Properties

Label 4320.2.a.z.1.2
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +1.64575 q^{7} +1.64575 q^{11} +3.64575 q^{13} +4.64575 q^{17} +2.64575 q^{19} +4.29150 q^{23} +1.00000 q^{25} +5.64575 q^{29} -2.64575 q^{31} +1.64575 q^{35} -5.29150 q^{37} +0.354249 q^{41} -6.93725 q^{43} -5.29150 q^{47} -4.29150 q^{49} -3.93725 q^{53} +1.64575 q^{55} -3.64575 q^{59} +7.58301 q^{61} +3.64575 q^{65} +6.00000 q^{67} +2.35425 q^{71} -0.937254 q^{73} +2.70850 q^{77} -7.35425 q^{79} -5.00000 q^{83} +4.64575 q^{85} +8.35425 q^{89} +6.00000 q^{91} +2.64575 q^{95} -0.708497 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{7} - 2 q^{11} + 2 q^{13} + 4 q^{17} - 2 q^{23} + 2 q^{25} + 6 q^{29} - 2 q^{35} + 6 q^{41} + 2 q^{43} + 2 q^{49} + 8 q^{53} - 2 q^{55} - 2 q^{59} - 6 q^{61} + 2 q^{65} + 12 q^{67} + 10 q^{71}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.64575 0.622036 0.311018 0.950404i \(-0.399330\pi\)
0.311018 + 0.950404i \(0.399330\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.64575 0.496213 0.248106 0.968733i \(-0.420192\pi\)
0.248106 + 0.968733i \(0.420192\pi\)
\(12\) 0 0
\(13\) 3.64575 1.01115 0.505575 0.862783i \(-0.331280\pi\)
0.505575 + 0.862783i \(0.331280\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.64575 1.12676 0.563380 0.826198i \(-0.309501\pi\)
0.563380 + 0.826198i \(0.309501\pi\)
\(18\) 0 0
\(19\) 2.64575 0.606977 0.303488 0.952835i \(-0.401849\pi\)
0.303488 + 0.952835i \(0.401849\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.29150 0.894840 0.447420 0.894324i \(-0.352343\pi\)
0.447420 + 0.894324i \(0.352343\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.64575 1.04839 0.524195 0.851598i \(-0.324366\pi\)
0.524195 + 0.851598i \(0.324366\pi\)
\(30\) 0 0
\(31\) −2.64575 −0.475191 −0.237595 0.971364i \(-0.576359\pi\)
−0.237595 + 0.971364i \(0.576359\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.64575 0.278183
\(36\) 0 0
\(37\) −5.29150 −0.869918 −0.434959 0.900450i \(-0.643237\pi\)
−0.434959 + 0.900450i \(0.643237\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.354249 0.0553244 0.0276622 0.999617i \(-0.491194\pi\)
0.0276622 + 0.999617i \(0.491194\pi\)
\(42\) 0 0
\(43\) −6.93725 −1.05792 −0.528961 0.848646i \(-0.677418\pi\)
−0.528961 + 0.848646i \(0.677418\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.29150 −0.771845 −0.385922 0.922531i \(-0.626117\pi\)
−0.385922 + 0.922531i \(0.626117\pi\)
\(48\) 0 0
\(49\) −4.29150 −0.613072
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.93725 −0.540823 −0.270412 0.962745i \(-0.587160\pi\)
−0.270412 + 0.962745i \(0.587160\pi\)
\(54\) 0 0
\(55\) 1.64575 0.221913
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.64575 −0.474636 −0.237318 0.971432i \(-0.576268\pi\)
−0.237318 + 0.971432i \(0.576268\pi\)
\(60\) 0 0
\(61\) 7.58301 0.970904 0.485452 0.874263i \(-0.338655\pi\)
0.485452 + 0.874263i \(0.338655\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.64575 0.452200
\(66\) 0 0
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.35425 0.279398 0.139699 0.990194i \(-0.455387\pi\)
0.139699 + 0.990194i \(0.455387\pi\)
\(72\) 0 0
\(73\) −0.937254 −0.109697 −0.0548486 0.998495i \(-0.517468\pi\)
−0.0548486 + 0.998495i \(0.517468\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.70850 0.308662
\(78\) 0 0
\(79\) −7.35425 −0.827418 −0.413709 0.910409i \(-0.635767\pi\)
−0.413709 + 0.910409i \(0.635767\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) 4.64575 0.503902
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.35425 0.885549 0.442774 0.896633i \(-0.353994\pi\)
0.442774 + 0.896633i \(0.353994\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.64575 0.271448
\(96\) 0 0
\(97\) −0.708497 −0.0719370 −0.0359685 0.999353i \(-0.511452\pi\)
−0.0359685 + 0.999353i \(0.511452\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 11.2915 1.12355 0.561773 0.827291i \(-0.310119\pi\)
0.561773 + 0.827291i \(0.310119\pi\)
\(102\) 0 0
\(103\) 0.708497 0.0698103 0.0349052 0.999391i \(-0.488887\pi\)
0.0349052 + 0.999391i \(0.488887\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 2.29150 0.219486 0.109743 0.993960i \(-0.464997\pi\)
0.109743 + 0.993960i \(0.464997\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.5830 1.37185 0.685927 0.727670i \(-0.259397\pi\)
0.685927 + 0.727670i \(0.259397\pi\)
\(114\) 0 0
\(115\) 4.29150 0.400185
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.64575 0.700885
\(120\) 0 0
\(121\) −8.29150 −0.753773
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −20.5830 −1.82645 −0.913223 0.407460i \(-0.866415\pi\)
−0.913223 + 0.407460i \(0.866415\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.8745 −1.73644 −0.868222 0.496176i \(-0.834737\pi\)
−0.868222 + 0.496176i \(0.834737\pi\)
\(132\) 0 0
\(133\) 4.35425 0.377561
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.06275 0.176232 0.0881161 0.996110i \(-0.471915\pi\)
0.0881161 + 0.996110i \(0.471915\pi\)
\(138\) 0 0
\(139\) 22.5830 1.91547 0.957733 0.287659i \(-0.0928771\pi\)
0.957733 + 0.287659i \(0.0928771\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 5.64575 0.468854
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.9373 1.55140 0.775700 0.631102i \(-0.217397\pi\)
0.775700 + 0.631102i \(0.217397\pi\)
\(150\) 0 0
\(151\) −17.2915 −1.40716 −0.703581 0.710615i \(-0.748417\pi\)
−0.703581 + 0.710615i \(0.748417\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.64575 −0.212512
\(156\) 0 0
\(157\) −12.9373 −1.03251 −0.516253 0.856436i \(-0.672673\pi\)
−0.516253 + 0.856436i \(0.672673\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.06275 0.556622
\(162\) 0 0
\(163\) −1.29150 −0.101158 −0.0505791 0.998720i \(-0.516107\pi\)
−0.0505791 + 0.998720i \(0.516107\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.2915 −0.951145 −0.475573 0.879677i \(-0.657759\pi\)
−0.475573 + 0.879677i \(0.657759\pi\)
\(168\) 0 0
\(169\) 0.291503 0.0224233
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.3542 0.863248 0.431624 0.902054i \(-0.357941\pi\)
0.431624 + 0.902054i \(0.357941\pi\)
\(174\) 0 0
\(175\) 1.64575 0.124407
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −7.29150 −0.544992 −0.272496 0.962157i \(-0.587849\pi\)
−0.272496 + 0.962157i \(0.587849\pi\)
\(180\) 0 0
\(181\) −16.2915 −1.21094 −0.605469 0.795869i \(-0.707014\pi\)
−0.605469 + 0.795869i \(0.707014\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.29150 −0.389039
\(186\) 0 0
\(187\) 7.64575 0.559113
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.70850 0.195980 0.0979900 0.995187i \(-0.468759\pi\)
0.0979900 + 0.995187i \(0.468759\pi\)
\(192\) 0 0
\(193\) 21.5203 1.54906 0.774531 0.632536i \(-0.217986\pi\)
0.774531 + 0.632536i \(0.217986\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.8118 1.55402 0.777012 0.629486i \(-0.216734\pi\)
0.777012 + 0.629486i \(0.216734\pi\)
\(198\) 0 0
\(199\) 5.87451 0.416433 0.208216 0.978083i \(-0.433234\pi\)
0.208216 + 0.978083i \(0.433234\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.29150 0.652136
\(204\) 0 0
\(205\) 0.354249 0.0247418
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.35425 0.301190
\(210\) 0 0
\(211\) 15.3542 1.05703 0.528515 0.848924i \(-0.322749\pi\)
0.528515 + 0.848924i \(0.322749\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.93725 −0.473117
\(216\) 0 0
\(217\) −4.35425 −0.295586
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.9373 1.13932
\(222\) 0 0
\(223\) −14.7085 −0.984954 −0.492477 0.870326i \(-0.663908\pi\)
−0.492477 + 0.870326i \(0.663908\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.8745 1.25275 0.626373 0.779524i \(-0.284539\pi\)
0.626373 + 0.779524i \(0.284539\pi\)
\(228\) 0 0
\(229\) −9.58301 −0.633263 −0.316631 0.948549i \(-0.602552\pi\)
−0.316631 + 0.948549i \(0.602552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.5830 1.61049 0.805243 0.592945i \(-0.202035\pi\)
0.805243 + 0.592945i \(0.202035\pi\)
\(234\) 0 0
\(235\) −5.29150 −0.345180
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.70850 −0.175198 −0.0875991 0.996156i \(-0.527919\pi\)
−0.0875991 + 0.996156i \(0.527919\pi\)
\(240\) 0 0
\(241\) −22.2915 −1.43592 −0.717961 0.696083i \(-0.754924\pi\)
−0.717961 + 0.696083i \(0.754924\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.29150 −0.274174
\(246\) 0 0
\(247\) 9.64575 0.613744
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.29150 0.207758 0.103879 0.994590i \(-0.466875\pi\)
0.103879 + 0.994590i \(0.466875\pi\)
\(252\) 0 0
\(253\) 7.06275 0.444031
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.22876 −0.326161 −0.163080 0.986613i \(-0.552143\pi\)
−0.163080 + 0.986613i \(0.552143\pi\)
\(258\) 0 0
\(259\) −8.70850 −0.541120
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −21.2915 −1.31289 −0.656445 0.754374i \(-0.727941\pi\)
−0.656445 + 0.754374i \(0.727941\pi\)
\(264\) 0 0
\(265\) −3.93725 −0.241864
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −15.8745 −0.967886 −0.483943 0.875100i \(-0.660796\pi\)
−0.483943 + 0.875100i \(0.660796\pi\)
\(270\) 0 0
\(271\) −14.6458 −0.889666 −0.444833 0.895614i \(-0.646737\pi\)
−0.444833 + 0.895614i \(0.646737\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.64575 0.0992425
\(276\) 0 0
\(277\) −1.64575 −0.0988836 −0.0494418 0.998777i \(-0.515744\pi\)
−0.0494418 + 0.998777i \(0.515744\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.35425 0.379063 0.189531 0.981875i \(-0.439303\pi\)
0.189531 + 0.981875i \(0.439303\pi\)
\(282\) 0 0
\(283\) 31.6458 1.88114 0.940572 0.339593i \(-0.110289\pi\)
0.940572 + 0.339593i \(0.110289\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.583005 0.0344137
\(288\) 0 0
\(289\) 4.58301 0.269589
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.77124 0.161898 0.0809489 0.996718i \(-0.474205\pi\)
0.0809489 + 0.996718i \(0.474205\pi\)
\(294\) 0 0
\(295\) −3.64575 −0.212264
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.6458 0.904817
\(300\) 0 0
\(301\) −11.4170 −0.658065
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.58301 0.434202
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.2288 0.806839 0.403419 0.915015i \(-0.367822\pi\)
0.403419 + 0.915015i \(0.367822\pi\)
\(312\) 0 0
\(313\) 16.7085 0.944420 0.472210 0.881486i \(-0.343456\pi\)
0.472210 + 0.881486i \(0.343456\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.06275 0.115855 0.0579277 0.998321i \(-0.481551\pi\)
0.0579277 + 0.998321i \(0.481551\pi\)
\(318\) 0 0
\(319\) 9.29150 0.520224
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.2915 0.683918
\(324\) 0 0
\(325\) 3.64575 0.202230
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.70850 −0.480115
\(330\) 0 0
\(331\) −3.29150 −0.180917 −0.0904587 0.995900i \(-0.528833\pi\)
−0.0904587 + 0.995900i \(0.528833\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) 10.2288 0.557196 0.278598 0.960408i \(-0.410130\pi\)
0.278598 + 0.960408i \(0.410130\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.35425 −0.235796
\(342\) 0 0
\(343\) −18.5830 −1.00339
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −8.87451 −0.475042 −0.237521 0.971382i \(-0.576335\pi\)
−0.237521 + 0.971382i \(0.576335\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.29150 0.0687397 0.0343699 0.999409i \(-0.489058\pi\)
0.0343699 + 0.999409i \(0.489058\pi\)
\(354\) 0 0
\(355\) 2.35425 0.124951
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.41699 −0.391454 −0.195727 0.980658i \(-0.562707\pi\)
−0.195727 + 0.980658i \(0.562707\pi\)
\(360\) 0 0
\(361\) −12.0000 −0.631579
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.937254 −0.0490581
\(366\) 0 0
\(367\) −33.6458 −1.75629 −0.878147 0.478391i \(-0.841220\pi\)
−0.878147 + 0.478391i \(0.841220\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −6.47974 −0.336411
\(372\) 0 0
\(373\) 28.0000 1.44979 0.724893 0.688862i \(-0.241889\pi\)
0.724893 + 0.688862i \(0.241889\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.5830 1.06008
\(378\) 0 0
\(379\) 8.77124 0.450549 0.225274 0.974295i \(-0.427672\pi\)
0.225274 + 0.974295i \(0.427672\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.0000 0.562074 0.281037 0.959697i \(-0.409322\pi\)
0.281037 + 0.959697i \(0.409322\pi\)
\(384\) 0 0
\(385\) 2.70850 0.138038
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.2288 −0.721427 −0.360713 0.932677i \(-0.617467\pi\)
−0.360713 + 0.932677i \(0.617467\pi\)
\(390\) 0 0
\(391\) 19.9373 1.00827
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.35425 −0.370032
\(396\) 0 0
\(397\) 24.1033 1.20971 0.604854 0.796336i \(-0.293231\pi\)
0.604854 + 0.796336i \(0.293231\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.29150 0.0644946 0.0322473 0.999480i \(-0.489734\pi\)
0.0322473 + 0.999480i \(0.489734\pi\)
\(402\) 0 0
\(403\) −9.64575 −0.480489
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.70850 −0.431664
\(408\) 0 0
\(409\) 13.5830 0.671636 0.335818 0.941927i \(-0.390987\pi\)
0.335818 + 0.941927i \(0.390987\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −5.00000 −0.245440
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.64575 0.471226 0.235613 0.971847i \(-0.424290\pi\)
0.235613 + 0.971847i \(0.424290\pi\)
\(420\) 0 0
\(421\) −29.4575 −1.43567 −0.717836 0.696213i \(-0.754867\pi\)
−0.717836 + 0.696213i \(0.754867\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.64575 0.225352
\(426\) 0 0
\(427\) 12.4797 0.603937
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.9373 0.912175 0.456088 0.889935i \(-0.349250\pi\)
0.456088 + 0.889935i \(0.349250\pi\)
\(432\) 0 0
\(433\) 30.9373 1.48675 0.743375 0.668875i \(-0.233224\pi\)
0.743375 + 0.668875i \(0.233224\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.3542 0.543147
\(438\) 0 0
\(439\) −35.1033 −1.67539 −0.837694 0.546140i \(-0.816097\pi\)
−0.837694 + 0.546140i \(0.816097\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −36.0405 −1.71234 −0.856168 0.516697i \(-0.827161\pi\)
−0.856168 + 0.516697i \(0.827161\pi\)
\(444\) 0 0
\(445\) 8.35425 0.396029
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.479741 0.0226404 0.0113202 0.999936i \(-0.496397\pi\)
0.0113202 + 0.999936i \(0.496397\pi\)
\(450\) 0 0
\(451\) 0.583005 0.0274526
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 0.281284
\(456\) 0 0
\(457\) −14.5830 −0.682164 −0.341082 0.940034i \(-0.610793\pi\)
−0.341082 + 0.940034i \(0.610793\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.58301 0.399750 0.199875 0.979821i \(-0.435946\pi\)
0.199875 + 0.979821i \(0.435946\pi\)
\(462\) 0 0
\(463\) −9.29150 −0.431813 −0.215906 0.976414i \(-0.569271\pi\)
−0.215906 + 0.976414i \(0.569271\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15.4575 −0.715288 −0.357644 0.933858i \(-0.616420\pi\)
−0.357644 + 0.933858i \(0.616420\pi\)
\(468\) 0 0
\(469\) 9.87451 0.455962
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.4170 −0.524954
\(474\) 0 0
\(475\) 2.64575 0.121395
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.52026 −0.343609 −0.171805 0.985131i \(-0.554960\pi\)
−0.171805 + 0.985131i \(0.554960\pi\)
\(480\) 0 0
\(481\) −19.2915 −0.879617
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.708497 −0.0321712
\(486\) 0 0
\(487\) 21.5203 0.975176 0.487588 0.873074i \(-0.337877\pi\)
0.487588 + 0.873074i \(0.337877\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.58301 0.206828 0.103414 0.994638i \(-0.467023\pi\)
0.103414 + 0.994638i \(0.467023\pi\)
\(492\) 0 0
\(493\) 26.2288 1.18128
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.87451 0.173795
\(498\) 0 0
\(499\) −3.81176 −0.170638 −0.0853189 0.996354i \(-0.527191\pi\)
−0.0853189 + 0.996354i \(0.527191\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −19.4575 −0.867568 −0.433784 0.901017i \(-0.642822\pi\)
−0.433784 + 0.901017i \(0.642822\pi\)
\(504\) 0 0
\(505\) 11.2915 0.502465
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 31.7490 1.40725 0.703625 0.710571i \(-0.251563\pi\)
0.703625 + 0.710571i \(0.251563\pi\)
\(510\) 0 0
\(511\) −1.54249 −0.0682356
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.708497 0.0312201
\(516\) 0 0
\(517\) −8.70850 −0.382999
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.22876 −0.272887 −0.136443 0.990648i \(-0.543567\pi\)
−0.136443 + 0.990648i \(0.543567\pi\)
\(522\) 0 0
\(523\) 40.6863 1.77909 0.889543 0.456851i \(-0.151023\pi\)
0.889543 + 0.456851i \(0.151023\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.2915 −0.535426
\(528\) 0 0
\(529\) −4.58301 −0.199261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.29150 0.0559412
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.06275 −0.304214
\(540\) 0 0
\(541\) −30.5830 −1.31487 −0.657433 0.753513i \(-0.728358\pi\)
−0.657433 + 0.753513i \(0.728358\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.29150 0.0981572
\(546\) 0 0
\(547\) −9.06275 −0.387495 −0.193748 0.981051i \(-0.562064\pi\)
−0.193748 + 0.981051i \(0.562064\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 14.9373 0.636348
\(552\) 0 0
\(553\) −12.1033 −0.514683
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −33.2915 −1.41061 −0.705303 0.708906i \(-0.749189\pi\)
−0.705303 + 0.708906i \(0.749189\pi\)
\(558\) 0 0
\(559\) −25.2915 −1.06972
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.00000 0.252870 0.126435 0.991975i \(-0.459647\pi\)
0.126435 + 0.991975i \(0.459647\pi\)
\(564\) 0 0
\(565\) 14.5830 0.613512
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.1033 0.926617 0.463309 0.886197i \(-0.346662\pi\)
0.463309 + 0.886197i \(0.346662\pi\)
\(570\) 0 0
\(571\) 35.9373 1.50393 0.751964 0.659205i \(-0.229107\pi\)
0.751964 + 0.659205i \(0.229107\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.29150 0.178968
\(576\) 0 0
\(577\) −37.3948 −1.55676 −0.778382 0.627791i \(-0.783959\pi\)
−0.778382 + 0.627791i \(0.783959\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.22876 −0.341386
\(582\) 0 0
\(583\) −6.47974 −0.268363
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.41699 0.0997600 0.0498800 0.998755i \(-0.484116\pi\)
0.0498800 + 0.998755i \(0.484116\pi\)
\(588\) 0 0
\(589\) −7.00000 −0.288430
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −26.3948 −1.08390 −0.541952 0.840410i \(-0.682314\pi\)
−0.541952 + 0.840410i \(0.682314\pi\)
\(594\) 0 0
\(595\) 7.64575 0.313445
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20.8118 −0.850346 −0.425173 0.905112i \(-0.639787\pi\)
−0.425173 + 0.905112i \(0.639787\pi\)
\(600\) 0 0
\(601\) −21.7085 −0.885508 −0.442754 0.896643i \(-0.645999\pi\)
−0.442754 + 0.896643i \(0.645999\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.29150 −0.337098
\(606\) 0 0
\(607\) 10.2288 0.415172 0.207586 0.978217i \(-0.433439\pi\)
0.207586 + 0.978217i \(0.433439\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −19.2915 −0.780451
\(612\) 0 0
\(613\) 20.0000 0.807792 0.403896 0.914805i \(-0.367656\pi\)
0.403896 + 0.914805i \(0.367656\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −41.8118 −1.68328 −0.841639 0.540040i \(-0.818409\pi\)
−0.841639 + 0.540040i \(0.818409\pi\)
\(618\) 0 0
\(619\) 17.8745 0.718437 0.359219 0.933253i \(-0.383043\pi\)
0.359219 + 0.933253i \(0.383043\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 13.7490 0.550843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −24.5830 −0.980189
\(630\) 0 0
\(631\) −16.5203 −0.657661 −0.328831 0.944389i \(-0.606655\pi\)
−0.328831 + 0.944389i \(0.606655\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.5830 −0.816812
\(636\) 0 0
\(637\) −15.6458 −0.619907
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −41.1660 −1.62596 −0.812980 0.582292i \(-0.802156\pi\)
−0.812980 + 0.582292i \(0.802156\pi\)
\(642\) 0 0
\(643\) 24.2288 0.955489 0.477744 0.878499i \(-0.341454\pi\)
0.477744 + 0.878499i \(0.341454\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.00000 −0.353827 −0.176913 0.984226i \(-0.556611\pi\)
−0.176913 + 0.984226i \(0.556611\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.06275 −0.158988 −0.0794938 0.996835i \(-0.525330\pi\)
−0.0794938 + 0.996835i \(0.525330\pi\)
\(654\) 0 0
\(655\) −19.8745 −0.776561
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43.6458 1.70020 0.850099 0.526624i \(-0.176542\pi\)
0.850099 + 0.526624i \(0.176542\pi\)
\(660\) 0 0
\(661\) −2.83399 −0.110229 −0.0551147 0.998480i \(-0.517552\pi\)
−0.0551147 + 0.998480i \(0.517552\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.35425 0.168851
\(666\) 0 0
\(667\) 24.2288 0.938141
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.4797 0.481775
\(672\) 0 0
\(673\) 46.2288 1.78199 0.890994 0.454015i \(-0.150009\pi\)
0.890994 + 0.454015i \(0.150009\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.41699 −0.208192 −0.104096 0.994567i \(-0.533195\pi\)
−0.104096 + 0.994567i \(0.533195\pi\)
\(678\) 0 0
\(679\) −1.16601 −0.0447474
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.5830 1.05543 0.527717 0.849420i \(-0.323048\pi\)
0.527717 + 0.849420i \(0.323048\pi\)
\(684\) 0 0
\(685\) 2.06275 0.0788135
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.3542 −0.546853
\(690\) 0 0
\(691\) −39.2288 −1.49233 −0.746166 0.665760i \(-0.768108\pi\)
−0.746166 + 0.665760i \(0.768108\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.5830 0.856622
\(696\) 0 0
\(697\) 1.64575 0.0623373
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.12549 −0.306896 −0.153448 0.988157i \(-0.549038\pi\)
−0.153448 + 0.988157i \(0.549038\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.5830 0.698886
\(708\) 0 0
\(709\) 15.7490 0.591467 0.295733 0.955271i \(-0.404436\pi\)
0.295733 + 0.955271i \(0.404436\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −11.3542 −0.425220
\(714\) 0 0
\(715\) 6.00000 0.224387
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −52.5830 −1.96102 −0.980508 0.196481i \(-0.937049\pi\)
−0.980508 + 0.196481i \(0.937049\pi\)
\(720\) 0 0
\(721\) 1.16601 0.0434245
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.64575 0.209678
\(726\) 0 0
\(727\) −17.8745 −0.662929 −0.331464 0.943468i \(-0.607543\pi\)
−0.331464 + 0.943468i \(0.607543\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −32.2288 −1.19202
\(732\) 0 0
\(733\) 28.7085 1.06037 0.530186 0.847881i \(-0.322122\pi\)
0.530186 + 0.847881i \(0.322122\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.87451 0.363732
\(738\) 0 0
\(739\) −47.6863 −1.75417 −0.877084 0.480337i \(-0.840514\pi\)
−0.877084 + 0.480337i \(0.840514\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.1660 −1.07000 −0.534999 0.844853i \(-0.679688\pi\)
−0.534999 + 0.844853i \(0.679688\pi\)
\(744\) 0 0
\(745\) 18.9373 0.693807
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.87451 0.360807
\(750\) 0 0
\(751\) 2.06275 0.0752707 0.0376353 0.999292i \(-0.488017\pi\)
0.0376353 + 0.999292i \(0.488017\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.2915 −0.629302
\(756\) 0 0
\(757\) −28.5830 −1.03887 −0.519433 0.854511i \(-0.673857\pi\)
−0.519433 + 0.854511i \(0.673857\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −37.6458 −1.36466 −0.682329 0.731046i \(-0.739033\pi\)
−0.682329 + 0.731046i \(0.739033\pi\)
\(762\) 0 0
\(763\) 3.77124 0.136528
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.2915 −0.479928
\(768\) 0 0
\(769\) −26.1660 −0.943570 −0.471785 0.881713i \(-0.656390\pi\)
−0.471785 + 0.881713i \(0.656390\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −49.2288 −1.77064 −0.885318 0.464987i \(-0.846059\pi\)
−0.885318 + 0.464987i \(0.846059\pi\)
\(774\) 0 0
\(775\) −2.64575 −0.0950382
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.937254 0.0335806
\(780\) 0 0
\(781\) 3.87451 0.138641
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −12.9373 −0.461750
\(786\) 0 0
\(787\) 24.8118 0.884444 0.442222 0.896906i \(-0.354190\pi\)
0.442222 + 0.896906i \(0.354190\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) 27.6458 0.981729
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.8118 −0.843456 −0.421728 0.906722i \(-0.638576\pi\)
−0.421728 + 0.906722i \(0.638576\pi\)
\(798\) 0 0
\(799\) −24.5830 −0.869684
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.54249 −0.0544332
\(804\) 0 0
\(805\) 7.06275 0.248929
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.9373 0.384533 0.192267 0.981343i \(-0.438416\pi\)
0.192267 + 0.981343i \(0.438416\pi\)
\(810\) 0 0
\(811\) 2.70850 0.0951082 0.0475541 0.998869i \(-0.484857\pi\)
0.0475541 + 0.998869i \(0.484857\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.29150 −0.0452394
\(816\) 0 0
\(817\) −18.3542 −0.642134
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.5830 −0.857953 −0.428976 0.903316i \(-0.641126\pi\)
−0.428976 + 0.903316i \(0.641126\pi\)
\(822\) 0 0
\(823\) 52.1033 1.81621 0.908103 0.418747i \(-0.137531\pi\)
0.908103 + 0.418747i \(0.137531\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.0405 1.60099 0.800493 0.599342i \(-0.204571\pi\)
0.800493 + 0.599342i \(0.204571\pi\)
\(828\) 0 0
\(829\) −16.4575 −0.571593 −0.285797 0.958290i \(-0.592258\pi\)
−0.285797 + 0.958290i \(0.592258\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −19.9373 −0.690785
\(834\) 0 0
\(835\) −12.2915 −0.425365
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 48.4575 1.67294 0.836470 0.548013i \(-0.184616\pi\)
0.836470 + 0.548013i \(0.184616\pi\)
\(840\) 0 0
\(841\) 2.87451 0.0991210
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.291503 0.0100280
\(846\) 0 0
\(847\) −13.6458 −0.468874
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −22.7085 −0.778437
\(852\) 0 0
\(853\) −3.29150 −0.112699 −0.0563495 0.998411i \(-0.517946\pi\)
−0.0563495 + 0.998411i \(0.517946\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.8118 −1.22331 −0.611653 0.791126i \(-0.709495\pi\)
−0.611653 + 0.791126i \(0.709495\pi\)
\(858\) 0 0
\(859\) 36.0627 1.23045 0.615223 0.788354i \(-0.289066\pi\)
0.615223 + 0.788354i \(0.289066\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39.5830 1.34742 0.673711 0.738995i \(-0.264699\pi\)
0.673711 + 0.738995i \(0.264699\pi\)
\(864\) 0 0
\(865\) 11.3542 0.386056
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.1033 −0.410575
\(870\) 0 0
\(871\) 21.8745 0.741189
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.64575 0.0556365
\(876\) 0 0
\(877\) −22.3542 −0.754849 −0.377425 0.926040i \(-0.623190\pi\)
−0.377425 + 0.926040i \(0.623190\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47.9778 1.61641 0.808206 0.588900i \(-0.200439\pi\)
0.808206 + 0.588900i \(0.200439\pi\)
\(882\) 0 0
\(883\) −36.9373 −1.24304 −0.621519 0.783399i \(-0.713484\pi\)
−0.621519 + 0.783399i \(0.713484\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.7490 0.830991 0.415495 0.909595i \(-0.363608\pi\)
0.415495 + 0.909595i \(0.363608\pi\)
\(888\) 0 0
\(889\) −33.8745 −1.13611
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14.0000 −0.468492
\(894\) 0 0
\(895\) −7.29150 −0.243728
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −14.9373 −0.498185
\(900\) 0 0
\(901\) −18.2915 −0.609378
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −16.2915 −0.541548
\(906\) 0 0
\(907\) −37.8745 −1.25760 −0.628801 0.777566i \(-0.716454\pi\)
−0.628801 + 0.777566i \(0.716454\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.1033 −0.798577 −0.399288 0.916825i \(-0.630743\pi\)
−0.399288 + 0.916825i \(0.630743\pi\)
\(912\) 0 0
\(913\) −8.22876 −0.272332
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32.7085 −1.08013
\(918\) 0 0
\(919\) 22.5830 0.744945 0.372472 0.928043i \(-0.378510\pi\)
0.372472 + 0.928043i \(0.378510\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.58301 0.282513
\(924\) 0 0
\(925\) −5.29150 −0.173984
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37.5203 −1.23100 −0.615500 0.788137i \(-0.711046\pi\)
−0.615500 + 0.788137i \(0.711046\pi\)
\(930\) 0 0
\(931\) −11.3542 −0.372120
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.64575 0.250043
\(936\) 0 0
\(937\) −17.4170 −0.568988 −0.284494 0.958678i \(-0.591826\pi\)
−0.284494 + 0.958678i \(0.591826\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.583005 0.0190054 0.00950271 0.999955i \(-0.496975\pi\)
0.00950271 + 0.999955i \(0.496975\pi\)
\(942\) 0 0
\(943\) 1.52026 0.0495065
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.7490 −1.06420 −0.532100 0.846682i \(-0.678597\pi\)
−0.532100 + 0.846682i \(0.678597\pi\)
\(948\) 0 0
\(949\) −3.41699 −0.110920
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.5830 0.537176 0.268588 0.963255i \(-0.413443\pi\)
0.268588 + 0.963255i \(0.413443\pi\)
\(954\) 0 0
\(955\) 2.70850 0.0876449
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.39477 0.109623
\(960\) 0 0
\(961\) −24.0000 −0.774194
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 21.5203 0.692762
\(966\) 0 0
\(967\) 24.1255 0.775824 0.387912 0.921697i \(-0.373197\pi\)
0.387912 + 0.921697i \(0.373197\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −30.4575 −0.977428 −0.488714 0.872444i \(-0.662534\pi\)
−0.488714 + 0.872444i \(0.662534\pi\)
\(972\) 0 0
\(973\) 37.1660 1.19149
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.54249 −0.177320 −0.0886599 0.996062i \(-0.528258\pi\)
−0.0886599 + 0.996062i \(0.528258\pi\)
\(978\) 0 0
\(979\) 13.7490 0.439420
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.8340 −0.568816 −0.284408 0.958703i \(-0.591797\pi\)
−0.284408 + 0.958703i \(0.591797\pi\)
\(984\) 0 0
\(985\) 21.8118 0.694981
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −29.7712 −0.946670
\(990\) 0 0
\(991\) 9.81176 0.311681 0.155840 0.987782i \(-0.450191\pi\)
0.155840 + 0.987782i \(0.450191\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.87451 0.186234
\(996\) 0 0
\(997\) 4.93725 0.156364 0.0781822 0.996939i \(-0.475088\pi\)
0.0781822 + 0.996939i \(0.475088\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.z.1.2 yes 2
3.2 odd 2 4320.2.a.p.1.2 2
4.3 odd 2 4320.2.a.bd.1.1 yes 2
8.3 odd 2 8640.2.a.cs.1.1 2
8.5 even 2 8640.2.a.cl.1.2 2
12.11 even 2 4320.2.a.t.1.1 yes 2
24.5 odd 2 8640.2.a.cz.1.2 2
24.11 even 2 8640.2.a.dg.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.p.1.2 2 3.2 odd 2
4320.2.a.t.1.1 yes 2 12.11 even 2
4320.2.a.z.1.2 yes 2 1.1 even 1 trivial
4320.2.a.bd.1.1 yes 2 4.3 odd 2
8640.2.a.cl.1.2 2 8.5 even 2
8640.2.a.cs.1.1 2 8.3 odd 2
8640.2.a.cz.1.2 2 24.5 odd 2
8640.2.a.dg.1.1 2 24.11 even 2