i \(0.550732\pi\)
\(864\) 0 0
\(865\) 8.48683 0.288561
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.8377 0.571181
\(870\) 0 0
\(871\) −18.9737 −0.642898
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.16228 0.174517
\(876\) 0 0
\(877\) 19.4868 0.658024 0.329012 0.944326i \(-0.393284\pi\)
0.329012 + 0.944326i \(0.393284\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −10.4605 −0.352423 −0.176212 0.984352i \(-0.556384\pi\)
−0.176212 + 0.984352i \(0.556384\pi\)
\(882\) 0 0
\(883\) 16.7851 0.564862 0.282431 0.959288i \(-0.408859\pi\)
0.282431 + 0.959288i \(0.408859\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 43.9737 1.47649 0.738246 0.674532i \(-0.235655\pi\)
0.738246 + 0.674532i \(0.235655\pi\)
\(888\) 0 0
\(889\) −10.3246 −0.346274
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 24.9737 0.835712
\(894\) 0 0
\(895\) 18.9737 0.634220
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.1623 −0.372283
\(900\) 0 0
\(901\) 15.9737 0.532160
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.00000 0.166206
\(906\) 0 0
\(907\) −10.3246 −0.342821 −0.171411 0.985200i \(-0.554832\pi\)
−0.171411 + 0.985200i \(0.554832\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −43.1623 −1.43003 −0.715015 0.699109i \(-0.753580\pi\)
−0.715015 + 0.699109i \(0.753580\pi\)
\(912\) 0 0
\(913\) −0.785054 −0.0259815
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −104.921 −3.46480
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.3246 −0.537329
\(924\) 0 0
\(925\) −8.32456 −0.273710
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.1623 −0.759930 −0.379965 0.925001i \(-0.624064\pi\)
−0.379965 + 0.925001i \(0.624064\pi\)
\(930\) 0 0
\(931\) 81.7851 2.68040
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.83772 −0.158210
\(936\) 0 0
\(937\) 8.64911 0.282554 0.141277 0.989970i \(-0.454879\pi\)
0.141277 + 0.989970i \(0.454879\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.35089 0.0440377 0.0220189 0.999758i \(-0.492991\pi\)
0.0220189 + 0.999758i \(0.492991\pi\)
\(942\) 0 0
\(943\) −9.48683 −0.308934
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.02633 −0.195830 −0.0979148 0.995195i \(-0.531217\pi\)
−0.0979148 + 0.995195i \(0.531217\pi\)
\(948\) 0 0
\(949\) 28.9737 0.940525
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.6491 −1.25197 −0.625984 0.779836i \(-0.715302\pi\)
−0.625984 + 0.779836i \(0.715302\pi\)
\(954\) 0 0
\(955\) 0.324555 0.0105024
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −31.8114 −1.02724
\(960\) 0 0
\(961\) −26.3246 −0.849179
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.48683 0.0478628
\(966\) 0 0
\(967\) 37.6228 1.20987 0.604933 0.796276i \(-0.293200\pi\)
0.604933 + 0.796276i \(0.293200\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 32.3246 1.03734 0.518672 0.854973i \(-0.326427\pi\)
0.518672 + 0.854973i \(0.326427\pi\)
\(972\) 0 0
\(973\) 24.0000 0.769405
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −48.9737 −1.56681 −0.783403 0.621514i \(-0.786518\pi\)
−0.783403 + 0.621514i \(0.786518\pi\)
\(978\) 0 0
\(979\) −8.32456 −0.266054
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.6754 −0.659444 −0.329722 0.944078i \(-0.606955\pi\)
−0.329722 + 0.944078i \(0.606955\pi\)
\(984\) 0 0
\(985\) 1.83772 0.0585547
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.16228 −0.227747
\(990\) 0 0
\(991\) 21.5132 0.683388 0.341694 0.939811i \(-0.388999\pi\)
0.341694 + 0.939811i \(0.388999\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.9737 −0.347889
\(996\) 0 0
\(997\) 46.4605 1.47142 0.735709 0.677297i \(-0.236849\pi\)
0.735709 + 0.677297i \(0.236849\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.m.1.1 2
3.2 odd 2 4320.2.a.w.1.1 yes 2
4.3 odd 2 4320.2.a.v.1.2 yes 2
8.3 odd 2 8640.2.a.dj.1.2 2
8.5 even 2 8640.2.a.cw.1.1 2
12.11 even 2 4320.2.a.bf.1.2 yes 2
24.5 odd 2 8640.2.a.ci.1.1 2
24.11 even 2 8640.2.a.cv.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.m.1.1 2 1.1 even 1 trivial
4320.2.a.v.1.2 yes 2 4.3 odd 2
4320.2.a.w.1.1 yes 2 3.2 odd 2
4320.2.a.bf.1.2 yes 2 12.11 even 2
8640.2.a.ci.1.1 2 24.5 odd 2
8640.2.a.cv.1.2 2 24.11 even 2
8640.2.a.cw.1.1 2 8.5 even 2
8640.2.a.dj.1.2 2 8.3 odd 2