Properties

Label 4320.2.a.z.1.1
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.64575\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -3.64575 q^{7} -3.64575 q^{11} -1.64575 q^{13} -0.645751 q^{17} -2.64575 q^{19} -6.29150 q^{23} +1.00000 q^{25} +0.354249 q^{29} +2.64575 q^{31} -3.64575 q^{35} +5.29150 q^{37} +5.64575 q^{41} +8.93725 q^{43} +5.29150 q^{47} +6.29150 q^{49} +11.9373 q^{53} -3.64575 q^{55} +1.64575 q^{59} -13.5830 q^{61} -1.64575 q^{65} +6.00000 q^{67} +7.64575 q^{71} +14.9373 q^{73} +13.2915 q^{77} -12.6458 q^{79} -5.00000 q^{83} -0.645751 q^{85} +13.6458 q^{89} +6.00000 q^{91} -2.64575 q^{95} -11.2915 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7} - 2 q^{11} + 2 q^{13} + 4 q^{17} - 2 q^{23} + 2 q^{25} + 6 q^{29} - 2 q^{35} + 6 q^{41} + 2 q^{43} + 2 q^{49} + 8 q^{53} - 2 q^{55} - 2 q^{59} - 6 q^{61} + 2 q^{65} + 12 q^{67} + 10 q^{71}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.64575 −1.37796 −0.688982 0.724778i \(-0.741942\pi\)
−0.688982 + 0.724778i \(0.741942\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.64575 −1.09924 −0.549618 0.835416i \(-0.685227\pi\)
−0.549618 + 0.835416i \(0.685227\pi\)
\(12\) 0 0
\(13\) −1.64575 −0.456449 −0.228225 0.973609i \(-0.573292\pi\)
−0.228225 + 0.973609i \(0.573292\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.645751 −0.156618 −0.0783088 0.996929i \(-0.524952\pi\)
−0.0783088 + 0.996929i \(0.524952\pi\)
\(18\) 0 0
\(19\) −2.64575 −0.606977 −0.303488 0.952835i \(-0.598151\pi\)
−0.303488 + 0.952835i \(0.598151\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.29150 −1.31187 −0.655934 0.754818i \(-0.727725\pi\)
−0.655934 + 0.754818i \(0.727725\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.354249 0.0657823 0.0328912 0.999459i \(-0.489529\pi\)
0.0328912 + 0.999459i \(0.489529\pi\)
\(30\) 0 0
\(31\) 2.64575 0.475191 0.237595 0.971364i \(-0.423641\pi\)
0.237595 + 0.971364i \(0.423641\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.64575 −0.616244
\(36\) 0 0
\(37\) 5.29150 0.869918 0.434959 0.900450i \(-0.356763\pi\)
0.434959 + 0.900450i \(0.356763\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.64575 0.881718 0.440859 0.897576i \(-0.354674\pi\)
0.440859 + 0.897576i \(0.354674\pi\)
\(42\) 0 0
\(43\) 8.93725 1.36292 0.681459 0.731856i \(-0.261346\pi\)
0.681459 + 0.731856i \(0.261346\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.29150 0.771845 0.385922 0.922531i \(-0.373883\pi\)
0.385922 + 0.922531i \(0.373883\pi\)
\(48\) 0 0
\(49\) 6.29150 0.898786
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.9373 1.63971 0.819854 0.572573i \(-0.194055\pi\)
0.819854 + 0.572573i \(0.194055\pi\)
\(54\) 0 0
\(55\) −3.64575 −0.491593
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.64575 0.214259 0.107129 0.994245i \(-0.465834\pi\)
0.107129 + 0.994245i \(0.465834\pi\)
\(60\) 0 0
\(61\) −13.5830 −1.73913 −0.869563 0.493822i \(-0.835599\pi\)
−0.869563 + 0.493822i \(0.835599\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.64575 −0.204130
\(66\) 0 0
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.64575 0.907384 0.453692 0.891159i \(-0.350107\pi\)
0.453692 + 0.891159i \(0.350107\pi\)
\(72\) 0 0
\(73\) 14.9373 1.74827 0.874137 0.485680i \(-0.161428\pi\)
0.874137 + 0.485680i \(0.161428\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.2915 1.51471
\(78\) 0 0
\(79\) −12.6458 −1.42276 −0.711379 0.702809i \(-0.751929\pi\)
−0.711379 + 0.702809i \(0.751929\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) −0.645751 −0.0700416
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.6458 1.44645 0.723223 0.690614i \(-0.242660\pi\)
0.723223 + 0.690614i \(0.242660\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.64575 −0.271448
\(96\) 0 0
\(97\) −11.2915 −1.14648 −0.573239 0.819388i \(-0.694313\pi\)
−0.573239 + 0.819388i \(0.694313\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.708497 0.0704981 0.0352491 0.999379i \(-0.488778\pi\)
0.0352491 + 0.999379i \(0.488778\pi\)
\(102\) 0 0
\(103\) 11.2915 1.11258 0.556292 0.830987i \(-0.312223\pi\)
0.556292 + 0.830987i \(0.312223\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) −8.29150 −0.794182 −0.397091 0.917779i \(-0.629980\pi\)
−0.397091 + 0.917779i \(0.629980\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.58301 −0.619277 −0.309639 0.950854i \(-0.600208\pi\)
−0.309639 + 0.950854i \(0.600208\pi\)
\(114\) 0 0
\(115\) −6.29150 −0.586686
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.35425 0.215814
\(120\) 0 0
\(121\) 2.29150 0.208318
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.583005 0.0517333 0.0258667 0.999665i \(-0.491765\pi\)
0.0258667 + 0.999665i \(0.491765\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.8745 1.03748 0.518740 0.854932i \(-0.326401\pi\)
0.518740 + 0.854932i \(0.326401\pi\)
\(132\) 0 0
\(133\) 9.64575 0.836393
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.9373 1.53248 0.766242 0.642553i \(-0.222125\pi\)
0.766242 + 0.642553i \(0.222125\pi\)
\(138\) 0 0
\(139\) 1.41699 0.120188 0.0600940 0.998193i \(-0.480860\pi\)
0.0600940 + 0.998193i \(0.480860\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 0.354249 0.0294188
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.06275 0.250910 0.125455 0.992099i \(-0.459961\pi\)
0.125455 + 0.992099i \(0.459961\pi\)
\(150\) 0 0
\(151\) −6.70850 −0.545930 −0.272965 0.962024i \(-0.588004\pi\)
−0.272965 + 0.962024i \(0.588004\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.64575 0.212512
\(156\) 0 0
\(157\) 2.93725 0.234418 0.117209 0.993107i \(-0.462605\pi\)
0.117209 + 0.993107i \(0.462605\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.9373 1.80771
\(162\) 0 0
\(163\) 9.29150 0.727767 0.363883 0.931445i \(-0.381451\pi\)
0.363883 + 0.931445i \(0.381451\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.70850 −0.132207 −0.0661037 0.997813i \(-0.521057\pi\)
−0.0661037 + 0.997813i \(0.521057\pi\)
\(168\) 0 0
\(169\) −10.2915 −0.791654
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.6458 1.26555 0.632777 0.774334i \(-0.281915\pi\)
0.632777 + 0.774334i \(0.281915\pi\)
\(174\) 0 0
\(175\) −3.64575 −0.275593
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.29150 0.246018 0.123009 0.992406i \(-0.460746\pi\)
0.123009 + 0.992406i \(0.460746\pi\)
\(180\) 0 0
\(181\) −5.70850 −0.424309 −0.212155 0.977236i \(-0.568048\pi\)
−0.212155 + 0.977236i \(0.568048\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.29150 0.389039
\(186\) 0 0
\(187\) 2.35425 0.172160
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.2915 0.961739 0.480870 0.876792i \(-0.340321\pi\)
0.480870 + 0.876792i \(0.340321\pi\)
\(192\) 0 0
\(193\) −15.5203 −1.11717 −0.558586 0.829446i \(-0.688656\pi\)
−0.558586 + 0.829446i \(0.688656\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −25.8118 −1.83901 −0.919506 0.393076i \(-0.871411\pi\)
−0.919506 + 0.393076i \(0.871411\pi\)
\(198\) 0 0
\(199\) −25.8745 −1.83420 −0.917098 0.398663i \(-0.869474\pi\)
−0.917098 + 0.398663i \(0.869474\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.29150 −0.0906457
\(204\) 0 0
\(205\) 5.64575 0.394316
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.64575 0.667211
\(210\) 0 0
\(211\) 20.6458 1.42131 0.710656 0.703540i \(-0.248398\pi\)
0.710656 + 0.703540i \(0.248398\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.93725 0.609516
\(216\) 0 0
\(217\) −9.64575 −0.654796
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.06275 0.0714880
\(222\) 0 0
\(223\) −25.2915 −1.69364 −0.846822 0.531876i \(-0.821487\pi\)
−0.846822 + 0.531876i \(0.821487\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.8745 −0.854511 −0.427256 0.904131i \(-0.640520\pi\)
−0.427256 + 0.904131i \(0.640520\pi\)
\(228\) 0 0
\(229\) 11.5830 0.765427 0.382713 0.923867i \(-0.374990\pi\)
0.382713 + 0.923867i \(0.374990\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.41699 0.223855 0.111927 0.993716i \(-0.464298\pi\)
0.111927 + 0.993716i \(0.464298\pi\)
\(234\) 0 0
\(235\) 5.29150 0.345180
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.2915 −0.859756 −0.429878 0.902887i \(-0.641443\pi\)
−0.429878 + 0.902887i \(0.641443\pi\)
\(240\) 0 0
\(241\) −11.7085 −0.754211 −0.377105 0.926170i \(-0.623081\pi\)
−0.377105 + 0.926170i \(0.623081\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.29150 0.401949
\(246\) 0 0
\(247\) 4.35425 0.277054
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.29150 −0.460236 −0.230118 0.973163i \(-0.573911\pi\)
−0.230118 + 0.973163i \(0.573911\pi\)
\(252\) 0 0
\(253\) 22.9373 1.44205
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.2288 1.32421 0.662107 0.749410i \(-0.269663\pi\)
0.662107 + 0.749410i \(0.269663\pi\)
\(258\) 0 0
\(259\) −19.2915 −1.19872
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.7085 −0.660314 −0.330157 0.943926i \(-0.607102\pi\)
−0.330157 + 0.943926i \(0.607102\pi\)
\(264\) 0 0
\(265\) 11.9373 0.733300
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.8745 0.967886 0.483943 0.875100i \(-0.339204\pi\)
0.483943 + 0.875100i \(0.339204\pi\)
\(270\) 0 0
\(271\) −9.35425 −0.568230 −0.284115 0.958790i \(-0.591700\pi\)
−0.284115 + 0.958790i \(0.591700\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.64575 −0.219847
\(276\) 0 0
\(277\) 3.64575 0.219052 0.109526 0.993984i \(-0.465067\pi\)
0.109526 + 0.993984i \(0.465067\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.6458 0.694727 0.347364 0.937731i \(-0.387077\pi\)
0.347364 + 0.937731i \(0.387077\pi\)
\(282\) 0 0
\(283\) 26.3542 1.56660 0.783299 0.621645i \(-0.213536\pi\)
0.783299 + 0.621645i \(0.213536\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.5830 −1.21498
\(288\) 0 0
\(289\) −16.5830 −0.975471
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.2288 1.70756 0.853781 0.520632i \(-0.174304\pi\)
0.853781 + 0.520632i \(0.174304\pi\)
\(294\) 0 0
\(295\) 1.64575 0.0958193
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.3542 0.598802
\(300\) 0 0
\(301\) −32.5830 −1.87805
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.5830 −0.777761
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.2288 −0.693429 −0.346715 0.937971i \(-0.612703\pi\)
−0.346715 + 0.937971i \(0.612703\pi\)
\(312\) 0 0
\(313\) 27.2915 1.54261 0.771303 0.636468i \(-0.219605\pi\)
0.771303 + 0.636468i \(0.219605\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.9373 1.00746 0.503728 0.863862i \(-0.331961\pi\)
0.503728 + 0.863862i \(0.331961\pi\)
\(318\) 0 0
\(319\) −1.29150 −0.0723103
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.70850 0.0950633
\(324\) 0 0
\(325\) −1.64575 −0.0912899
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −19.2915 −1.06357
\(330\) 0 0
\(331\) 7.29150 0.400777 0.200389 0.979716i \(-0.435780\pi\)
0.200389 + 0.979716i \(0.435780\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) −16.2288 −0.884037 −0.442018 0.897006i \(-0.645737\pi\)
−0.442018 + 0.897006i \(0.645737\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.64575 −0.522347
\(342\) 0 0
\(343\) 2.58301 0.139469
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 22.8745 1.22444 0.612222 0.790686i \(-0.290276\pi\)
0.612222 + 0.790686i \(0.290276\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.29150 −0.494537 −0.247268 0.968947i \(-0.579533\pi\)
−0.247268 + 0.968947i \(0.579533\pi\)
\(354\) 0 0
\(355\) 7.64575 0.405794
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.5830 −1.50855 −0.754277 0.656557i \(-0.772012\pi\)
−0.754277 + 0.656557i \(0.772012\pi\)
\(360\) 0 0
\(361\) −12.0000 −0.631579
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.9373 0.781852
\(366\) 0 0
\(367\) −28.3542 −1.48008 −0.740040 0.672563i \(-0.765193\pi\)
−0.740040 + 0.672563i \(0.765193\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −43.5203 −2.25946
\(372\) 0 0
\(373\) 28.0000 1.44979 0.724893 0.688862i \(-0.241889\pi\)
0.724893 + 0.688862i \(0.241889\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.583005 −0.0300263
\(378\) 0 0
\(379\) 35.2288 1.80958 0.904790 0.425858i \(-0.140028\pi\)
0.904790 + 0.425858i \(0.140028\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.0000 0.562074 0.281037 0.959697i \(-0.409322\pi\)
0.281037 + 0.959697i \(0.409322\pi\)
\(384\) 0 0
\(385\) 13.2915 0.677398
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 12.2288 0.620023 0.310011 0.950733i \(-0.399667\pi\)
0.310011 + 0.950733i \(0.399667\pi\)
\(390\) 0 0
\(391\) 4.06275 0.205462
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.6458 −0.636277
\(396\) 0 0
\(397\) −34.1033 −1.71159 −0.855797 0.517312i \(-0.826933\pi\)
−0.855797 + 0.517312i \(0.826933\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.29150 −0.463995 −0.231998 0.972716i \(-0.574526\pi\)
−0.231998 + 0.972716i \(0.574526\pi\)
\(402\) 0 0
\(403\) −4.35425 −0.216901
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.2915 −0.956244
\(408\) 0 0
\(409\) −7.58301 −0.374955 −0.187478 0.982269i \(-0.560031\pi\)
−0.187478 + 0.982269i \(0.560031\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −5.00000 −0.245440
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.35425 0.212719 0.106359 0.994328i \(-0.466081\pi\)
0.106359 + 0.994328i \(0.466081\pi\)
\(420\) 0 0
\(421\) 23.4575 1.14325 0.571625 0.820515i \(-0.306313\pi\)
0.571625 + 0.820515i \(0.306313\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.645751 −0.0313235
\(426\) 0 0
\(427\) 49.5203 2.39645
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.06275 0.147527 0.0737636 0.997276i \(-0.476499\pi\)
0.0737636 + 0.997276i \(0.476499\pi\)
\(432\) 0 0
\(433\) 15.0627 0.723869 0.361935 0.932203i \(-0.382116\pi\)
0.361935 + 0.932203i \(0.382116\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 16.6458 0.796274
\(438\) 0 0
\(439\) 23.1033 1.10266 0.551329 0.834288i \(-0.314121\pi\)
0.551329 + 0.834288i \(0.314121\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 38.0405 1.80736 0.903680 0.428209i \(-0.140855\pi\)
0.903680 + 0.428209i \(0.140855\pi\)
\(444\) 0 0
\(445\) 13.6458 0.646871
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 37.5203 1.77069 0.885345 0.464934i \(-0.153922\pi\)
0.885345 + 0.464934i \(0.153922\pi\)
\(450\) 0 0
\(451\) −20.5830 −0.969216
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 0.281284
\(456\) 0 0
\(457\) 6.58301 0.307940 0.153970 0.988076i \(-0.450794\pi\)
0.153970 + 0.988076i \(0.450794\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.5830 −0.586049 −0.293024 0.956105i \(-0.594662\pi\)
−0.293024 + 0.956105i \(0.594662\pi\)
\(462\) 0 0
\(463\) 1.29150 0.0600212 0.0300106 0.999550i \(-0.490446\pi\)
0.0300106 + 0.999550i \(0.490446\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.4575 1.73333 0.866663 0.498893i \(-0.166260\pi\)
0.866663 + 0.498893i \(0.166260\pi\)
\(468\) 0 0
\(469\) −21.8745 −1.01007
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −32.5830 −1.49817
\(474\) 0 0
\(475\) −2.64575 −0.121395
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 29.5203 1.34882 0.674408 0.738359i \(-0.264399\pi\)
0.674408 + 0.738359i \(0.264399\pi\)
\(480\) 0 0
\(481\) −8.70850 −0.397073
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.2915 −0.512721
\(486\) 0 0
\(487\) −15.5203 −0.703290 −0.351645 0.936133i \(-0.614378\pi\)
−0.351645 + 0.936133i \(0.614378\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.5830 −0.748381 −0.374190 0.927352i \(-0.622079\pi\)
−0.374190 + 0.927352i \(0.622079\pi\)
\(492\) 0 0
\(493\) −0.228757 −0.0103027
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.8745 −1.25034
\(498\) 0 0
\(499\) 43.8118 1.96128 0.980642 0.195810i \(-0.0627335\pi\)
0.980642 + 0.195810i \(0.0627335\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 33.4575 1.49180 0.745898 0.666060i \(-0.232020\pi\)
0.745898 + 0.666060i \(0.232020\pi\)
\(504\) 0 0
\(505\) 0.708497 0.0315277
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −31.7490 −1.40725 −0.703625 0.710571i \(-0.748437\pi\)
−0.703625 + 0.710571i \(0.748437\pi\)
\(510\) 0 0
\(511\) −54.4575 −2.40906
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.2915 0.497563
\(516\) 0 0
\(517\) −19.2915 −0.848439
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.2288 0.886238 0.443119 0.896463i \(-0.353872\pi\)
0.443119 + 0.896463i \(0.353872\pi\)
\(522\) 0 0
\(523\) −38.6863 −1.69163 −0.845816 0.533474i \(-0.820886\pi\)
−0.845816 + 0.533474i \(0.820886\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.70850 −0.0744233
\(528\) 0 0
\(529\) 16.5830 0.721000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.29150 −0.402460
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −22.9373 −0.987977
\(540\) 0 0
\(541\) −9.41699 −0.404868 −0.202434 0.979296i \(-0.564885\pi\)
−0.202434 + 0.979296i \(0.564885\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.29150 −0.355169
\(546\) 0 0
\(547\) −24.9373 −1.06624 −0.533120 0.846040i \(-0.678981\pi\)
−0.533120 + 0.846040i \(0.678981\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.937254 −0.0399284
\(552\) 0 0
\(553\) 46.1033 1.96051
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.7085 −0.962190 −0.481095 0.876668i \(-0.659761\pi\)
−0.481095 + 0.876668i \(0.659761\pi\)
\(558\) 0 0
\(559\) −14.7085 −0.622103
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.00000 0.252870 0.126435 0.991975i \(-0.459647\pi\)
0.126435 + 0.991975i \(0.459647\pi\)
\(564\) 0 0
\(565\) −6.58301 −0.276949
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.1033 −1.51353 −0.756764 0.653688i \(-0.773221\pi\)
−0.756764 + 0.653688i \(0.773221\pi\)
\(570\) 0 0
\(571\) 20.0627 0.839600 0.419800 0.907617i \(-0.362100\pi\)
0.419800 + 0.907617i \(0.362100\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.29150 −0.262374
\(576\) 0 0
\(577\) 31.3948 1.30698 0.653491 0.756935i \(-0.273304\pi\)
0.653491 + 0.756935i \(0.273304\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 18.2288 0.756256
\(582\) 0 0
\(583\) −43.5203 −1.80242
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.5830 0.973375 0.486687 0.873576i \(-0.338205\pi\)
0.486687 + 0.873576i \(0.338205\pi\)
\(588\) 0 0
\(589\) −7.00000 −0.288430
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 42.3948 1.74094 0.870472 0.492218i \(-0.163814\pi\)
0.870472 + 0.492218i \(0.163814\pi\)
\(594\) 0 0
\(595\) 2.35425 0.0965148
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.8118 1.09550 0.547749 0.836642i \(-0.315485\pi\)
0.547749 + 0.836642i \(0.315485\pi\)
\(600\) 0 0
\(601\) −32.2915 −1.31720 −0.658599 0.752494i \(-0.728851\pi\)
−0.658599 + 0.752494i \(0.728851\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.29150 0.0931628
\(606\) 0 0
\(607\) −16.2288 −0.658705 −0.329352 0.944207i \(-0.606830\pi\)
−0.329352 + 0.944207i \(0.606830\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.70850 −0.352308
\(612\) 0 0
\(613\) 20.0000 0.807792 0.403896 0.914805i \(-0.367656\pi\)
0.403896 + 0.914805i \(0.367656\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.81176 0.233973 0.116986 0.993134i \(-0.462677\pi\)
0.116986 + 0.993134i \(0.462677\pi\)
\(618\) 0 0
\(619\) −13.8745 −0.557664 −0.278832 0.960340i \(-0.589947\pi\)
−0.278832 + 0.960340i \(0.589947\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −49.7490 −1.99315
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.41699 −0.136245
\(630\) 0 0
\(631\) 20.5203 0.816899 0.408449 0.912781i \(-0.366070\pi\)
0.408449 + 0.912781i \(0.366070\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.583005 0.0231359
\(636\) 0 0
\(637\) −10.3542 −0.410250
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.16601 0.0460546 0.0230273 0.999735i \(-0.492670\pi\)
0.0230273 + 0.999735i \(0.492670\pi\)
\(642\) 0 0
\(643\) −2.22876 −0.0878936 −0.0439468 0.999034i \(-0.513993\pi\)
−0.0439468 + 0.999034i \(0.513993\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.00000 −0.353827 −0.176913 0.984226i \(-0.556611\pi\)
−0.176913 + 0.984226i \(0.556611\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.9373 −0.780205 −0.390103 0.920771i \(-0.627560\pi\)
−0.390103 + 0.920771i \(0.627560\pi\)
\(654\) 0 0
\(655\) 11.8745 0.463975
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 38.3542 1.49407 0.747035 0.664785i \(-0.231477\pi\)
0.747035 + 0.664785i \(0.231477\pi\)
\(660\) 0 0
\(661\) −45.1660 −1.75675 −0.878377 0.477968i \(-0.841373\pi\)
−0.878377 + 0.477968i \(0.841373\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.64575 0.374046
\(666\) 0 0
\(667\) −2.22876 −0.0862978
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 49.5203 1.91171
\(672\) 0 0
\(673\) 19.7712 0.762125 0.381063 0.924549i \(-0.375558\pi\)
0.381063 + 0.924549i \(0.375558\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −26.5830 −1.02167 −0.510834 0.859679i \(-0.670663\pi\)
−0.510834 + 0.859679i \(0.670663\pi\)
\(678\) 0 0
\(679\) 41.1660 1.57981
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.41699 0.245539 0.122770 0.992435i \(-0.460822\pi\)
0.122770 + 0.992435i \(0.460822\pi\)
\(684\) 0 0
\(685\) 17.9373 0.685347
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.6458 −0.748444
\(690\) 0 0
\(691\) −12.7712 −0.485841 −0.242920 0.970046i \(-0.578105\pi\)
−0.242920 + 0.970046i \(0.578105\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.41699 0.0537497
\(696\) 0 0
\(697\) −3.64575 −0.138093
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.8745 −1.50604 −0.753020 0.657998i \(-0.771404\pi\)
−0.753020 + 0.657998i \(0.771404\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.58301 −0.0971439
\(708\) 0 0
\(709\) −47.7490 −1.79325 −0.896626 0.442789i \(-0.853989\pi\)
−0.896626 + 0.442789i \(0.853989\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.6458 −0.623388
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.4170 −1.17166 −0.585828 0.810435i \(-0.699231\pi\)
−0.585828 + 0.810435i \(0.699231\pi\)
\(720\) 0 0
\(721\) −41.1660 −1.53310
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.354249 0.0131565
\(726\) 0 0
\(727\) 13.8745 0.514577 0.257289 0.966335i \(-0.417171\pi\)
0.257289 + 0.966335i \(0.417171\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.77124 −0.213457
\(732\) 0 0
\(733\) 39.2915 1.45126 0.725632 0.688083i \(-0.241547\pi\)
0.725632 + 0.688083i \(0.241547\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.8745 −0.805758
\(738\) 0 0
\(739\) 31.6863 1.16560 0.582799 0.812616i \(-0.301957\pi\)
0.582799 + 0.812616i \(0.301957\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.1660 0.483014 0.241507 0.970399i \(-0.422358\pi\)
0.241507 + 0.970399i \(0.422358\pi\)
\(744\) 0 0
\(745\) 3.06275 0.112210
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21.8745 −0.799277
\(750\) 0 0
\(751\) 17.9373 0.654540 0.327270 0.944931i \(-0.393871\pi\)
0.327270 + 0.944931i \(0.393871\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.70850 −0.244147
\(756\) 0 0
\(757\) −7.41699 −0.269575 −0.134788 0.990875i \(-0.543035\pi\)
−0.134788 + 0.990875i \(0.543035\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −32.3542 −1.17284 −0.586420 0.810007i \(-0.699463\pi\)
−0.586420 + 0.810007i \(0.699463\pi\)
\(762\) 0 0
\(763\) 30.2288 1.09435
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.70850 −0.0977982
\(768\) 0 0
\(769\) 16.1660 0.582961 0.291481 0.956577i \(-0.405852\pi\)
0.291481 + 0.956577i \(0.405852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −22.7712 −0.819025 −0.409512 0.912305i \(-0.634301\pi\)
−0.409512 + 0.912305i \(0.634301\pi\)
\(774\) 0 0
\(775\) 2.64575 0.0950382
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.9373 −0.535183
\(780\) 0 0
\(781\) −27.8745 −0.997428
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.93725 0.104835
\(786\) 0 0
\(787\) −22.8118 −0.813151 −0.406576 0.913617i \(-0.633277\pi\)
−0.406576 + 0.913617i \(0.633277\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 22.3542 0.793823
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.8118 0.843456 0.421728 0.906722i \(-0.361424\pi\)
0.421728 + 0.906722i \(0.361424\pi\)
\(798\) 0 0
\(799\) −3.41699 −0.120885
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −54.4575 −1.92176
\(804\) 0 0
\(805\) 22.9373 0.808432
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.93725 −0.173585 −0.0867923 0.996226i \(-0.527662\pi\)
−0.0867923 + 0.996226i \(0.527662\pi\)
\(810\) 0 0
\(811\) 13.2915 0.466728 0.233364 0.972389i \(-0.425027\pi\)
0.233364 + 0.972389i \(0.425027\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.29150 0.325467
\(816\) 0 0
\(817\) −23.6458 −0.827260
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.41699 −0.119254 −0.0596270 0.998221i \(-0.518991\pi\)
−0.0596270 + 0.998221i \(0.518991\pi\)
\(822\) 0 0
\(823\) −6.10326 −0.212746 −0.106373 0.994326i \(-0.533924\pi\)
−0.106373 + 0.994326i \(0.533924\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28.0405 −0.975064 −0.487532 0.873105i \(-0.662103\pi\)
−0.487532 + 0.873105i \(0.662103\pi\)
\(828\) 0 0
\(829\) 36.4575 1.26622 0.633111 0.774061i \(-0.281778\pi\)
0.633111 + 0.774061i \(0.281778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.06275 −0.140766
\(834\) 0 0
\(835\) −1.70850 −0.0591250
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.45751 −0.153890 −0.0769452 0.997035i \(-0.524517\pi\)
−0.0769452 + 0.997035i \(0.524517\pi\)
\(840\) 0 0
\(841\) −28.8745 −0.995673
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.2915 −0.354038
\(846\) 0 0
\(847\) −8.35425 −0.287055
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −33.2915 −1.14122
\(852\) 0 0
\(853\) 7.29150 0.249656 0.124828 0.992178i \(-0.460162\pi\)
0.124828 + 0.992178i \(0.460162\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.8118 0.403482 0.201741 0.979439i \(-0.435340\pi\)
0.201741 + 0.979439i \(0.435340\pi\)
\(858\) 0 0
\(859\) 51.9373 1.77208 0.886038 0.463612i \(-0.153447\pi\)
0.886038 + 0.463612i \(0.153447\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.4170 0.626922 0.313461 0.949601i \(-0.398512\pi\)
0.313461 + 0.949601i \(0.398512\pi\)
\(864\) 0 0
\(865\) 16.6458 0.565973
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 46.1033 1.56395
\(870\) 0 0
\(871\) −9.87451 −0.334585
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.64575 −0.123249
\(876\) 0 0
\(877\) −27.6458 −0.933531 −0.466765 0.884381i \(-0.654581\pi\)
−0.466765 + 0.884381i \(0.654581\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41.9778 −1.41427 −0.707134 0.707080i \(-0.750012\pi\)
−0.707134 + 0.707080i \(0.750012\pi\)
\(882\) 0 0
\(883\) −21.0627 −0.708818 −0.354409 0.935091i \(-0.615318\pi\)
−0.354409 + 0.935091i \(0.615318\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.7490 −1.30106 −0.650532 0.759479i \(-0.725454\pi\)
−0.650532 + 0.759479i \(0.725454\pi\)
\(888\) 0 0
\(889\) −2.12549 −0.0712867
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14.0000 −0.468492
\(894\) 0 0
\(895\) 3.29150 0.110023
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.937254 0.0312592
\(900\) 0 0
\(901\) −7.70850 −0.256807
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.70850 −0.189757
\(906\) 0 0
\(907\) −6.12549 −0.203394 −0.101697 0.994815i \(-0.532427\pi\)
−0.101697 + 0.994815i \(0.532427\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.1033 1.12989 0.564946 0.825128i \(-0.308897\pi\)
0.564946 + 0.825128i \(0.308897\pi\)
\(912\) 0 0
\(913\) 18.2288 0.603284
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −43.2915 −1.42961
\(918\) 0 0
\(919\) 1.41699 0.0467423 0.0233712 0.999727i \(-0.492560\pi\)
0.0233712 + 0.999727i \(0.492560\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −12.5830 −0.414175
\(924\) 0 0
\(925\) 5.29150 0.173984
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.479741 −0.0157398 −0.00786989 0.999969i \(-0.502505\pi\)
−0.00786989 + 0.999969i \(0.502505\pi\)
\(930\) 0 0
\(931\) −16.6458 −0.545542
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.35425 0.0769922
\(936\) 0 0
\(937\) −38.5830 −1.26045 −0.630226 0.776412i \(-0.717038\pi\)
−0.630226 + 0.776412i \(0.717038\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.5830 −0.670987 −0.335493 0.942043i \(-0.608903\pi\)
−0.335493 + 0.942043i \(0.608903\pi\)
\(942\) 0 0
\(943\) −35.5203 −1.15670
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.7490 0.999209 0.499604 0.866254i \(-0.333479\pi\)
0.499604 + 0.866254i \(0.333479\pi\)
\(948\) 0 0
\(949\) −24.5830 −0.797998
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4.58301 −0.148458 −0.0742291 0.997241i \(-0.523650\pi\)
−0.0742291 + 0.997241i \(0.523650\pi\)
\(954\) 0 0
\(955\) 13.2915 0.430103
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −65.3948 −2.11171
\(960\) 0 0
\(961\) −24.0000 −0.774194
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15.5203 −0.499615
\(966\) 0 0
\(967\) 55.8745 1.79680 0.898402 0.439175i \(-0.144729\pi\)
0.898402 + 0.439175i \(0.144729\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.4575 0.720696 0.360348 0.932818i \(-0.382658\pi\)
0.360348 + 0.932818i \(0.382658\pi\)
\(972\) 0 0
\(973\) −5.16601 −0.165615
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −58.4575 −1.87022 −0.935111 0.354356i \(-0.884700\pi\)
−0.935111 + 0.354356i \(0.884700\pi\)
\(978\) 0 0
\(979\) −49.7490 −1.58999
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −60.1660 −1.91900 −0.959499 0.281713i \(-0.909098\pi\)
−0.959499 + 0.281713i \(0.909098\pi\)
\(984\) 0 0
\(985\) −25.8118 −0.822431
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −56.2288 −1.78797
\(990\) 0 0
\(991\) −37.8118 −1.20113 −0.600565 0.799576i \(-0.705058\pi\)
−0.600565 + 0.799576i \(0.705058\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −25.8745 −0.820277
\(996\) 0 0
\(997\) −10.9373 −0.346386 −0.173193 0.984888i \(-0.555408\pi\)
−0.173193 + 0.984888i \(0.555408\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.z.1.1 yes 2
3.2 odd 2 4320.2.a.p.1.1 2
4.3 odd 2 4320.2.a.bd.1.2 yes 2
8.3 odd 2 8640.2.a.cs.1.2 2
8.5 even 2 8640.2.a.cl.1.1 2
12.11 even 2 4320.2.a.t.1.2 yes 2
24.5 odd 2 8640.2.a.cz.1.1 2
24.11 even 2 8640.2.a.dg.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.p.1.1 2 3.2 odd 2
4320.2.a.t.1.2 yes 2 12.11 even 2
4320.2.a.z.1.1 yes 2 1.1 even 1 trivial
4320.2.a.bd.1.2 yes 2 4.3 odd 2
8640.2.a.cl.1.1 2 8.5 even 2
8640.2.a.cs.1.2 2 8.3 odd 2
8640.2.a.cz.1.1 2 24.5 odd 2
8640.2.a.dg.1.2 2 24.11 even 2