Properties

Label 4334.2.a.b.1.3
Level $4334$
Weight $2$
Character 4334.1
Self dual yes
Analytic conductor $34.607$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6071642360\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 6 x^{14} - 8 x^{13} + 94 x^{12} - 13 x^{11} - 582 x^{10} + 295 x^{9} + 1814 x^{8} - 1056 x^{7} + \cdots - 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.55193\) of defining polynomial
Character \(\chi\) \(=\) 4334.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.55193 q^{3} +1.00000 q^{4} -3.59659 q^{5} -2.55193 q^{6} -3.65108 q^{7} +1.00000 q^{8} +3.51234 q^{9} -3.59659 q^{10} +1.00000 q^{11} -2.55193 q^{12} -1.76088 q^{13} -3.65108 q^{14} +9.17824 q^{15} +1.00000 q^{16} +5.45317 q^{17} +3.51234 q^{18} -3.47915 q^{19} -3.59659 q^{20} +9.31729 q^{21} +1.00000 q^{22} +1.38562 q^{23} -2.55193 q^{24} +7.93544 q^{25} -1.76088 q^{26} -1.30746 q^{27} -3.65108 q^{28} +4.84019 q^{29} +9.17824 q^{30} +5.30041 q^{31} +1.00000 q^{32} -2.55193 q^{33} +5.45317 q^{34} +13.1314 q^{35} +3.51234 q^{36} +7.29674 q^{37} -3.47915 q^{38} +4.49363 q^{39} -3.59659 q^{40} -7.03552 q^{41} +9.31729 q^{42} +5.65561 q^{43} +1.00000 q^{44} -12.6325 q^{45} +1.38562 q^{46} +3.27067 q^{47} -2.55193 q^{48} +6.33036 q^{49} +7.93544 q^{50} -13.9161 q^{51} -1.76088 q^{52} -12.1640 q^{53} -1.30746 q^{54} -3.59659 q^{55} -3.65108 q^{56} +8.87855 q^{57} +4.84019 q^{58} -12.4566 q^{59} +9.17824 q^{60} -1.47899 q^{61} +5.30041 q^{62} -12.8238 q^{63} +1.00000 q^{64} +6.33315 q^{65} -2.55193 q^{66} +1.97721 q^{67} +5.45317 q^{68} -3.53602 q^{69} +13.1314 q^{70} +0.420050 q^{71} +3.51234 q^{72} -4.86379 q^{73} +7.29674 q^{74} -20.2507 q^{75} -3.47915 q^{76} -3.65108 q^{77} +4.49363 q^{78} -11.4819 q^{79} -3.59659 q^{80} -7.20047 q^{81} -7.03552 q^{82} -12.7764 q^{83} +9.31729 q^{84} -19.6128 q^{85} +5.65561 q^{86} -12.3518 q^{87} +1.00000 q^{88} +14.3851 q^{89} -12.6325 q^{90} +6.42909 q^{91} +1.38562 q^{92} -13.5263 q^{93} +3.27067 q^{94} +12.5131 q^{95} -2.55193 q^{96} +8.57250 q^{97} +6.33036 q^{98} +3.51234 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + 15 q^{2} - 9 q^{3} + 15 q^{4} - 11 q^{5} - 9 q^{6} - 11 q^{7} + 15 q^{8} + 10 q^{9} - 11 q^{10} + 15 q^{11} - 9 q^{12} - 21 q^{13} - 11 q^{14} - 2 q^{15} + 15 q^{16} - 4 q^{17} + 10 q^{18} - 22 q^{19}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.55193 −1.47336 −0.736679 0.676243i \(-0.763607\pi\)
−0.736679 + 0.676243i \(0.763607\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.59659 −1.60844 −0.804221 0.594330i \(-0.797417\pi\)
−0.804221 + 0.594330i \(0.797417\pi\)
\(6\) −2.55193 −1.04182
\(7\) −3.65108 −1.37998 −0.689989 0.723820i \(-0.742384\pi\)
−0.689989 + 0.723820i \(0.742384\pi\)
\(8\) 1.00000 0.353553
\(9\) 3.51234 1.17078
\(10\) −3.59659 −1.13734
\(11\) 1.00000 0.301511
\(12\) −2.55193 −0.736679
\(13\) −1.76088 −0.488379 −0.244190 0.969728i \(-0.578522\pi\)
−0.244190 + 0.969728i \(0.578522\pi\)
\(14\) −3.65108 −0.975791
\(15\) 9.17824 2.36981
\(16\) 1.00000 0.250000
\(17\) 5.45317 1.32259 0.661294 0.750127i \(-0.270008\pi\)
0.661294 + 0.750127i \(0.270008\pi\)
\(18\) 3.51234 0.827867
\(19\) −3.47915 −0.798172 −0.399086 0.916913i \(-0.630673\pi\)
−0.399086 + 0.916913i \(0.630673\pi\)
\(20\) −3.59659 −0.804221
\(21\) 9.31729 2.03320
\(22\) 1.00000 0.213201
\(23\) 1.38562 0.288923 0.144461 0.989510i \(-0.453855\pi\)
0.144461 + 0.989510i \(0.453855\pi\)
\(24\) −2.55193 −0.520910
\(25\) 7.93544 1.58709
\(26\) −1.76088 −0.345336
\(27\) −1.30746 −0.251621
\(28\) −3.65108 −0.689989
\(29\) 4.84019 0.898801 0.449400 0.893330i \(-0.351638\pi\)
0.449400 + 0.893330i \(0.351638\pi\)
\(30\) 9.17824 1.67571
\(31\) 5.30041 0.951982 0.475991 0.879450i \(-0.342089\pi\)
0.475991 + 0.879450i \(0.342089\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.55193 −0.444234
\(34\) 5.45317 0.935210
\(35\) 13.1314 2.21961
\(36\) 3.51234 0.585391
\(37\) 7.29674 1.19958 0.599788 0.800159i \(-0.295252\pi\)
0.599788 + 0.800159i \(0.295252\pi\)
\(38\) −3.47915 −0.564393
\(39\) 4.49363 0.719557
\(40\) −3.59659 −0.568670
\(41\) −7.03552 −1.09876 −0.549382 0.835571i \(-0.685137\pi\)
−0.549382 + 0.835571i \(0.685137\pi\)
\(42\) 9.31729 1.43769
\(43\) 5.65561 0.862472 0.431236 0.902239i \(-0.358078\pi\)
0.431236 + 0.902239i \(0.358078\pi\)
\(44\) 1.00000 0.150756
\(45\) −12.6325 −1.88313
\(46\) 1.38562 0.204299
\(47\) 3.27067 0.477076 0.238538 0.971133i \(-0.423332\pi\)
0.238538 + 0.971133i \(0.423332\pi\)
\(48\) −2.55193 −0.368339
\(49\) 6.33036 0.904337
\(50\) 7.93544 1.12224
\(51\) −13.9161 −1.94864
\(52\) −1.76088 −0.244190
\(53\) −12.1640 −1.67086 −0.835429 0.549599i \(-0.814781\pi\)
−0.835429 + 0.549599i \(0.814781\pi\)
\(54\) −1.30746 −0.177923
\(55\) −3.59659 −0.484964
\(56\) −3.65108 −0.487896
\(57\) 8.87855 1.17599
\(58\) 4.84019 0.635548
\(59\) −12.4566 −1.62171 −0.810855 0.585247i \(-0.800998\pi\)
−0.810855 + 0.585247i \(0.800998\pi\)
\(60\) 9.17824 1.18491
\(61\) −1.47899 −0.189365 −0.0946826 0.995508i \(-0.530184\pi\)
−0.0946826 + 0.995508i \(0.530184\pi\)
\(62\) 5.30041 0.673153
\(63\) −12.8238 −1.61565
\(64\) 1.00000 0.125000
\(65\) 6.33315 0.785530
\(66\) −2.55193 −0.314121
\(67\) 1.97721 0.241555 0.120778 0.992680i \(-0.461461\pi\)
0.120778 + 0.992680i \(0.461461\pi\)
\(68\) 5.45317 0.661294
\(69\) −3.53602 −0.425686
\(70\) 13.1314 1.56950
\(71\) 0.420050 0.0498507 0.0249254 0.999689i \(-0.492065\pi\)
0.0249254 + 0.999689i \(0.492065\pi\)
\(72\) 3.51234 0.413934
\(73\) −4.86379 −0.569263 −0.284632 0.958637i \(-0.591871\pi\)
−0.284632 + 0.958637i \(0.591871\pi\)
\(74\) 7.29674 0.848228
\(75\) −20.2507 −2.33835
\(76\) −3.47915 −0.399086
\(77\) −3.65108 −0.416079
\(78\) 4.49363 0.508804
\(79\) −11.4819 −1.29181 −0.645907 0.763416i \(-0.723521\pi\)
−0.645907 + 0.763416i \(0.723521\pi\)
\(80\) −3.59659 −0.402111
\(81\) −7.20047 −0.800053
\(82\) −7.03552 −0.776943
\(83\) −12.7764 −1.40239 −0.701197 0.712968i \(-0.747350\pi\)
−0.701197 + 0.712968i \(0.747350\pi\)
\(84\) 9.31729 1.01660
\(85\) −19.6128 −2.12731
\(86\) 5.65561 0.609860
\(87\) −12.3518 −1.32425
\(88\) 1.00000 0.106600
\(89\) 14.3851 1.52482 0.762408 0.647096i \(-0.224017\pi\)
0.762408 + 0.647096i \(0.224017\pi\)
\(90\) −12.6325 −1.33158
\(91\) 6.42909 0.673952
\(92\) 1.38562 0.144461
\(93\) −13.5263 −1.40261
\(94\) 3.27067 0.337343
\(95\) 12.5131 1.28381
\(96\) −2.55193 −0.260455
\(97\) 8.57250 0.870406 0.435203 0.900332i \(-0.356677\pi\)
0.435203 + 0.900332i \(0.356677\pi\)
\(98\) 6.33036 0.639463
\(99\) 3.51234 0.353004
\(100\) 7.93544 0.793544
\(101\) 20.0227 1.99233 0.996165 0.0874995i \(-0.0278876\pi\)
0.996165 + 0.0874995i \(0.0278876\pi\)
\(102\) −13.9161 −1.37790
\(103\) −4.28639 −0.422351 −0.211175 0.977448i \(-0.567729\pi\)
−0.211175 + 0.977448i \(0.567729\pi\)
\(104\) −1.76088 −0.172668
\(105\) −33.5104 −3.27028
\(106\) −12.1640 −1.18147
\(107\) 9.62271 0.930263 0.465131 0.885242i \(-0.346007\pi\)
0.465131 + 0.885242i \(0.346007\pi\)
\(108\) −1.30746 −0.125811
\(109\) 4.95125 0.474244 0.237122 0.971480i \(-0.423796\pi\)
0.237122 + 0.971480i \(0.423796\pi\)
\(110\) −3.59659 −0.342921
\(111\) −18.6208 −1.76740
\(112\) −3.65108 −0.344994
\(113\) 3.27079 0.307690 0.153845 0.988095i \(-0.450834\pi\)
0.153845 + 0.988095i \(0.450834\pi\)
\(114\) 8.87855 0.831553
\(115\) −4.98352 −0.464716
\(116\) 4.84019 0.449400
\(117\) −6.18480 −0.571785
\(118\) −12.4566 −1.14672
\(119\) −19.9099 −1.82514
\(120\) 9.17824 0.837855
\(121\) 1.00000 0.0909091
\(122\) −1.47899 −0.133901
\(123\) 17.9541 1.61887
\(124\) 5.30041 0.475991
\(125\) −10.5576 −0.944299
\(126\) −12.8238 −1.14244
\(127\) 8.41574 0.746776 0.373388 0.927675i \(-0.378196\pi\)
0.373388 + 0.927675i \(0.378196\pi\)
\(128\) 1.00000 0.0883883
\(129\) −14.4327 −1.27073
\(130\) 6.33315 0.555454
\(131\) −12.1450 −1.06112 −0.530558 0.847649i \(-0.678017\pi\)
−0.530558 + 0.847649i \(0.678017\pi\)
\(132\) −2.55193 −0.222117
\(133\) 12.7027 1.10146
\(134\) 1.97721 0.170805
\(135\) 4.70241 0.404719
\(136\) 5.45317 0.467605
\(137\) 10.0744 0.860714 0.430357 0.902659i \(-0.358388\pi\)
0.430357 + 0.902659i \(0.358388\pi\)
\(138\) −3.53602 −0.301006
\(139\) 5.45014 0.462275 0.231137 0.972921i \(-0.425755\pi\)
0.231137 + 0.972921i \(0.425755\pi\)
\(140\) 13.1314 1.10981
\(141\) −8.34651 −0.702903
\(142\) 0.420050 0.0352498
\(143\) −1.76088 −0.147252
\(144\) 3.51234 0.292695
\(145\) −17.4082 −1.44567
\(146\) −4.86379 −0.402530
\(147\) −16.1546 −1.33241
\(148\) 7.29674 0.599788
\(149\) −3.01150 −0.246712 −0.123356 0.992362i \(-0.539366\pi\)
−0.123356 + 0.992362i \(0.539366\pi\)
\(150\) −20.2507 −1.65346
\(151\) −11.5591 −0.940669 −0.470335 0.882488i \(-0.655867\pi\)
−0.470335 + 0.882488i \(0.655867\pi\)
\(152\) −3.47915 −0.282197
\(153\) 19.1534 1.54846
\(154\) −3.65108 −0.294212
\(155\) −19.0634 −1.53121
\(156\) 4.49363 0.359778
\(157\) −8.04051 −0.641703 −0.320851 0.947130i \(-0.603969\pi\)
−0.320851 + 0.947130i \(0.603969\pi\)
\(158\) −11.4819 −0.913450
\(159\) 31.0417 2.46177
\(160\) −3.59659 −0.284335
\(161\) −5.05902 −0.398707
\(162\) −7.20047 −0.565723
\(163\) 9.62932 0.754227 0.377113 0.926167i \(-0.376917\pi\)
0.377113 + 0.926167i \(0.376917\pi\)
\(164\) −7.03552 −0.549382
\(165\) 9.17824 0.714525
\(166\) −12.7764 −0.991642
\(167\) 2.08668 0.161472 0.0807362 0.996736i \(-0.474273\pi\)
0.0807362 + 0.996736i \(0.474273\pi\)
\(168\) 9.31729 0.718844
\(169\) −9.89931 −0.761486
\(170\) −19.6128 −1.50423
\(171\) −12.2200 −0.934485
\(172\) 5.65561 0.431236
\(173\) −19.4859 −1.48148 −0.740742 0.671789i \(-0.765526\pi\)
−0.740742 + 0.671789i \(0.765526\pi\)
\(174\) −12.3518 −0.936389
\(175\) −28.9729 −2.19015
\(176\) 1.00000 0.0753778
\(177\) 31.7883 2.38936
\(178\) 14.3851 1.07821
\(179\) −15.4103 −1.15182 −0.575909 0.817514i \(-0.695352\pi\)
−0.575909 + 0.817514i \(0.695352\pi\)
\(180\) −12.6325 −0.941567
\(181\) −19.2831 −1.43330 −0.716650 0.697433i \(-0.754325\pi\)
−0.716650 + 0.697433i \(0.754325\pi\)
\(182\) 6.42909 0.476556
\(183\) 3.77428 0.279002
\(184\) 1.38562 0.102150
\(185\) −26.2434 −1.92945
\(186\) −13.5263 −0.991795
\(187\) 5.45317 0.398775
\(188\) 3.27067 0.238538
\(189\) 4.77365 0.347232
\(190\) 12.5131 0.907794
\(191\) −7.25201 −0.524737 −0.262368 0.964968i \(-0.584504\pi\)
−0.262368 + 0.964968i \(0.584504\pi\)
\(192\) −2.55193 −0.184170
\(193\) 15.0222 1.08132 0.540660 0.841241i \(-0.318175\pi\)
0.540660 + 0.841241i \(0.318175\pi\)
\(194\) 8.57250 0.615470
\(195\) −16.1617 −1.15737
\(196\) 6.33036 0.452169
\(197\) −1.00000 −0.0712470
\(198\) 3.51234 0.249611
\(199\) 4.24552 0.300957 0.150479 0.988613i \(-0.451919\pi\)
0.150479 + 0.988613i \(0.451919\pi\)
\(200\) 7.93544 0.561121
\(201\) −5.04571 −0.355897
\(202\) 20.0227 1.40879
\(203\) −17.6719 −1.24032
\(204\) −13.9161 −0.974322
\(205\) 25.3039 1.76730
\(206\) −4.28639 −0.298647
\(207\) 4.86679 0.338265
\(208\) −1.76088 −0.122095
\(209\) −3.47915 −0.240658
\(210\) −33.5104 −2.31244
\(211\) −4.87147 −0.335366 −0.167683 0.985841i \(-0.553629\pi\)
−0.167683 + 0.985841i \(0.553629\pi\)
\(212\) −12.1640 −0.835429
\(213\) −1.07194 −0.0734479
\(214\) 9.62271 0.657795
\(215\) −20.3409 −1.38724
\(216\) −1.30746 −0.0889616
\(217\) −19.3522 −1.31371
\(218\) 4.95125 0.335341
\(219\) 12.4120 0.838728
\(220\) −3.59659 −0.242482
\(221\) −9.60235 −0.645924
\(222\) −18.6208 −1.24974
\(223\) −20.6190 −1.38075 −0.690376 0.723451i \(-0.742555\pi\)
−0.690376 + 0.723451i \(0.742555\pi\)
\(224\) −3.65108 −0.243948
\(225\) 27.8720 1.85813
\(226\) 3.27079 0.217570
\(227\) −10.9218 −0.724907 −0.362454 0.932002i \(-0.618061\pi\)
−0.362454 + 0.932002i \(0.618061\pi\)
\(228\) 8.87855 0.587996
\(229\) −24.0175 −1.58712 −0.793560 0.608492i \(-0.791775\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(230\) −4.98352 −0.328604
\(231\) 9.31729 0.613033
\(232\) 4.84019 0.317774
\(233\) 21.1742 1.38717 0.693583 0.720377i \(-0.256031\pi\)
0.693583 + 0.720377i \(0.256031\pi\)
\(234\) −6.18480 −0.404313
\(235\) −11.7632 −0.767349
\(236\) −12.4566 −0.810855
\(237\) 29.3010 1.90330
\(238\) −19.9099 −1.29057
\(239\) −20.4319 −1.32163 −0.660814 0.750549i \(-0.729789\pi\)
−0.660814 + 0.750549i \(0.729789\pi\)
\(240\) 9.17824 0.592453
\(241\) 13.4047 0.863475 0.431737 0.901999i \(-0.357901\pi\)
0.431737 + 0.901999i \(0.357901\pi\)
\(242\) 1.00000 0.0642824
\(243\) 22.2975 1.43038
\(244\) −1.47899 −0.0946826
\(245\) −22.7677 −1.45457
\(246\) 17.9541 1.14471
\(247\) 6.12636 0.389811
\(248\) 5.30041 0.336576
\(249\) 32.6045 2.06623
\(250\) −10.5576 −0.667720
\(251\) −6.43782 −0.406352 −0.203176 0.979142i \(-0.565126\pi\)
−0.203176 + 0.979142i \(0.565126\pi\)
\(252\) −12.8238 −0.807826
\(253\) 1.38562 0.0871135
\(254\) 8.41574 0.528050
\(255\) 50.0505 3.13428
\(256\) 1.00000 0.0625000
\(257\) −2.00537 −0.125091 −0.0625457 0.998042i \(-0.519922\pi\)
−0.0625457 + 0.998042i \(0.519922\pi\)
\(258\) −14.4327 −0.898541
\(259\) −26.6409 −1.65539
\(260\) 6.33315 0.392765
\(261\) 17.0004 1.05230
\(262\) −12.1450 −0.750322
\(263\) 5.24913 0.323675 0.161838 0.986817i \(-0.448258\pi\)
0.161838 + 0.986817i \(0.448258\pi\)
\(264\) −2.55193 −0.157060
\(265\) 43.7490 2.68748
\(266\) 12.7027 0.778850
\(267\) −36.7097 −2.24660
\(268\) 1.97721 0.120778
\(269\) 13.2839 0.809935 0.404968 0.914331i \(-0.367283\pi\)
0.404968 + 0.914331i \(0.367283\pi\)
\(270\) 4.70241 0.286179
\(271\) 17.8247 1.08277 0.541386 0.840774i \(-0.317900\pi\)
0.541386 + 0.840774i \(0.317900\pi\)
\(272\) 5.45317 0.330647
\(273\) −16.4066 −0.992972
\(274\) 10.0744 0.608616
\(275\) 7.93544 0.478525
\(276\) −3.53602 −0.212843
\(277\) 16.1952 0.973075 0.486537 0.873660i \(-0.338260\pi\)
0.486537 + 0.873660i \(0.338260\pi\)
\(278\) 5.45014 0.326878
\(279\) 18.6169 1.11456
\(280\) 13.1314 0.784752
\(281\) 17.2704 1.03027 0.515134 0.857109i \(-0.327742\pi\)
0.515134 + 0.857109i \(0.327742\pi\)
\(282\) −8.34651 −0.497027
\(283\) −3.26640 −0.194168 −0.0970838 0.995276i \(-0.530951\pi\)
−0.0970838 + 0.995276i \(0.530951\pi\)
\(284\) 0.420050 0.0249254
\(285\) −31.9325 −1.89152
\(286\) −1.76088 −0.104123
\(287\) 25.6872 1.51627
\(288\) 3.51234 0.206967
\(289\) 12.7370 0.749237
\(290\) −17.4082 −1.02224
\(291\) −21.8764 −1.28242
\(292\) −4.86379 −0.284632
\(293\) 23.4211 1.36827 0.684136 0.729354i \(-0.260179\pi\)
0.684136 + 0.729354i \(0.260179\pi\)
\(294\) −16.1546 −0.942157
\(295\) 44.8012 2.60843
\(296\) 7.29674 0.424114
\(297\) −1.30746 −0.0758667
\(298\) −3.01150 −0.174452
\(299\) −2.43991 −0.141104
\(300\) −20.2507 −1.16917
\(301\) −20.6490 −1.19019
\(302\) −11.5591 −0.665154
\(303\) −51.0964 −2.93541
\(304\) −3.47915 −0.199543
\(305\) 5.31931 0.304583
\(306\) 19.1534 1.09493
\(307\) −22.8135 −1.30203 −0.651017 0.759063i \(-0.725658\pi\)
−0.651017 + 0.759063i \(0.725658\pi\)
\(308\) −3.65108 −0.208039
\(309\) 10.9386 0.622273
\(310\) −19.0634 −1.08273
\(311\) 13.0418 0.739535 0.369767 0.929124i \(-0.379437\pi\)
0.369767 + 0.929124i \(0.379437\pi\)
\(312\) 4.49363 0.254402
\(313\) −20.9748 −1.18557 −0.592784 0.805362i \(-0.701971\pi\)
−0.592784 + 0.805362i \(0.701971\pi\)
\(314\) −8.04051 −0.453752
\(315\) 46.1220 2.59868
\(316\) −11.4819 −0.645907
\(317\) −24.2887 −1.36419 −0.682096 0.731263i \(-0.738931\pi\)
−0.682096 + 0.731263i \(0.738931\pi\)
\(318\) 31.0417 1.74073
\(319\) 4.84019 0.270999
\(320\) −3.59659 −0.201055
\(321\) −24.5565 −1.37061
\(322\) −5.05902 −0.281928
\(323\) −18.9724 −1.05565
\(324\) −7.20047 −0.400026
\(325\) −13.9733 −0.775101
\(326\) 9.62932 0.533319
\(327\) −12.6352 −0.698730
\(328\) −7.03552 −0.388472
\(329\) −11.9415 −0.658354
\(330\) 9.17824 0.505245
\(331\) −0.628339 −0.0345366 −0.0172683 0.999851i \(-0.505497\pi\)
−0.0172683 + 0.999851i \(0.505497\pi\)
\(332\) −12.7764 −0.701197
\(333\) 25.6286 1.40444
\(334\) 2.08668 0.114178
\(335\) −7.11122 −0.388527
\(336\) 9.31729 0.508300
\(337\) −27.4542 −1.49552 −0.747762 0.663967i \(-0.768871\pi\)
−0.747762 + 0.663967i \(0.768871\pi\)
\(338\) −9.89931 −0.538452
\(339\) −8.34683 −0.453338
\(340\) −19.6128 −1.06365
\(341\) 5.30041 0.287033
\(342\) −12.2200 −0.660781
\(343\) 2.44491 0.132013
\(344\) 5.65561 0.304930
\(345\) 12.7176 0.684692
\(346\) −19.4859 −1.04757
\(347\) 4.94438 0.265428 0.132714 0.991154i \(-0.457631\pi\)
0.132714 + 0.991154i \(0.457631\pi\)
\(348\) −12.3518 −0.662127
\(349\) −11.6426 −0.623213 −0.311606 0.950211i \(-0.600867\pi\)
−0.311606 + 0.950211i \(0.600867\pi\)
\(350\) −28.9729 −1.54867
\(351\) 2.30228 0.122887
\(352\) 1.00000 0.0533002
\(353\) 6.70944 0.357108 0.178554 0.983930i \(-0.442858\pi\)
0.178554 + 0.983930i \(0.442858\pi\)
\(354\) 31.7883 1.68953
\(355\) −1.51075 −0.0801820
\(356\) 14.3851 0.762408
\(357\) 50.8087 2.68908
\(358\) −15.4103 −0.814458
\(359\) −26.6711 −1.40764 −0.703822 0.710376i \(-0.748525\pi\)
−0.703822 + 0.710376i \(0.748525\pi\)
\(360\) −12.6325 −0.665789
\(361\) −6.89550 −0.362921
\(362\) −19.2831 −1.01350
\(363\) −2.55193 −0.133942
\(364\) 6.42909 0.336976
\(365\) 17.4930 0.915628
\(366\) 3.77428 0.197285
\(367\) 35.0539 1.82980 0.914899 0.403683i \(-0.132270\pi\)
0.914899 + 0.403683i \(0.132270\pi\)
\(368\) 1.38562 0.0722307
\(369\) −24.7112 −1.28641
\(370\) −26.2434 −1.36433
\(371\) 44.4118 2.30575
\(372\) −13.5263 −0.701305
\(373\) −8.43979 −0.436996 −0.218498 0.975837i \(-0.570116\pi\)
−0.218498 + 0.975837i \(0.570116\pi\)
\(374\) 5.45317 0.281977
\(375\) 26.9422 1.39129
\(376\) 3.27067 0.168672
\(377\) −8.52298 −0.438956
\(378\) 4.77365 0.245530
\(379\) −0.378997 −0.0194678 −0.00973389 0.999953i \(-0.503098\pi\)
−0.00973389 + 0.999953i \(0.503098\pi\)
\(380\) 12.5131 0.641907
\(381\) −21.4764 −1.10027
\(382\) −7.25201 −0.371045
\(383\) −25.5842 −1.30729 −0.653645 0.756802i \(-0.726761\pi\)
−0.653645 + 0.756802i \(0.726761\pi\)
\(384\) −2.55193 −0.130228
\(385\) 13.1314 0.669239
\(386\) 15.0222 0.764608
\(387\) 19.8644 1.00977
\(388\) 8.57250 0.435203
\(389\) −12.7199 −0.644923 −0.322461 0.946583i \(-0.604510\pi\)
−0.322461 + 0.946583i \(0.604510\pi\)
\(390\) −16.1617 −0.818382
\(391\) 7.55604 0.382125
\(392\) 6.33036 0.319731
\(393\) 30.9932 1.56340
\(394\) −1.00000 −0.0503793
\(395\) 41.2956 2.07781
\(396\) 3.51234 0.176502
\(397\) −30.2380 −1.51760 −0.758801 0.651323i \(-0.774215\pi\)
−0.758801 + 0.651323i \(0.774215\pi\)
\(398\) 4.24552 0.212809
\(399\) −32.4163 −1.62284
\(400\) 7.93544 0.396772
\(401\) −7.27342 −0.363217 −0.181609 0.983371i \(-0.558130\pi\)
−0.181609 + 0.983371i \(0.558130\pi\)
\(402\) −5.04571 −0.251657
\(403\) −9.33337 −0.464928
\(404\) 20.0227 0.996165
\(405\) 25.8971 1.28684
\(406\) −17.6719 −0.877042
\(407\) 7.29674 0.361686
\(408\) −13.9161 −0.688949
\(409\) 23.0892 1.14169 0.570843 0.821059i \(-0.306616\pi\)
0.570843 + 0.821059i \(0.306616\pi\)
\(410\) 25.3039 1.24967
\(411\) −25.7091 −1.26814
\(412\) −4.28639 −0.211175
\(413\) 45.4800 2.23792
\(414\) 4.86679 0.239190
\(415\) 45.9515 2.25567
\(416\) −1.76088 −0.0863341
\(417\) −13.9084 −0.681096
\(418\) −3.47915 −0.170171
\(419\) −8.60996 −0.420624 −0.210312 0.977634i \(-0.567448\pi\)
−0.210312 + 0.977634i \(0.567448\pi\)
\(420\) −33.5104 −1.63514
\(421\) 6.58646 0.321004 0.160502 0.987035i \(-0.448689\pi\)
0.160502 + 0.987035i \(0.448689\pi\)
\(422\) −4.87147 −0.237140
\(423\) 11.4877 0.558551
\(424\) −12.1640 −0.590737
\(425\) 43.2733 2.09906
\(426\) −1.07194 −0.0519355
\(427\) 5.39990 0.261320
\(428\) 9.62271 0.465131
\(429\) 4.49363 0.216955
\(430\) −20.3409 −0.980924
\(431\) 17.5106 0.843454 0.421727 0.906723i \(-0.361424\pi\)
0.421727 + 0.906723i \(0.361424\pi\)
\(432\) −1.30746 −0.0629054
\(433\) 12.7712 0.613745 0.306872 0.951751i \(-0.400718\pi\)
0.306872 + 0.951751i \(0.400718\pi\)
\(434\) −19.3522 −0.928936
\(435\) 44.4244 2.12999
\(436\) 4.95125 0.237122
\(437\) −4.82080 −0.230610
\(438\) 12.4120 0.593070
\(439\) −8.23514 −0.393042 −0.196521 0.980500i \(-0.562964\pi\)
−0.196521 + 0.980500i \(0.562964\pi\)
\(440\) −3.59659 −0.171461
\(441\) 22.2344 1.05878
\(442\) −9.60235 −0.456737
\(443\) −4.73625 −0.225026 −0.112513 0.993650i \(-0.535890\pi\)
−0.112513 + 0.993650i \(0.535890\pi\)
\(444\) −18.6208 −0.883702
\(445\) −51.7372 −2.45258
\(446\) −20.6190 −0.976339
\(447\) 7.68514 0.363495
\(448\) −3.65108 −0.172497
\(449\) 13.2461 0.625122 0.312561 0.949898i \(-0.398813\pi\)
0.312561 + 0.949898i \(0.398813\pi\)
\(450\) 27.8720 1.31390
\(451\) −7.03552 −0.331290
\(452\) 3.27079 0.153845
\(453\) 29.4981 1.38594
\(454\) −10.9218 −0.512587
\(455\) −23.1228 −1.08401
\(456\) 8.87855 0.415776
\(457\) 22.0381 1.03090 0.515448 0.856921i \(-0.327625\pi\)
0.515448 + 0.856921i \(0.327625\pi\)
\(458\) −24.0175 −1.12226
\(459\) −7.12982 −0.332791
\(460\) −4.98352 −0.232358
\(461\) −34.8532 −1.62328 −0.811638 0.584161i \(-0.801424\pi\)
−0.811638 + 0.584161i \(0.801424\pi\)
\(462\) 9.31729 0.433480
\(463\) 0.838941 0.0389889 0.0194945 0.999810i \(-0.493794\pi\)
0.0194945 + 0.999810i \(0.493794\pi\)
\(464\) 4.84019 0.224700
\(465\) 48.6484 2.25602
\(466\) 21.1742 0.980875
\(467\) 10.1902 0.471548 0.235774 0.971808i \(-0.424238\pi\)
0.235774 + 0.971808i \(0.424238\pi\)
\(468\) −6.18480 −0.285893
\(469\) −7.21896 −0.333340
\(470\) −11.7632 −0.542598
\(471\) 20.5188 0.945457
\(472\) −12.4566 −0.573361
\(473\) 5.65561 0.260045
\(474\) 29.3010 1.34584
\(475\) −27.6086 −1.26677
\(476\) −19.9099 −0.912570
\(477\) −42.7242 −1.95621
\(478\) −20.4319 −0.934533
\(479\) −29.3423 −1.34068 −0.670342 0.742052i \(-0.733853\pi\)
−0.670342 + 0.742052i \(0.733853\pi\)
\(480\) 9.17824 0.418927
\(481\) −12.8486 −0.585848
\(482\) 13.4047 0.610569
\(483\) 12.9103 0.587437
\(484\) 1.00000 0.0454545
\(485\) −30.8318 −1.40000
\(486\) 22.2975 1.01143
\(487\) 36.3905 1.64901 0.824506 0.565854i \(-0.191453\pi\)
0.824506 + 0.565854i \(0.191453\pi\)
\(488\) −1.47899 −0.0669507
\(489\) −24.5734 −1.11125
\(490\) −22.7677 −1.02854
\(491\) 25.4213 1.14725 0.573623 0.819119i \(-0.305537\pi\)
0.573623 + 0.819119i \(0.305537\pi\)
\(492\) 17.9541 0.809436
\(493\) 26.3944 1.18874
\(494\) 6.12636 0.275638
\(495\) −12.6325 −0.567786
\(496\) 5.30041 0.237995
\(497\) −1.53363 −0.0687929
\(498\) 32.6045 1.46104
\(499\) −6.10391 −0.273248 −0.136624 0.990623i \(-0.543625\pi\)
−0.136624 + 0.990623i \(0.543625\pi\)
\(500\) −10.5576 −0.472149
\(501\) −5.32507 −0.237907
\(502\) −6.43782 −0.287334
\(503\) −9.59903 −0.428000 −0.214000 0.976834i \(-0.568649\pi\)
−0.214000 + 0.976834i \(0.568649\pi\)
\(504\) −12.8238 −0.571219
\(505\) −72.0133 −3.20455
\(506\) 1.38562 0.0615985
\(507\) 25.2624 1.12194
\(508\) 8.41574 0.373388
\(509\) −9.37518 −0.415547 −0.207774 0.978177i \(-0.566622\pi\)
−0.207774 + 0.978177i \(0.566622\pi\)
\(510\) 50.0505 2.21627
\(511\) 17.7581 0.785571
\(512\) 1.00000 0.0441942
\(513\) 4.54887 0.200837
\(514\) −2.00537 −0.0884529
\(515\) 15.4164 0.679327
\(516\) −14.4327 −0.635364
\(517\) 3.27067 0.143844
\(518\) −26.6409 −1.17054
\(519\) 49.7266 2.18276
\(520\) 6.33315 0.277727
\(521\) 18.5900 0.814443 0.407222 0.913329i \(-0.366498\pi\)
0.407222 + 0.913329i \(0.366498\pi\)
\(522\) 17.0004 0.744088
\(523\) 17.1864 0.751507 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(524\) −12.1450 −0.530558
\(525\) 73.9368 3.22687
\(526\) 5.24913 0.228873
\(527\) 28.9040 1.25908
\(528\) −2.55193 −0.111058
\(529\) −21.0800 −0.916524
\(530\) 43.7490 1.90033
\(531\) −43.7518 −1.89867
\(532\) 12.7027 0.550730
\(533\) 12.3887 0.536613
\(534\) −36.7097 −1.58859
\(535\) −34.6089 −1.49627
\(536\) 1.97721 0.0854026
\(537\) 39.3259 1.69704
\(538\) 13.2839 0.572711
\(539\) 6.33036 0.272668
\(540\) 4.70241 0.202359
\(541\) 5.78441 0.248691 0.124346 0.992239i \(-0.460317\pi\)
0.124346 + 0.992239i \(0.460317\pi\)
\(542\) 17.8247 0.765636
\(543\) 49.2090 2.11176
\(544\) 5.45317 0.233803
\(545\) −17.8076 −0.762794
\(546\) −16.4066 −0.702137
\(547\) −10.3837 −0.443974 −0.221987 0.975050i \(-0.571254\pi\)
−0.221987 + 0.975050i \(0.571254\pi\)
\(548\) 10.0744 0.430357
\(549\) −5.19472 −0.221705
\(550\) 7.93544 0.338368
\(551\) −16.8398 −0.717398
\(552\) −3.53602 −0.150503
\(553\) 41.9213 1.78267
\(554\) 16.1952 0.688068
\(555\) 66.9712 2.84277
\(556\) 5.45014 0.231137
\(557\) 18.0343 0.764139 0.382069 0.924134i \(-0.375212\pi\)
0.382069 + 0.924134i \(0.375212\pi\)
\(558\) 18.6169 0.788115
\(559\) −9.95882 −0.421213
\(560\) 13.1314 0.554904
\(561\) −13.9161 −0.587538
\(562\) 17.2704 0.728510
\(563\) 8.79775 0.370781 0.185390 0.982665i \(-0.440645\pi\)
0.185390 + 0.982665i \(0.440645\pi\)
\(564\) −8.34651 −0.351451
\(565\) −11.7637 −0.494902
\(566\) −3.26640 −0.137297
\(567\) 26.2895 1.10405
\(568\) 0.420050 0.0176249
\(569\) −12.5906 −0.527825 −0.263913 0.964547i \(-0.585013\pi\)
−0.263913 + 0.964547i \(0.585013\pi\)
\(570\) −31.9325 −1.33750
\(571\) −28.9127 −1.20996 −0.604979 0.796242i \(-0.706818\pi\)
−0.604979 + 0.796242i \(0.706818\pi\)
\(572\) −1.76088 −0.0736259
\(573\) 18.5066 0.773125
\(574\) 25.6872 1.07216
\(575\) 10.9955 0.458546
\(576\) 3.51234 0.146348
\(577\) −37.2934 −1.55255 −0.776273 0.630397i \(-0.782892\pi\)
−0.776273 + 0.630397i \(0.782892\pi\)
\(578\) 12.7370 0.529790
\(579\) −38.3355 −1.59317
\(580\) −17.4082 −0.722835
\(581\) 46.6476 1.93527
\(582\) −21.8764 −0.906807
\(583\) −12.1640 −0.503782
\(584\) −4.86379 −0.201265
\(585\) 22.2442 0.919684
\(586\) 23.4211 0.967515
\(587\) −38.9179 −1.60631 −0.803157 0.595767i \(-0.796848\pi\)
−0.803157 + 0.595767i \(0.796848\pi\)
\(588\) −16.1546 −0.666206
\(589\) −18.4409 −0.759846
\(590\) 44.8012 1.84444
\(591\) 2.55193 0.104972
\(592\) 7.29674 0.299894
\(593\) 15.0548 0.618225 0.309112 0.951025i \(-0.399968\pi\)
0.309112 + 0.951025i \(0.399968\pi\)
\(594\) −1.30746 −0.0536459
\(595\) 71.6078 2.93563
\(596\) −3.01150 −0.123356
\(597\) −10.8343 −0.443417
\(598\) −2.43991 −0.0997755
\(599\) −41.6441 −1.70153 −0.850766 0.525544i \(-0.823862\pi\)
−0.850766 + 0.525544i \(0.823862\pi\)
\(600\) −20.2507 −0.826731
\(601\) −5.80113 −0.236633 −0.118317 0.992976i \(-0.537750\pi\)
−0.118317 + 0.992976i \(0.537750\pi\)
\(602\) −20.6490 −0.841592
\(603\) 6.94465 0.282808
\(604\) −11.5591 −0.470335
\(605\) −3.59659 −0.146222
\(606\) −51.0964 −2.07565
\(607\) −31.5860 −1.28204 −0.641018 0.767526i \(-0.721488\pi\)
−0.641018 + 0.767526i \(0.721488\pi\)
\(608\) −3.47915 −0.141098
\(609\) 45.0974 1.82744
\(610\) 5.31931 0.215373
\(611\) −5.75924 −0.232994
\(612\) 19.1534 0.774230
\(613\) −26.8984 −1.08642 −0.543209 0.839598i \(-0.682791\pi\)
−0.543209 + 0.839598i \(0.682791\pi\)
\(614\) −22.8135 −0.920678
\(615\) −64.5737 −2.60386
\(616\) −3.65108 −0.147106
\(617\) 24.8821 1.00172 0.500858 0.865530i \(-0.333018\pi\)
0.500858 + 0.865530i \(0.333018\pi\)
\(618\) 10.9386 0.440014
\(619\) 18.6551 0.749811 0.374905 0.927063i \(-0.377675\pi\)
0.374905 + 0.927063i \(0.377675\pi\)
\(620\) −19.0634 −0.765604
\(621\) −1.81165 −0.0726992
\(622\) 13.0418 0.522930
\(623\) −52.5211 −2.10421
\(624\) 4.49363 0.179889
\(625\) −1.70595 −0.0682382
\(626\) −20.9748 −0.838323
\(627\) 8.87855 0.354575
\(628\) −8.04051 −0.320851
\(629\) 39.7903 1.58654
\(630\) 46.1220 1.83755
\(631\) −17.2461 −0.686558 −0.343279 0.939233i \(-0.611538\pi\)
−0.343279 + 0.939233i \(0.611538\pi\)
\(632\) −11.4819 −0.456725
\(633\) 12.4317 0.494114
\(634\) −24.2887 −0.964629
\(635\) −30.2679 −1.20115
\(636\) 31.0417 1.23088
\(637\) −11.1470 −0.441659
\(638\) 4.84019 0.191625
\(639\) 1.47536 0.0583643
\(640\) −3.59659 −0.142168
\(641\) −21.2999 −0.841294 −0.420647 0.907224i \(-0.638197\pi\)
−0.420647 + 0.907224i \(0.638197\pi\)
\(642\) −24.5565 −0.969167
\(643\) −23.9968 −0.946342 −0.473171 0.880971i \(-0.656891\pi\)
−0.473171 + 0.880971i \(0.656891\pi\)
\(644\) −5.05902 −0.199353
\(645\) 51.9085 2.04389
\(646\) −18.9724 −0.746459
\(647\) −13.8514 −0.544554 −0.272277 0.962219i \(-0.587777\pi\)
−0.272277 + 0.962219i \(0.587777\pi\)
\(648\) −7.20047 −0.282861
\(649\) −12.4566 −0.488964
\(650\) −13.9733 −0.548079
\(651\) 49.3855 1.93557
\(652\) 9.62932 0.377113
\(653\) 47.7504 1.86862 0.934309 0.356465i \(-0.116018\pi\)
0.934309 + 0.356465i \(0.116018\pi\)
\(654\) −12.6352 −0.494077
\(655\) 43.6806 1.70674
\(656\) −7.03552 −0.274691
\(657\) −17.0833 −0.666483
\(658\) −11.9415 −0.465526
\(659\) 28.6664 1.11668 0.558342 0.829611i \(-0.311438\pi\)
0.558342 + 0.829611i \(0.311438\pi\)
\(660\) 9.17824 0.357262
\(661\) −32.3845 −1.25961 −0.629806 0.776753i \(-0.716865\pi\)
−0.629806 + 0.776753i \(0.716865\pi\)
\(662\) −0.628339 −0.0244211
\(663\) 24.5045 0.951677
\(664\) −12.7764 −0.495821
\(665\) −45.6862 −1.77164
\(666\) 25.6286 0.993090
\(667\) 6.70669 0.259684
\(668\) 2.08668 0.0807362
\(669\) 52.6183 2.03434
\(670\) −7.11122 −0.274730
\(671\) −1.47899 −0.0570957
\(672\) 9.31729 0.359422
\(673\) 24.0242 0.926065 0.463032 0.886341i \(-0.346761\pi\)
0.463032 + 0.886341i \(0.346761\pi\)
\(674\) −27.4542 −1.05749
\(675\) −10.3753 −0.399346
\(676\) −9.89931 −0.380743
\(677\) 15.8925 0.610799 0.305400 0.952224i \(-0.401210\pi\)
0.305400 + 0.952224i \(0.401210\pi\)
\(678\) −8.34683 −0.320558
\(679\) −31.2989 −1.20114
\(680\) −19.6128 −0.752116
\(681\) 27.8717 1.06805
\(682\) 5.30041 0.202963
\(683\) 24.7925 0.948659 0.474330 0.880347i \(-0.342690\pi\)
0.474330 + 0.880347i \(0.342690\pi\)
\(684\) −12.2200 −0.467243
\(685\) −36.2334 −1.38441
\(686\) 2.44491 0.0933471
\(687\) 61.2909 2.33840
\(688\) 5.65561 0.215618
\(689\) 21.4193 0.816012
\(690\) 12.7176 0.484150
\(691\) −5.74345 −0.218491 −0.109246 0.994015i \(-0.534844\pi\)
−0.109246 + 0.994015i \(0.534844\pi\)
\(692\) −19.4859 −0.740742
\(693\) −12.8238 −0.487137
\(694\) 4.94438 0.187686
\(695\) −19.6019 −0.743543
\(696\) −12.3518 −0.468195
\(697\) −38.3659 −1.45321
\(698\) −11.6426 −0.440678
\(699\) −54.0350 −2.04379
\(700\) −28.9729 −1.09507
\(701\) −38.8853 −1.46868 −0.734338 0.678784i \(-0.762507\pi\)
−0.734338 + 0.678784i \(0.762507\pi\)
\(702\) 2.30228 0.0868940
\(703\) −25.3865 −0.957469
\(704\) 1.00000 0.0376889
\(705\) 30.0190 1.13058
\(706\) 6.70944 0.252513
\(707\) −73.1043 −2.74937
\(708\) 31.7883 1.19468
\(709\) 10.1995 0.383049 0.191525 0.981488i \(-0.438657\pi\)
0.191525 + 0.981488i \(0.438657\pi\)
\(710\) −1.51075 −0.0566973
\(711\) −40.3283 −1.51243
\(712\) 14.3851 0.539104
\(713\) 7.34438 0.275049
\(714\) 50.8087 1.90147
\(715\) 6.33315 0.236846
\(716\) −15.4103 −0.575909
\(717\) 52.1407 1.94723
\(718\) −26.6711 −0.995355
\(719\) 10.6469 0.397061 0.198531 0.980095i \(-0.436383\pi\)
0.198531 + 0.980095i \(0.436383\pi\)
\(720\) −12.6325 −0.470784
\(721\) 15.6499 0.582834
\(722\) −6.89550 −0.256624
\(723\) −34.2079 −1.27221
\(724\) −19.2831 −0.716650
\(725\) 38.4091 1.42648
\(726\) −2.55193 −0.0947110
\(727\) 7.01470 0.260161 0.130080 0.991503i \(-0.458476\pi\)
0.130080 + 0.991503i \(0.458476\pi\)
\(728\) 6.42909 0.238278
\(729\) −35.3002 −1.30741
\(730\) 17.4930 0.647447
\(731\) 30.8410 1.14069
\(732\) 3.77428 0.139501
\(733\) 40.1943 1.48461 0.742305 0.670062i \(-0.233733\pi\)
0.742305 + 0.670062i \(0.233733\pi\)
\(734\) 35.0539 1.29386
\(735\) 58.1015 2.14311
\(736\) 1.38562 0.0510748
\(737\) 1.97721 0.0728316
\(738\) −24.7112 −0.909630
\(739\) −4.92852 −0.181299 −0.0906493 0.995883i \(-0.528894\pi\)
−0.0906493 + 0.995883i \(0.528894\pi\)
\(740\) −26.2434 −0.964725
\(741\) −15.6340 −0.574330
\(742\) 44.4118 1.63041
\(743\) −47.6088 −1.74660 −0.873298 0.487186i \(-0.838023\pi\)
−0.873298 + 0.487186i \(0.838023\pi\)
\(744\) −13.5263 −0.495897
\(745\) 10.8311 0.396822
\(746\) −8.43979 −0.309003
\(747\) −44.8751 −1.64190
\(748\) 5.45317 0.199388
\(749\) −35.1333 −1.28374
\(750\) 26.9422 0.983790
\(751\) −44.1684 −1.61173 −0.805865 0.592100i \(-0.798299\pi\)
−0.805865 + 0.592100i \(0.798299\pi\)
\(752\) 3.27067 0.119269
\(753\) 16.4289 0.598701
\(754\) −8.52298 −0.310388
\(755\) 41.5734 1.51301
\(756\) 4.77365 0.173616
\(757\) 34.2984 1.24660 0.623298 0.781984i \(-0.285792\pi\)
0.623298 + 0.781984i \(0.285792\pi\)
\(758\) −0.378997 −0.0137658
\(759\) −3.53602 −0.128349
\(760\) 12.5131 0.453897
\(761\) 7.90680 0.286621 0.143311 0.989678i \(-0.454225\pi\)
0.143311 + 0.989678i \(0.454225\pi\)
\(762\) −21.4764 −0.778006
\(763\) −18.0774 −0.654445
\(764\) −7.25201 −0.262368
\(765\) −68.8869 −2.49061
\(766\) −25.5842 −0.924393
\(767\) 21.9345 0.792009
\(768\) −2.55193 −0.0920848
\(769\) 14.9981 0.540844 0.270422 0.962742i \(-0.412837\pi\)
0.270422 + 0.962742i \(0.412837\pi\)
\(770\) 13.1314 0.473223
\(771\) 5.11755 0.184304
\(772\) 15.0222 0.540660
\(773\) −4.35181 −0.156524 −0.0782619 0.996933i \(-0.524937\pi\)
−0.0782619 + 0.996933i \(0.524937\pi\)
\(774\) 19.8644 0.714012
\(775\) 42.0611 1.51088
\(776\) 8.57250 0.307735
\(777\) 67.9858 2.43898
\(778\) −12.7199 −0.456029
\(779\) 24.4776 0.877003
\(780\) −16.1617 −0.578683
\(781\) 0.420050 0.0150306
\(782\) 7.55604 0.270203
\(783\) −6.32837 −0.226158
\(784\) 6.33036 0.226084
\(785\) 28.9184 1.03214
\(786\) 30.9932 1.10549
\(787\) −7.96580 −0.283950 −0.141975 0.989870i \(-0.545345\pi\)
−0.141975 + 0.989870i \(0.545345\pi\)
\(788\) −1.00000 −0.0356235
\(789\) −13.3954 −0.476889
\(790\) 41.2956 1.46923
\(791\) −11.9419 −0.424606
\(792\) 3.51234 0.124806
\(793\) 2.60432 0.0924820
\(794\) −30.2380 −1.07311
\(795\) −111.644 −3.95962
\(796\) 4.24552 0.150479
\(797\) 26.8845 0.952297 0.476149 0.879365i \(-0.342032\pi\)
0.476149 + 0.879365i \(0.342032\pi\)
\(798\) −32.4163 −1.14752
\(799\) 17.8355 0.630974
\(800\) 7.93544 0.280560
\(801\) 50.5254 1.78523
\(802\) −7.27342 −0.256833
\(803\) −4.86379 −0.171639
\(804\) −5.04571 −0.177948
\(805\) 18.1952 0.641297
\(806\) −9.33337 −0.328754
\(807\) −33.8996 −1.19332
\(808\) 20.0227 0.704395
\(809\) 54.4202 1.91331 0.956656 0.291222i \(-0.0940618\pi\)
0.956656 + 0.291222i \(0.0940618\pi\)
\(810\) 25.8971 0.909933
\(811\) −49.1449 −1.72571 −0.862856 0.505451i \(-0.831326\pi\)
−0.862856 + 0.505451i \(0.831326\pi\)
\(812\) −17.6719 −0.620162
\(813\) −45.4873 −1.59531
\(814\) 7.29674 0.255750
\(815\) −34.6327 −1.21313
\(816\) −13.9161 −0.487161
\(817\) −19.6767 −0.688401
\(818\) 23.0892 0.807294
\(819\) 22.5812 0.789050
\(820\) 25.3039 0.883649
\(821\) 5.05250 0.176333 0.0881667 0.996106i \(-0.471899\pi\)
0.0881667 + 0.996106i \(0.471899\pi\)
\(822\) −25.7091 −0.896709
\(823\) −25.3831 −0.884799 −0.442400 0.896818i \(-0.645873\pi\)
−0.442400 + 0.896818i \(0.645873\pi\)
\(824\) −4.28639 −0.149323
\(825\) −20.2507 −0.705039
\(826\) 45.4800 1.58245
\(827\) −20.2794 −0.705184 −0.352592 0.935777i \(-0.614700\pi\)
−0.352592 + 0.935777i \(0.614700\pi\)
\(828\) 4.86679 0.169133
\(829\) −54.1938 −1.88223 −0.941114 0.338088i \(-0.890220\pi\)
−0.941114 + 0.338088i \(0.890220\pi\)
\(830\) 45.9515 1.59500
\(831\) −41.3290 −1.43369
\(832\) −1.76088 −0.0610474
\(833\) 34.5205 1.19606
\(834\) −13.9084 −0.481607
\(835\) −7.50494 −0.259719
\(836\) −3.47915 −0.120329
\(837\) −6.93009 −0.239539
\(838\) −8.60996 −0.297426
\(839\) 1.16416 0.0401911 0.0200956 0.999798i \(-0.493603\pi\)
0.0200956 + 0.999798i \(0.493603\pi\)
\(840\) −33.5104 −1.15622
\(841\) −5.57256 −0.192157
\(842\) 6.58646 0.226984
\(843\) −44.0730 −1.51795
\(844\) −4.87147 −0.167683
\(845\) 35.6038 1.22481
\(846\) 11.4877 0.394955
\(847\) −3.65108 −0.125452
\(848\) −12.1640 −0.417714
\(849\) 8.33563 0.286078
\(850\) 43.2733 1.48426
\(851\) 10.1105 0.346585
\(852\) −1.07194 −0.0367240
\(853\) −55.3325 −1.89455 −0.947274 0.320424i \(-0.896175\pi\)
−0.947274 + 0.320424i \(0.896175\pi\)
\(854\) 5.39990 0.184781
\(855\) 43.9502 1.50307
\(856\) 9.62271 0.328898
\(857\) 51.8766 1.77207 0.886035 0.463618i \(-0.153449\pi\)
0.886035 + 0.463618i \(0.153449\pi\)
\(858\) 4.49363 0.153410
\(859\) −6.47642 −0.220973 −0.110486 0.993878i \(-0.535241\pi\)
−0.110486 + 0.993878i \(0.535241\pi\)
\(860\) −20.3409 −0.693618
\(861\) −65.5520 −2.23401
\(862\) 17.5106 0.596412
\(863\) 39.6907 1.35109 0.675544 0.737320i \(-0.263909\pi\)
0.675544 + 0.737320i \(0.263909\pi\)
\(864\) −1.30746 −0.0444808
\(865\) 70.0827 2.38288
\(866\) 12.7712 0.433983
\(867\) −32.5040 −1.10389
\(868\) −19.3522 −0.656857
\(869\) −11.4819 −0.389496
\(870\) 44.4244 1.50613
\(871\) −3.48163 −0.117970
\(872\) 4.95125 0.167670
\(873\) 30.1096 1.01905
\(874\) −4.82080 −0.163066
\(875\) 38.5465 1.30311
\(876\) 12.4120 0.419364
\(877\) 16.8049 0.567461 0.283731 0.958904i \(-0.408428\pi\)
0.283731 + 0.958904i \(0.408428\pi\)
\(878\) −8.23514 −0.277923
\(879\) −59.7689 −2.01595
\(880\) −3.59659 −0.121241
\(881\) 30.3341 1.02198 0.510991 0.859586i \(-0.329279\pi\)
0.510991 + 0.859586i \(0.329279\pi\)
\(882\) 22.2344 0.748671
\(883\) −51.5177 −1.73371 −0.866854 0.498561i \(-0.833862\pi\)
−0.866854 + 0.498561i \(0.833862\pi\)
\(884\) −9.60235 −0.322962
\(885\) −114.330 −3.84315
\(886\) −4.73625 −0.159117
\(887\) −38.8548 −1.30462 −0.652309 0.757953i \(-0.726200\pi\)
−0.652309 + 0.757953i \(0.726200\pi\)
\(888\) −18.6208 −0.624872
\(889\) −30.7265 −1.03053
\(890\) −51.7372 −1.73424
\(891\) −7.20047 −0.241225
\(892\) −20.6190 −0.690376
\(893\) −11.3791 −0.380789
\(894\) 7.68514 0.257030
\(895\) 55.4244 1.85263
\(896\) −3.65108 −0.121974
\(897\) 6.22649 0.207896
\(898\) 13.2461 0.442028
\(899\) 25.6550 0.855642
\(900\) 27.8720 0.929067
\(901\) −66.3325 −2.20985
\(902\) −7.03552 −0.234257
\(903\) 52.6949 1.75358
\(904\) 3.27079 0.108785
\(905\) 69.3533 2.30538
\(906\) 29.4981 0.980009
\(907\) −15.0676 −0.500311 −0.250156 0.968206i \(-0.580482\pi\)
−0.250156 + 0.968206i \(0.580482\pi\)
\(908\) −10.9218 −0.362454
\(909\) 70.3265 2.33258
\(910\) −23.1228 −0.766513
\(911\) 26.5121 0.878386 0.439193 0.898393i \(-0.355264\pi\)
0.439193 + 0.898393i \(0.355264\pi\)
\(912\) 8.87855 0.293998
\(913\) −12.7764 −0.422837
\(914\) 22.0381 0.728954
\(915\) −13.5745 −0.448760
\(916\) −24.0175 −0.793560
\(917\) 44.3424 1.46431
\(918\) −7.12982 −0.235319
\(919\) −7.35644 −0.242667 −0.121333 0.992612i \(-0.538717\pi\)
−0.121333 + 0.992612i \(0.538717\pi\)
\(920\) −4.98352 −0.164302
\(921\) 58.2184 1.91836
\(922\) −34.8532 −1.14783
\(923\) −0.739656 −0.0243461
\(924\) 9.31729 0.306516
\(925\) 57.9028 1.90383
\(926\) 0.838941 0.0275693
\(927\) −15.0553 −0.494480
\(928\) 4.84019 0.158887
\(929\) −10.5762 −0.346994 −0.173497 0.984834i \(-0.555507\pi\)
−0.173497 + 0.984834i \(0.555507\pi\)
\(930\) 48.6484 1.59524
\(931\) −22.0243 −0.721817
\(932\) 21.1742 0.693583
\(933\) −33.2819 −1.08960
\(934\) 10.1902 0.333435
\(935\) −19.6128 −0.641407
\(936\) −6.18480 −0.202157
\(937\) 34.9545 1.14191 0.570956 0.820980i \(-0.306573\pi\)
0.570956 + 0.820980i \(0.306573\pi\)
\(938\) −7.21896 −0.235707
\(939\) 53.5263 1.74676
\(940\) −11.7632 −0.383675
\(941\) 39.7026 1.29427 0.647135 0.762376i \(-0.275967\pi\)
0.647135 + 0.762376i \(0.275967\pi\)
\(942\) 20.5188 0.668539
\(943\) −9.74859 −0.317458
\(944\) −12.4566 −0.405428
\(945\) −17.1688 −0.558503
\(946\) 5.65561 0.183880
\(947\) 13.2878 0.431796 0.215898 0.976416i \(-0.430732\pi\)
0.215898 + 0.976416i \(0.430732\pi\)
\(948\) 29.3010 0.951651
\(949\) 8.56453 0.278016
\(950\) −27.6086 −0.895742
\(951\) 61.9831 2.00994
\(952\) −19.9099 −0.645284
\(953\) 11.7639 0.381071 0.190536 0.981680i \(-0.438978\pi\)
0.190536 + 0.981680i \(0.438978\pi\)
\(954\) −42.7242 −1.38325
\(955\) 26.0825 0.844010
\(956\) −20.4319 −0.660814
\(957\) −12.3518 −0.399278
\(958\) −29.3423 −0.948007
\(959\) −36.7824 −1.18777
\(960\) 9.17824 0.296226
\(961\) −2.90564 −0.0937304
\(962\) −12.8486 −0.414257
\(963\) 33.7983 1.08913
\(964\) 13.4047 0.431737
\(965\) −54.0285 −1.73924
\(966\) 12.9103 0.415381
\(967\) −50.2178 −1.61490 −0.807448 0.589939i \(-0.799152\pi\)
−0.807448 + 0.589939i \(0.799152\pi\)
\(968\) 1.00000 0.0321412
\(969\) 48.4162 1.55535
\(970\) −30.8318 −0.989948
\(971\) 32.0552 1.02870 0.514351 0.857580i \(-0.328033\pi\)
0.514351 + 0.857580i \(0.328033\pi\)
\(972\) 22.2975 0.715192
\(973\) −19.8989 −0.637929
\(974\) 36.3905 1.16603
\(975\) 35.6590 1.14200
\(976\) −1.47899 −0.0473413
\(977\) 5.16212 0.165151 0.0825754 0.996585i \(-0.473685\pi\)
0.0825754 + 0.996585i \(0.473685\pi\)
\(978\) −24.5734 −0.785769
\(979\) 14.3851 0.459750
\(980\) −22.7677 −0.727287
\(981\) 17.3905 0.555235
\(982\) 25.4213 0.811226
\(983\) 25.4454 0.811583 0.405791 0.913966i \(-0.366996\pi\)
0.405791 + 0.913966i \(0.366996\pi\)
\(984\) 17.9541 0.572357
\(985\) 3.59659 0.114597
\(986\) 26.3944 0.840568
\(987\) 30.4737 0.969990
\(988\) 6.12636 0.194905
\(989\) 7.83655 0.249188
\(990\) −12.6325 −0.401486
\(991\) −47.1774 −1.49864 −0.749320 0.662208i \(-0.769620\pi\)
−0.749320 + 0.662208i \(0.769620\pi\)
\(992\) 5.30041 0.168288
\(993\) 1.60348 0.0508848
\(994\) −1.53363 −0.0486439
\(995\) −15.2694 −0.484072
\(996\) 32.6045 1.03311
\(997\) 32.9634 1.04396 0.521980 0.852958i \(-0.325194\pi\)
0.521980 + 0.852958i \(0.325194\pi\)
\(998\) −6.10391 −0.193216
\(999\) −9.54022 −0.301839
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4334.2.a.b.1.3 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4334.2.a.b.1.3 15 1.1 even 1 trivial