Properties

Label 4320.2.d.g.3889.12
Level $4320$
Weight $2$
Character 4320.3889
Analytic conductor $34.495$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(3889,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.3889");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} - 3 x^{14} + 36 x^{13} - 78 x^{12} - 96 x^{11} + 1194 x^{10} + 1456 x^{9} + \cdots + 45658 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3889.12
Root \(-1.59571 + 0.665253i\) of defining polynomial
Character \(\chi\) \(=\) 4320.3889
Dual form 4320.2.d.g.3889.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.463409 + 2.18752i) q^{5} -3.14971i q^{7} -2.42180i q^{11} +3.12253 q^{13} -7.15192i q^{17} +2.34624i q^{19} -1.28934i q^{23} +(-4.57050 + 2.02743i) q^{25} -4.21495i q^{29} -3.05999 q^{31} +(6.89007 - 1.45960i) q^{35} -1.37346 q^{37} -11.0754 q^{41} -9.70199 q^{43} -0.627861i q^{47} -2.92070 q^{49} +9.54695 q^{53} +(5.29774 - 1.12228i) q^{55} -10.1066i q^{59} +12.7235i q^{61} +(1.44701 + 6.83059i) q^{65} -10.5125 q^{67} +7.39000 q^{71} +5.73160i q^{73} -7.62797 q^{77} -11.2071 q^{79} -3.12640 q^{83} +(15.6450 - 3.31426i) q^{85} -15.9470 q^{89} -9.83507i q^{91} +(-5.13246 + 1.08727i) q^{95} -14.6589i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{5} - 22 q^{25} + 2 q^{35} - 44 q^{49} + 96 q^{53} - 34 q^{55} - 12 q^{77} - 4 q^{79} - 64 q^{83}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.463409 + 2.18752i 0.207243 + 0.978290i
\(6\) 0 0
\(7\) 3.14971i 1.19048i −0.803548 0.595240i \(-0.797057\pi\)
0.803548 0.595240i \(-0.202943\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.42180i 0.730199i −0.930968 0.365100i \(-0.881035\pi\)
0.930968 0.365100i \(-0.118965\pi\)
\(12\) 0 0
\(13\) 3.12253 0.866033 0.433016 0.901386i \(-0.357449\pi\)
0.433016 + 0.901386i \(0.357449\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.15192i 1.73460i −0.497790 0.867298i \(-0.665855\pi\)
0.497790 0.867298i \(-0.334145\pi\)
\(18\) 0 0
\(19\) 2.34624i 0.538265i 0.963103 + 0.269133i \(0.0867370\pi\)
−0.963103 + 0.269133i \(0.913263\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.28934i 0.268846i −0.990924 0.134423i \(-0.957082\pi\)
0.990924 0.134423i \(-0.0429182\pi\)
\(24\) 0 0
\(25\) −4.57050 + 2.02743i −0.914101 + 0.405487i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.21495i 0.782697i −0.920242 0.391349i \(-0.872009\pi\)
0.920242 0.391349i \(-0.127991\pi\)
\(30\) 0 0
\(31\) −3.05999 −0.549590 −0.274795 0.961503i \(-0.588610\pi\)
−0.274795 + 0.961503i \(0.588610\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.89007 1.45960i 1.16463 0.246718i
\(36\) 0 0
\(37\) −1.37346 −0.225795 −0.112898 0.993607i \(-0.536013\pi\)
−0.112898 + 0.993607i \(0.536013\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0754 −1.72969 −0.864847 0.502035i \(-0.832585\pi\)
−0.864847 + 0.502035i \(0.832585\pi\)
\(42\) 0 0
\(43\) −9.70199 −1.47954 −0.739770 0.672860i \(-0.765066\pi\)
−0.739770 + 0.672860i \(0.765066\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.627861i 0.0915829i −0.998951 0.0457915i \(-0.985419\pi\)
0.998951 0.0457915i \(-0.0145810\pi\)
\(48\) 0 0
\(49\) −2.92070 −0.417243
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.54695 1.31137 0.655687 0.755033i \(-0.272379\pi\)
0.655687 + 0.755033i \(0.272379\pi\)
\(54\) 0 0
\(55\) 5.29774 1.12228i 0.714347 0.151328i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.1066i 1.31577i −0.753117 0.657887i \(-0.771451\pi\)
0.753117 0.657887i \(-0.228549\pi\)
\(60\) 0 0
\(61\) 12.7235i 1.62908i 0.580106 + 0.814541i \(0.303011\pi\)
−0.580106 + 0.814541i \(0.696989\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.44701 + 6.83059i 0.179479 + 0.847231i
\(66\) 0 0
\(67\) −10.5125 −1.28431 −0.642155 0.766575i \(-0.721959\pi\)
−0.642155 + 0.766575i \(0.721959\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.39000 0.877031 0.438516 0.898724i \(-0.355504\pi\)
0.438516 + 0.898724i \(0.355504\pi\)
\(72\) 0 0
\(73\) 5.73160i 0.670833i 0.942070 + 0.335417i \(0.108877\pi\)
−0.942070 + 0.335417i \(0.891123\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.62797 −0.869288
\(78\) 0 0
\(79\) −11.2071 −1.26090 −0.630449 0.776230i \(-0.717129\pi\)
−0.630449 + 0.776230i \(0.717129\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.12640 −0.343167 −0.171584 0.985170i \(-0.554888\pi\)
−0.171584 + 0.985170i \(0.554888\pi\)
\(84\) 0 0
\(85\) 15.6450 3.31426i 1.69694 0.359482i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.9470 −1.69038 −0.845192 0.534464i \(-0.820514\pi\)
−0.845192 + 0.534464i \(0.820514\pi\)
\(90\) 0 0
\(91\) 9.83507i 1.03100i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.13246 + 1.08727i −0.526579 + 0.111551i
\(96\) 0 0
\(97\) 14.6589i 1.48839i −0.667963 0.744194i \(-0.732834\pi\)
0.667963 0.744194i \(-0.267166\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.22901i 0.619810i −0.950768 0.309905i \(-0.899703\pi\)
0.950768 0.309905i \(-0.100297\pi\)
\(102\) 0 0
\(103\) 10.6041i 1.04485i 0.852686 + 0.522424i \(0.174972\pi\)
−0.852686 + 0.522424i \(0.825028\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.62797 −0.157382 −0.0786910 0.996899i \(-0.525074\pi\)
−0.0786910 + 0.996899i \(0.525074\pi\)
\(108\) 0 0
\(109\) 1.56551i 0.149949i 0.997185 + 0.0749743i \(0.0238875\pi\)
−0.997185 + 0.0749743i \(0.976113\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.57935i 0.807077i 0.914963 + 0.403538i \(0.132220\pi\)
−0.914963 + 0.403538i \(0.867780\pi\)
\(114\) 0 0
\(115\) 2.82046 0.597492i 0.263010 0.0557164i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −22.5265 −2.06500
\(120\) 0 0
\(121\) 5.13490 0.466809
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.55307 9.05855i −0.586124 0.810221i
\(126\) 0 0
\(127\) 10.7524i 0.954124i −0.878870 0.477062i \(-0.841702\pi\)
0.878870 0.477062i \(-0.158298\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.2083i 1.06664i −0.845913 0.533321i \(-0.820944\pi\)
0.845913 0.533321i \(-0.179056\pi\)
\(132\) 0 0
\(133\) 7.39000 0.640794
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.44288i 0.635888i −0.948110 0.317944i \(-0.897008\pi\)
0.948110 0.317944i \(-0.102992\pi\)
\(138\) 0 0
\(139\) 10.1260i 0.858878i 0.903096 + 0.429439i \(0.141289\pi\)
−0.903096 + 0.429439i \(0.858711\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.56213i 0.632377i
\(144\) 0 0
\(145\) 9.22031 1.95325i 0.765705 0.162208i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.6233i 0.952217i −0.879386 0.476109i \(-0.842047\pi\)
0.879386 0.476109i \(-0.157953\pi\)
\(150\) 0 0
\(151\) 10.0529 0.818094 0.409047 0.912513i \(-0.365861\pi\)
0.409047 + 0.912513i \(0.365861\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.41803 6.69379i −0.113899 0.537658i
\(156\) 0 0
\(157\) 13.3874 1.06843 0.534217 0.845347i \(-0.320606\pi\)
0.534217 + 0.845347i \(0.320606\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.06106 −0.320056
\(162\) 0 0
\(163\) 1.37346 0.107578 0.0537888 0.998552i \(-0.482870\pi\)
0.0537888 + 0.998552i \(0.482870\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.3227i 1.10832i 0.832410 + 0.554161i \(0.186961\pi\)
−0.832410 + 0.554161i \(0.813039\pi\)
\(168\) 0 0
\(169\) −3.24983 −0.249987
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.96953 −0.301798 −0.150899 0.988549i \(-0.548217\pi\)
−0.150899 + 0.988549i \(0.548217\pi\)
\(174\) 0 0
\(175\) 6.38584 + 14.3958i 0.482724 + 1.08822i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.3491i 0.848273i −0.905598 0.424137i \(-0.860578\pi\)
0.905598 0.424137i \(-0.139422\pi\)
\(180\) 0 0
\(181\) 15.5324i 1.15452i −0.816561 0.577259i \(-0.804122\pi\)
0.816561 0.577259i \(-0.195878\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.636473 3.00447i −0.0467944 0.220893i
\(186\) 0 0
\(187\) −17.3205 −1.26660
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −27.0225 −1.95528 −0.977639 0.210288i \(-0.932560\pi\)
−0.977639 + 0.210288i \(0.932560\pi\)
\(192\) 0 0
\(193\) 8.40105i 0.604721i 0.953194 + 0.302360i \(0.0977746\pi\)
−0.953194 + 0.302360i \(0.902225\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.4003 0.740989 0.370494 0.928835i \(-0.379188\pi\)
0.370494 + 0.928835i \(0.379188\pi\)
\(198\) 0 0
\(199\) 13.5659 0.961665 0.480832 0.876813i \(-0.340335\pi\)
0.480832 + 0.876813i \(0.340335\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −13.2759 −0.931786
\(204\) 0 0
\(205\) −5.13246 24.2278i −0.358466 1.69214i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.68213 0.393041
\(210\) 0 0
\(211\) 24.5868i 1.69262i −0.532688 0.846312i \(-0.678818\pi\)
0.532688 0.846312i \(-0.321182\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.49599 21.2233i −0.306624 1.44742i
\(216\) 0 0
\(217\) 9.63809i 0.654276i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.3321i 1.50222i
\(222\) 0 0
\(223\) 10.6041i 0.710100i −0.934847 0.355050i \(-0.884464\pi\)
0.934847 0.355050i \(-0.115536\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.5958 0.836011 0.418006 0.908444i \(-0.362729\pi\)
0.418006 + 0.908444i \(0.362729\pi\)
\(228\) 0 0
\(229\) 9.75550i 0.644661i 0.946627 + 0.322331i \(0.104466\pi\)
−0.946627 + 0.322331i \(0.895534\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.25572i 0.0822651i −0.999154 0.0411325i \(-0.986903\pi\)
0.999154 0.0411325i \(-0.0130966\pi\)
\(234\) 0 0
\(235\) 1.37346 0.290956i 0.0895946 0.0189799i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.89401 0.187198 0.0935990 0.995610i \(-0.470163\pi\)
0.0935990 + 0.995610i \(0.470163\pi\)
\(240\) 0 0
\(241\) 22.4166 1.44398 0.721990 0.691903i \(-0.243228\pi\)
0.721990 + 0.691903i \(0.243228\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.35348 6.38910i −0.0864706 0.408185i
\(246\) 0 0
\(247\) 7.32621i 0.466155i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.2787i 0.775023i 0.921865 + 0.387512i \(0.126665\pi\)
−0.921865 + 0.387512i \(0.873335\pi\)
\(252\) 0 0
\(253\) −3.12253 −0.196312
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.1354i 1.00650i −0.864141 0.503250i \(-0.832138\pi\)
0.864141 0.503250i \(-0.167862\pi\)
\(258\) 0 0
\(259\) 4.32600i 0.268805i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.20982i 0.321251i −0.987015 0.160626i \(-0.948649\pi\)
0.987015 0.160626i \(-0.0513512\pi\)
\(264\) 0 0
\(265\) 4.42414 + 20.8842i 0.271773 + 1.28290i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.1171i 1.10462i −0.833639 0.552310i \(-0.813747\pi\)
0.833639 0.552310i \(-0.186253\pi\)
\(270\) 0 0
\(271\) −25.1014 −1.52480 −0.762402 0.647104i \(-0.775980\pi\)
−0.762402 + 0.647104i \(0.775980\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.91003 + 11.0688i 0.296086 + 0.667476i
\(276\) 0 0
\(277\) −23.9000 −1.43601 −0.718005 0.696038i \(-0.754944\pi\)
−0.718005 + 0.696038i \(0.754944\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.8411 1.12396 0.561982 0.827150i \(-0.310039\pi\)
0.561982 + 0.827150i \(0.310039\pi\)
\(282\) 0 0
\(283\) 30.4794 1.81181 0.905907 0.423477i \(-0.139190\pi\)
0.905907 + 0.423477i \(0.139190\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34.8845i 2.05917i
\(288\) 0 0
\(289\) −34.1499 −2.00882
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.6233 1.38009 0.690043 0.723768i \(-0.257592\pi\)
0.690043 + 0.723768i \(0.257592\pi\)
\(294\) 0 0
\(295\) 22.1085 4.68351i 1.28721 0.272684i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.02601i 0.232830i
\(300\) 0 0
\(301\) 30.5585i 1.76136i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −27.8330 + 5.89620i −1.59371 + 0.337615i
\(306\) 0 0
\(307\) 9.13906 0.521594 0.260797 0.965394i \(-0.416015\pi\)
0.260797 + 0.965394i \(0.416015\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −29.5409 −1.67511 −0.837555 0.546353i \(-0.816016\pi\)
−0.837555 + 0.546353i \(0.816016\pi\)
\(312\) 0 0
\(313\) 11.6116i 0.656325i −0.944621 0.328163i \(-0.893571\pi\)
0.944621 0.328163i \(-0.106429\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.8869 1.34162 0.670812 0.741628i \(-0.265946\pi\)
0.670812 + 0.741628i \(0.265946\pi\)
\(318\) 0 0
\(319\) −10.2078 −0.571525
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.7801 0.933672
\(324\) 0 0
\(325\) −14.2715 + 6.33071i −0.791642 + 0.351165i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.97758 −0.109028
\(330\) 0 0
\(331\) 10.1260i 0.556577i −0.960498 0.278288i \(-0.910233\pi\)
0.960498 0.278288i \(-0.0897671\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.87159 22.9964i −0.266164 1.25643i
\(336\) 0 0
\(337\) 1.55511i 0.0847123i −0.999103 0.0423561i \(-0.986514\pi\)
0.999103 0.0423561i \(-0.0134864\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.41068i 0.401311i
\(342\) 0 0
\(343\) 12.8486i 0.693760i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.3552 0.824310 0.412155 0.911114i \(-0.364776\pi\)
0.412155 + 0.911114i \(0.364776\pi\)
\(348\) 0 0
\(349\) 3.28995i 0.176107i 0.996116 + 0.0880536i \(0.0280647\pi\)
−0.996116 + 0.0880536i \(0.971935\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.75322i 0.252989i −0.991967 0.126494i \(-0.959627\pi\)
0.991967 0.126494i \(-0.0403725\pi\)
\(354\) 0 0
\(355\) 3.42459 + 16.1658i 0.181758 + 0.857990i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.76560 0.409853 0.204926 0.978777i \(-0.434304\pi\)
0.204926 + 0.978777i \(0.434304\pi\)
\(360\) 0 0
\(361\) 13.4951 0.710271
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.5380 + 2.65607i −0.656269 + 0.139025i
\(366\) 0 0
\(367\) 16.8214i 0.878068i −0.898471 0.439034i \(-0.855321\pi\)
0.898471 0.439034i \(-0.144679\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 30.0702i 1.56117i
\(372\) 0 0
\(373\) 5.99745 0.310536 0.155268 0.987872i \(-0.450376\pi\)
0.155268 + 0.987872i \(0.450376\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.1613i 0.677842i
\(378\) 0 0
\(379\) 22.3073i 1.14585i 0.819608 + 0.572925i \(0.194192\pi\)
−0.819608 + 0.572925i \(0.805808\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 38.3484i 1.95951i −0.200198 0.979756i \(-0.564158\pi\)
0.200198 0.979756i \(-0.435842\pi\)
\(384\) 0 0
\(385\) −3.53487 16.6864i −0.180154 0.850415i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.2044i 0.872298i 0.899874 + 0.436149i \(0.143658\pi\)
−0.899874 + 0.436149i \(0.856342\pi\)
\(390\) 0 0
\(391\) −9.22127 −0.466340
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.19347 24.5158i −0.261312 1.23352i
\(396\) 0 0
\(397\) −12.0140 −0.602965 −0.301482 0.953472i \(-0.597481\pi\)
−0.301482 + 0.953472i \(0.597481\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.7576 −0.836833 −0.418417 0.908255i \(-0.637415\pi\)
−0.418417 + 0.908255i \(0.637415\pi\)
\(402\) 0 0
\(403\) −9.55490 −0.475963
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.32624i 0.164876i
\(408\) 0 0
\(409\) −33.7162 −1.66716 −0.833580 0.552399i \(-0.813712\pi\)
−0.833580 + 0.552399i \(0.813712\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −31.8331 −1.56640
\(414\) 0 0
\(415\) −1.44880 6.83908i −0.0711189 0.335717i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 25.1125i 1.22683i 0.789762 + 0.613413i \(0.210204\pi\)
−0.789762 + 0.613413i \(0.789796\pi\)
\(420\) 0 0
\(421\) 19.7185i 0.961023i −0.876988 0.480511i \(-0.840451\pi\)
0.876988 0.480511i \(-0.159549\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.5000 + 32.6879i 0.703355 + 1.58560i
\(426\) 0 0
\(427\) 40.0755 1.93939
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.2536 1.02375 0.511874 0.859061i \(-0.328951\pi\)
0.511874 + 0.859061i \(0.328951\pi\)
\(432\) 0 0
\(433\) 33.7002i 1.61953i −0.586757 0.809763i \(-0.699596\pi\)
0.586757 0.809763i \(-0.300404\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.02511 0.144711
\(438\) 0 0
\(439\) −25.1313 −1.19945 −0.599725 0.800206i \(-0.704723\pi\)
−0.599725 + 0.800206i \(0.704723\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.5894 0.978230 0.489115 0.872219i \(-0.337320\pi\)
0.489115 + 0.872219i \(0.337320\pi\)
\(444\) 0 0
\(445\) −7.39000 34.8845i −0.350319 1.65368i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.09787 −0.429355 −0.214677 0.976685i \(-0.568870\pi\)
−0.214677 + 0.976685i \(0.568870\pi\)
\(450\) 0 0
\(451\) 26.8225i 1.26302i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 21.5144 4.55765i 1.00861 0.213666i
\(456\) 0 0
\(457\) 7.10221i 0.332228i 0.986107 + 0.166114i \(0.0531219\pi\)
−0.986107 + 0.166114i \(0.946878\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.20090i 0.102506i −0.998686 0.0512530i \(-0.983679\pi\)
0.998686 0.0512530i \(-0.0163215\pi\)
\(462\) 0 0
\(463\) 28.7916i 1.33806i 0.743236 + 0.669029i \(0.233290\pi\)
−0.743236 + 0.669029i \(0.766710\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −37.9504 −1.75613 −0.878067 0.478538i \(-0.841167\pi\)
−0.878067 + 0.478538i \(0.841167\pi\)
\(468\) 0 0
\(469\) 33.1114i 1.52894i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 23.4963i 1.08036i
\(474\) 0 0
\(475\) −4.75685 10.7235i −0.218259 0.492029i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.49599 0.205427 0.102713 0.994711i \(-0.467248\pi\)
0.102713 + 0.994711i \(0.467248\pi\)
\(480\) 0 0
\(481\) −4.28866 −0.195546
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 32.0667 6.79307i 1.45607 0.308457i
\(486\) 0 0
\(487\) 38.9154i 1.76342i 0.471789 + 0.881712i \(0.343609\pi\)
−0.471789 + 0.881712i \(0.656391\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.19054i 0.189117i −0.995519 0.0945583i \(-0.969856\pi\)
0.995519 0.0945583i \(-0.0301439\pi\)
\(492\) 0 0
\(493\) −30.1450 −1.35766
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.2764i 1.04409i
\(498\) 0 0
\(499\) 37.4693i 1.67735i 0.544629 + 0.838677i \(0.316670\pi\)
−0.544629 + 0.838677i \(0.683330\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.8317i 0.705900i 0.935642 + 0.352950i \(0.114821\pi\)
−0.935642 + 0.352950i \(0.885179\pi\)
\(504\) 0 0
\(505\) 13.6261 2.88658i 0.606354 0.128451i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.8382i 0.702018i 0.936372 + 0.351009i \(0.114161\pi\)
−0.936372 + 0.351009i \(0.885839\pi\)
\(510\) 0 0
\(511\) 18.0529 0.798614
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −23.1966 + 4.91401i −1.02216 + 0.216537i
\(516\) 0 0
\(517\) −1.52055 −0.0668738
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.08348 −0.0912788 −0.0456394 0.998958i \(-0.514533\pi\)
−0.0456394 + 0.998958i \(0.514533\pi\)
\(522\) 0 0
\(523\) −13.8224 −0.604410 −0.302205 0.953243i \(-0.597723\pi\)
−0.302205 + 0.953243i \(0.597723\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.8848i 0.953317i
\(528\) 0 0
\(529\) 21.3376 0.927722
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −34.5834 −1.49797
\(534\) 0 0
\(535\) −0.754416 3.56122i −0.0326163 0.153965i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.07335i 0.304671i
\(540\) 0 0
\(541\) 6.68097i 0.287238i −0.989633 0.143619i \(-0.954126\pi\)
0.989633 0.143619i \(-0.0458739\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.42459 + 0.725471i −0.146693 + 0.0310758i
\(546\) 0 0
\(547\) 18.9416 0.809883 0.404941 0.914343i \(-0.367292\pi\)
0.404941 + 0.914343i \(0.367292\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.88931 0.421299
\(552\) 0 0
\(553\) 35.2992i 1.50108i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −33.0653 −1.40102 −0.700511 0.713642i \(-0.747044\pi\)
−0.700511 + 0.713642i \(0.747044\pi\)
\(558\) 0 0
\(559\) −30.2947 −1.28133
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.95023 −0.124337 −0.0621686 0.998066i \(-0.519802\pi\)
−0.0621686 + 0.998066i \(0.519802\pi\)
\(564\) 0 0
\(565\) −18.7675 + 3.97574i −0.789555 + 0.167261i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.78811 −0.116884 −0.0584419 0.998291i \(-0.518613\pi\)
−0.0584419 + 0.998291i \(0.518613\pi\)
\(570\) 0 0
\(571\) 15.0427i 0.629516i −0.949172 0.314758i \(-0.898077\pi\)
0.949172 0.314758i \(-0.101923\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.61406 + 5.89295i 0.109014 + 0.245753i
\(576\) 0 0
\(577\) 23.1614i 0.964220i −0.876111 0.482110i \(-0.839871\pi\)
0.876111 0.482110i \(-0.160129\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.84728i 0.408534i
\(582\) 0 0
\(583\) 23.1208i 0.957565i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.0705 −0.580751 −0.290376 0.956913i \(-0.593780\pi\)
−0.290376 + 0.956913i \(0.593780\pi\)
\(588\) 0 0
\(589\) 7.17948i 0.295825i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.42743i 0.0586174i −0.999570 0.0293087i \(-0.990669\pi\)
0.999570 0.0293087i \(-0.00933058\pi\)
\(594\) 0 0
\(595\) −10.4390 49.2772i −0.427956 2.02017i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.6469 1.08876 0.544381 0.838838i \(-0.316765\pi\)
0.544381 + 0.838838i \(0.316765\pi\)
\(600\) 0 0
\(601\) −19.8748 −0.810710 −0.405355 0.914159i \(-0.632852\pi\)
−0.405355 + 0.914159i \(0.632852\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.37955 + 11.2327i 0.0967427 + 0.456674i
\(606\) 0 0
\(607\) 20.7546i 0.842403i 0.906967 + 0.421202i \(0.138391\pi\)
−0.906967 + 0.421202i \(0.861609\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.96051i 0.0793138i
\(612\) 0 0
\(613\) −19.4040 −0.783719 −0.391860 0.920025i \(-0.628168\pi\)
−0.391860 + 0.920025i \(0.628168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.5389i 1.55152i −0.631029 0.775759i \(-0.717367\pi\)
0.631029 0.775759i \(-0.282633\pi\)
\(618\) 0 0
\(619\) 14.4520i 0.580876i 0.956894 + 0.290438i \(0.0938010\pi\)
−0.956894 + 0.290438i \(0.906199\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 50.2286i 2.01237i
\(624\) 0 0
\(625\) 16.7790 18.5328i 0.671161 0.741311i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.82287i 0.391663i
\(630\) 0 0
\(631\) 40.5922 1.61595 0.807974 0.589218i \(-0.200564\pi\)
0.807974 + 0.589218i \(0.200564\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.5212 4.98277i 0.933410 0.197735i
\(636\) 0 0
\(637\) −9.11997 −0.361346
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.8860 −0.469468 −0.234734 0.972060i \(-0.575422\pi\)
−0.234734 + 0.972060i \(0.575422\pi\)
\(642\) 0 0
\(643\) 29.5630 1.16585 0.582925 0.812526i \(-0.301908\pi\)
0.582925 + 0.812526i \(0.301908\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.5816i 0.533949i 0.963704 + 0.266974i \(0.0860239\pi\)
−0.963704 + 0.266974i \(0.913976\pi\)
\(648\) 0 0
\(649\) −24.4763 −0.960777
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.80243 −0.109667 −0.0548337 0.998496i \(-0.517463\pi\)
−0.0548337 + 0.998496i \(0.517463\pi\)
\(654\) 0 0
\(655\) 26.7058 5.65741i 1.04348 0.221053i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.0288607i 0.00112425i −1.00000 0.000562127i \(-0.999821\pi\)
1.00000 0.000562127i \(-0.000178931\pi\)
\(660\) 0 0
\(661\) 2.35497i 0.0915977i 0.998951 + 0.0457989i \(0.0145833\pi\)
−0.998951 + 0.0457989i \(0.985417\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.42459 + 16.1658i 0.132800 + 0.626882i
\(666\) 0 0
\(667\) −5.43452 −0.210425
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 30.8138 1.18956
\(672\) 0 0
\(673\) 39.6306i 1.52765i −0.645425 0.763823i \(-0.723320\pi\)
0.645425 0.763823i \(-0.276680\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.57428 −0.0989377 −0.0494688 0.998776i \(-0.515753\pi\)
−0.0494688 + 0.998776i \(0.515753\pi\)
\(678\) 0 0
\(679\) −46.1714 −1.77190
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.26099 0.163042 0.0815211 0.996672i \(-0.474022\pi\)
0.0815211 + 0.996672i \(0.474022\pi\)
\(684\) 0 0
\(685\) 16.2815 3.44909i 0.622082 0.131783i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.8106 1.13569
\(690\) 0 0
\(691\) 32.7768i 1.24689i −0.781868 0.623443i \(-0.785733\pi\)
0.781868 0.623443i \(-0.214267\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.1509 + 4.69249i −0.840231 + 0.177996i
\(696\) 0 0
\(697\) 79.2107i 3.00032i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 33.0385i 1.24785i 0.781486 + 0.623923i \(0.214462\pi\)
−0.781486 + 0.623923i \(0.785538\pi\)
\(702\) 0 0
\(703\) 3.22247i 0.121538i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.6196 −0.737872
\(708\) 0 0
\(709\) 26.3511i 0.989637i 0.868996 + 0.494818i \(0.164765\pi\)
−0.868996 + 0.494818i \(0.835235\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.94537i 0.147755i
\(714\) 0 0
\(715\) 16.5423 3.50435i 0.618648 0.131055i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.7800 −0.551201 −0.275600 0.961272i \(-0.588877\pi\)
−0.275600 + 0.961272i \(0.588877\pi\)
\(720\) 0 0
\(721\) 33.3998 1.24387
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 8.54554 + 19.2645i 0.317373 + 0.715465i
\(726\) 0 0
\(727\) 10.7322i 0.398035i −0.979996 0.199018i \(-0.936225\pi\)
0.979996 0.199018i \(-0.0637751\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 69.3878i 2.56640i
\(732\) 0 0
\(733\) 20.7774 0.767432 0.383716 0.923451i \(-0.374644\pi\)
0.383716 + 0.923451i \(0.374644\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.4592i 0.937802i
\(738\) 0 0
\(739\) 14.7167i 0.541363i −0.962669 0.270682i \(-0.912751\pi\)
0.962669 0.270682i \(-0.0872490\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.2244i 0.375098i −0.982255 0.187549i \(-0.939946\pi\)
0.982255 0.187549i \(-0.0600543\pi\)
\(744\) 0 0
\(745\) 25.4262 5.38633i 0.931544 0.197340i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.12765i 0.187360i
\(750\) 0 0
\(751\) 45.7533 1.66956 0.834780 0.550584i \(-0.185595\pi\)
0.834780 + 0.550584i \(0.185595\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.65860 + 21.9910i 0.169544 + 0.800333i
\(756\) 0 0
\(757\) 54.8143 1.99226 0.996130 0.0878903i \(-0.0280125\pi\)
0.996130 + 0.0878903i \(0.0280125\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.3179 0.845275 0.422637 0.906299i \(-0.361104\pi\)
0.422637 + 0.906299i \(0.361104\pi\)
\(762\) 0 0
\(763\) 4.93091 0.178511
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 31.5583i 1.13950i
\(768\) 0 0
\(769\) −9.56833 −0.345043 −0.172521 0.985006i \(-0.555191\pi\)
−0.172521 + 0.985006i \(0.555191\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.8294 0.821117 0.410559 0.911834i \(-0.365334\pi\)
0.410559 + 0.911834i \(0.365334\pi\)
\(774\) 0 0
\(775\) 13.9857 6.20392i 0.502381 0.222852i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25.9857i 0.931034i
\(780\) 0 0
\(781\) 17.8971i 0.640408i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.20386 + 29.2853i 0.221425 + 1.04524i
\(786\) 0 0
\(787\) 23.6303 0.842328 0.421164 0.906985i \(-0.361622\pi\)
0.421164 + 0.906985i \(0.361622\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27.0225 0.960809
\(792\) 0 0
\(793\) 39.7296i 1.41084i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15.5592 0.551134 0.275567 0.961282i \(-0.411134\pi\)
0.275567 + 0.961282i \(0.411134\pi\)
\(798\) 0 0
\(799\) −4.49041 −0.158859
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.8808 0.489842
\(804\) 0 0
\(805\) −1.88193 8.88366i −0.0663293 0.313108i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.3484 0.434146 0.217073 0.976155i \(-0.430349\pi\)
0.217073 + 0.976155i \(0.430349\pi\)
\(810\) 0 0
\(811\) 36.9485i 1.29744i 0.761028 + 0.648719i \(0.224695\pi\)
−0.761028 + 0.648719i \(0.775305\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.636473 + 3.00447i 0.0222947 + 0.105242i
\(816\) 0 0
\(817\) 22.7632i 0.796384i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.1482i 0.354175i 0.984195 + 0.177087i \(0.0566675\pi\)
−0.984195 + 0.177087i \(0.943332\pi\)
\(822\) 0 0
\(823\) 21.0044i 0.732166i −0.930582 0.366083i \(-0.880699\pi\)
0.930582 0.366083i \(-0.119301\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.54049 0.0535682 0.0267841 0.999641i \(-0.491473\pi\)
0.0267841 + 0.999641i \(0.491473\pi\)
\(828\) 0 0
\(829\) 6.68097i 0.232040i 0.993247 + 0.116020i \(0.0370136\pi\)
−0.993247 + 0.116020i \(0.962986\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 20.8886i 0.723748i
\(834\) 0 0
\(835\) −31.3312 + 6.63725i −1.08426 + 0.229691i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 33.1670 1.14505 0.572527 0.819886i \(-0.305963\pi\)
0.572527 + 0.819886i \(0.305963\pi\)
\(840\) 0 0
\(841\) 11.2342 0.387385
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.50600 7.10907i −0.0518079 0.244560i
\(846\) 0 0
\(847\) 16.1735i 0.555727i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.77086i 0.0607043i
\(852\) 0 0
\(853\) −41.5549 −1.42281 −0.711406 0.702781i \(-0.751941\pi\)
−0.711406 + 0.702781i \(0.751941\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.4225i 1.38081i −0.723425 0.690403i \(-0.757433\pi\)
0.723425 0.690403i \(-0.242567\pi\)
\(858\) 0 0
\(859\) 27.9251i 0.952794i 0.879230 + 0.476397i \(0.158057\pi\)
−0.879230 + 0.476397i \(0.841943\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38.4008i 1.30718i −0.756849 0.653590i \(-0.773262\pi\)
0.756849 0.653590i \(-0.226738\pi\)
\(864\) 0 0
\(865\) −1.83952 8.68344i −0.0625454 0.295246i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 27.1414i 0.920708i
\(870\) 0 0
\(871\) −32.8256 −1.11225
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −28.5318 + 20.6403i −0.964553 + 0.697769i
\(876\) 0 0
\(877\) 21.1530 0.714288 0.357144 0.934049i \(-0.383751\pi\)
0.357144 + 0.934049i \(0.383751\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 33.9776 1.14473 0.572367 0.819998i \(-0.306025\pi\)
0.572367 + 0.819998i \(0.306025\pi\)
\(882\) 0 0
\(883\) −14.5736 −0.490440 −0.245220 0.969467i \(-0.578860\pi\)
−0.245220 + 0.969467i \(0.578860\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.3962i 0.819146i 0.912277 + 0.409573i \(0.134322\pi\)
−0.912277 + 0.409573i \(0.865678\pi\)
\(888\) 0 0
\(889\) −33.8671 −1.13587
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.47311 0.0492959
\(894\) 0 0
\(895\) 24.8264 5.25928i 0.829857 0.175798i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.8977i 0.430163i
\(900\) 0 0
\(901\) 68.2790i 2.27470i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 33.9776 7.19787i 1.12945 0.239265i
\(906\) 0 0
\(907\) −24.7326 −0.821233 −0.410616 0.911808i \(-0.634686\pi\)
−0.410616 + 0.911808i \(0.634686\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.3757 0.973260 0.486630 0.873608i \(-0.338226\pi\)
0.486630 + 0.873608i \(0.338226\pi\)
\(912\) 0 0
\(913\) 7.57152i 0.250581i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38.4526 −1.26982
\(918\) 0 0
\(919\) −18.4626 −0.609026 −0.304513 0.952508i \(-0.598494\pi\)
−0.304513 + 0.952508i \(0.598494\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23.0755 0.759538
\(924\) 0 0
\(925\) 6.27740 2.78460i 0.206400 0.0915570i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 45.4688 1.49178 0.745892 0.666067i \(-0.232023\pi\)
0.745892 + 0.666067i \(0.232023\pi\)
\(930\) 0 0
\(931\) 6.85268i 0.224588i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.02647 37.8890i −0.262494 1.23910i
\(936\) 0 0
\(937\) 5.96656i 0.194919i 0.995239 + 0.0974595i \(0.0310716\pi\)
−0.995239 + 0.0974595i \(0.968928\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.2275i 0.366006i 0.983112 + 0.183003i \(0.0585818\pi\)
−0.983112 + 0.183003i \(0.941418\pi\)
\(942\) 0 0
\(943\) 14.2800i 0.465022i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.1571 1.07746 0.538731 0.842478i \(-0.318904\pi\)
0.538731 + 0.842478i \(0.318904\pi\)
\(948\) 0 0
\(949\) 17.8971i 0.580964i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.07923i 0.294105i −0.989129 0.147053i \(-0.953021\pi\)
0.989129 0.147053i \(-0.0469786\pi\)
\(954\) 0 0
\(955\) −12.5225 59.1123i −0.405217 1.91283i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −23.4429 −0.757012
\(960\) 0 0
\(961\) −21.6365 −0.697950
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −18.3775 + 3.89312i −0.591592 + 0.125324i
\(966\) 0 0
\(967\) 41.4918i 1.33429i 0.744929 + 0.667144i \(0.232483\pi\)
−0.744929 + 0.667144i \(0.767517\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50.8245i 1.63104i 0.578731 + 0.815519i \(0.303548\pi\)
−0.578731 + 0.815519i \(0.696452\pi\)
\(972\) 0 0
\(973\) 31.8941 1.02248
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.25072i 0.263964i −0.991252 0.131982i \(-0.957866\pi\)
0.991252 0.131982i \(-0.0421341\pi\)
\(978\) 0 0
\(979\) 38.6205i 1.23432i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.5792i 0.528796i −0.964414 0.264398i \(-0.914827\pi\)
0.964414 0.264398i \(-0.0851732\pi\)
\(984\) 0 0
\(985\) 4.81958 + 22.7508i 0.153564 + 0.724902i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.5092i 0.397769i
\(990\) 0 0
\(991\) 15.3390 0.487260 0.243630 0.969868i \(-0.421662\pi\)
0.243630 + 0.969868i \(0.421662\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.28658 + 29.6758i 0.199298 + 0.940786i
\(996\) 0 0
\(997\) 40.0534 1.26850 0.634252 0.773126i \(-0.281308\pi\)
0.634252 + 0.773126i \(0.281308\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.d.g.3889.12 16
3.2 odd 2 4320.2.d.h.3889.6 16
4.3 odd 2 1080.2.d.g.109.16 yes 16
5.4 even 2 4320.2.d.h.3889.7 16
8.3 odd 2 1080.2.d.h.109.3 yes 16
8.5 even 2 4320.2.d.h.3889.5 16
12.11 even 2 1080.2.d.h.109.1 yes 16
15.14 odd 2 inner 4320.2.d.g.3889.9 16
20.19 odd 2 1080.2.d.h.109.2 yes 16
24.5 odd 2 inner 4320.2.d.g.3889.11 16
24.11 even 2 1080.2.d.g.109.14 yes 16
40.19 odd 2 1080.2.d.g.109.13 16
40.29 even 2 inner 4320.2.d.g.3889.10 16
60.59 even 2 1080.2.d.g.109.15 yes 16
120.29 odd 2 4320.2.d.h.3889.8 16
120.59 even 2 1080.2.d.h.109.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.d.g.109.13 16 40.19 odd 2
1080.2.d.g.109.14 yes 16 24.11 even 2
1080.2.d.g.109.15 yes 16 60.59 even 2
1080.2.d.g.109.16 yes 16 4.3 odd 2
1080.2.d.h.109.1 yes 16 12.11 even 2
1080.2.d.h.109.2 yes 16 20.19 odd 2
1080.2.d.h.109.3 yes 16 8.3 odd 2
1080.2.d.h.109.4 yes 16 120.59 even 2
4320.2.d.g.3889.9 16 15.14 odd 2 inner
4320.2.d.g.3889.10 16 40.29 even 2 inner
4320.2.d.g.3889.11 16 24.5 odd 2 inner
4320.2.d.g.3889.12 16 1.1 even 1 trivial
4320.2.d.h.3889.5 16 8.5 even 2
4320.2.d.h.3889.6 16 3.2 odd 2
4320.2.d.h.3889.7 16 5.4 even 2
4320.2.d.h.3889.8 16 120.29 odd 2