Properties

Label 4334.2.a.d
Level 43344334
Weight 22
Character orbit 4334.a
Self dual yes
Analytic conductor 34.60734.607
Analytic rank 11
Dimension 1717
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4334=211197 4334 = 2 \cdot 11 \cdot 197
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 34.607164236034.6071642360
Analytic rank: 11
Dimension: 1717
Coefficient field: Q[x]/(x17)\mathbb{Q}[x]/(x^{17} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x177x167x15+137x1498x131048x12+1313x11+4085x10+400 x^{17} - 7 x^{16} - 7 x^{15} + 137 x^{14} - 98 x^{13} - 1048 x^{12} + 1313 x^{11} + 4085 x^{10} + \cdots - 400 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 5 5
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β161,\beta_1,\ldots,\beta_{16} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2β1q3+q4+β7q5β1q6+(β7+β5+β11)q7+q8+(β2+β1)q9+β7q10q11β1q12++(β2β1)q99+O(q100) q + q^{2} - \beta_1 q^{3} + q^{4} + \beta_{7} q^{5} - \beta_1 q^{6} + ( - \beta_{7} + \beta_{5} + \beta_1 - 1) q^{7} + q^{8} + (\beta_{2} + \beta_1) q^{9} + \beta_{7} q^{10} - q^{11} - \beta_1 q^{12}+ \cdots + ( - \beta_{2} - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 17q+17q27q3+17q44q57q65q7+17q8+12q94q1017q117q1218q135q1416q15+17q1610q17+12q1831q19+12q99+O(q100) 17 q + 17 q^{2} - 7 q^{3} + 17 q^{4} - 4 q^{5} - 7 q^{6} - 5 q^{7} + 17 q^{8} + 12 q^{9} - 4 q^{10} - 17 q^{11} - 7 q^{12} - 18 q^{13} - 5 q^{14} - 16 q^{15} + 17 q^{16} - 10 q^{17} + 12 q^{18} - 31 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x177x167x15+137x1498x131048x12+1313x11+4085x10+400 x^{17} - 7 x^{16} - 7 x^{15} + 137 x^{14} - 98 x^{13} - 1048 x^{12} + 1313 x^{11} + 4085 x^{10} + \cdots - 400 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== (917115519ν165212700619ν1513267205103ν14+108089258473ν13++275653971112)/100018832 ( 917115519 \nu^{16} - 5212700619 \nu^{15} - 13267205103 \nu^{14} + 108089258473 \nu^{13} + \cdots + 275653971112 ) / 100018832 Copy content Toggle raw display
β4\beta_{4}== (2118122577ν1611979762949ν1530898783617ν14+248436835479ν13++623351680584)/200037664 ( 2118122577 \nu^{16} - 11979762949 \nu^{15} - 30898783617 \nu^{14} + 248436835479 \nu^{13} + \cdots + 623351680584 ) / 200037664 Copy content Toggle raw display
β5\beta_{5}== (1190055619ν166765107123ν1517236648943ν14+140423501145ν13++363827038920)/100018832 ( 1190055619 \nu^{16} - 6765107123 \nu^{15} - 17236648943 \nu^{14} + 140423501145 \nu^{13} + \cdots + 363827038920 ) / 100018832 Copy content Toggle raw display
β6\beta_{6}== (3747780633ν1621227672221ν1554617142073ν14+440646194303ν13++1126215265736)/200037664 ( 3747780633 \nu^{16} - 21227672221 \nu^{15} - 54617142073 \nu^{14} + 440646194303 \nu^{13} + \cdots + 1126215265736 ) / 200037664 Copy content Toggle raw display
β7\beta_{7}== (9954510309ν16+56495783281ν15+144505682861ν141172270244043ν13+3005730994568)/400075328 ( - 9954510309 \nu^{16} + 56495783281 \nu^{15} + 144505682861 \nu^{14} - 1172270244043 \nu^{13} + \cdots - 3005730994568 ) / 400075328 Copy content Toggle raw display
β8\beta_{8}== (2707538429ν1615377659701ν1539287625049ν14+319260268927ν13++826000500232)/100018832 ( 2707538429 \nu^{16} - 15377659701 \nu^{15} - 39287625049 \nu^{14} + 319260268927 \nu^{13} + \cdots + 826000500232 ) / 100018832 Copy content Toggle raw display
β9\beta_{9}== (2837634319ν1616108690395ν1541184831247ν14+334303865353ν13++858999681160)/100018832 ( 2837634319 \nu^{16} - 16108690395 \nu^{15} - 41184831247 \nu^{14} + 334303865353 \nu^{13} + \cdots + 858999681160 ) / 100018832 Copy content Toggle raw display
β10\beta_{10}== (728303375ν16+4131017823ν15+10592530399ν1485773093645ν13+220825196084)/25004708 ( - 728303375 \nu^{16} + 4131017823 \nu^{15} + 10592530399 \nu^{14} - 85773093645 \nu^{13} + \cdots - 220825196084 ) / 25004708 Copy content Toggle raw display
β11\beta_{11}== (11821377509ν16+67109376065ν15+171605413149ν141392946997659ν13+3585384415688)/400075328 ( - 11821377509 \nu^{16} + 67109376065 \nu^{15} + 171605413149 \nu^{14} - 1392946997659 \nu^{13} + \cdots - 3585384415688 ) / 400075328 Copy content Toggle raw display
β12\beta_{12}== (6485269861ν1636814938225ν1594066526173ν14+763681201211ν13++1949477027720)/200037664 ( 6485269861 \nu^{16} - 36814938225 \nu^{15} - 94066526173 \nu^{14} + 763681201211 \nu^{13} + \cdots + 1949477027720 ) / 200037664 Copy content Toggle raw display
β13\beta_{13}== (6607866089ν16+37544828365ν15+95697548569ν14778806039487ν13+1994818528520)/200037664 ( - 6607866089 \nu^{16} + 37544828365 \nu^{15} + 95697548569 \nu^{14} - 778806039487 \nu^{13} + \cdots - 1994818528520 ) / 200037664 Copy content Toggle raw display
β14\beta_{14}== (14135303493ν1680212263505ν15205268091629ν14+1664519690699ν13++4274328485320)/400075328 ( 14135303493 \nu^{16} - 80212263505 \nu^{15} - 205268091629 \nu^{14} + 1664519690699 \nu^{13} + \cdots + 4274328485320 ) / 400075328 Copy content Toggle raw display
β15\beta_{15}== (3708772897ν16+21035949917ν15+53921864145ν14436648931271ν13+1121904694504)/100018832 ( - 3708772897 \nu^{16} + 21035949917 \nu^{15} + 53921864145 \nu^{14} - 436648931271 \nu^{13} + \cdots - 1121904694504 ) / 100018832 Copy content Toggle raw display
β16\beta_{16}== (2361132485ν16+13408798839ν15+34223642511ν14278142921505ν13+711627008544)/50009416 ( - 2361132485 \nu^{16} + 13408798839 \nu^{15} + 34223642511 \nu^{14} - 278142921505 \nu^{13} + \cdots - 711627008544 ) / 50009416 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β14+β12+β11β102β9β4+2β2+7β1 \beta_{14} + \beta_{12} + \beta_{11} - \beta_{10} - 2\beta_{9} - \beta_{4} + 2\beta_{2} + 7\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β15+2β14β13+β112β105β9+β8β7++12 \beta_{15} + 2 \beta_{14} - \beta_{13} + \beta_{11} - 2 \beta_{10} - 5 \beta_{9} + \beta_{8} - \beta_{7} + \cdots + 12 Copy content Toggle raw display
ν5\nu^{5}== β16+β15+13β144β13+12β12+15β1113β10+3 \beta_{16} + \beta_{15} + 13 \beta_{14} - 4 \beta_{13} + 12 \beta_{12} + 15 \beta_{11} - 13 \beta_{10} + \cdots - 3 Copy content Toggle raw display
ν6\nu^{6}== 5β16+15β15+37β1425β13+11β12+31β1140β10++42 5 \beta_{16} + 15 \beta_{15} + 37 \beta_{14} - 25 \beta_{13} + 11 \beta_{12} + 31 \beta_{11} - 40 \beta_{10} + \cdots + 42 Copy content Toggle raw display
ν7\nu^{7}== 35β16+32β15+166β1494β13+134β12+198β11+98 35 \beta_{16} + 32 \beta_{15} + 166 \beta_{14} - 94 \beta_{13} + 134 \beta_{12} + 198 \beta_{11} + \cdots - 98 Copy content Toggle raw display
ν8\nu^{8}== 138β16+211β15+538β14420β13+241β12+534β11+95 138 \beta_{16} + 211 \beta_{15} + 538 \beta_{14} - 420 \beta_{13} + 241 \beta_{12} + 534 \beta_{11} + \cdots - 95 Copy content Toggle raw display
ν9\nu^{9}== 672β16+609β15+2112β141530β13+1543β12+2502β11+1857 672 \beta_{16} + 609 \beta_{15} + 2112 \beta_{14} - 1530 \beta_{13} + 1543 \beta_{12} + 2502 \beta_{11} + \cdots - 1857 Copy content Toggle raw display
ν10\nu^{10}== 2509β16+2914β15+7164β146056β13+3804β12+7601β11+5269 2509 \beta_{16} + 2914 \beta_{15} + 7164 \beta_{14} - 6056 \beta_{13} + 3804 \beta_{12} + 7601 \beta_{11} + \cdots - 5269 Copy content Toggle raw display
ν11\nu^{11}== 10525β16+9480β15+26534β1421687β13+18321β12+28609 10525 \beta_{16} + 9480 \beta_{15} + 26534 \beta_{14} - 21687 \beta_{13} + 18321 \beta_{12} + \cdots - 28609 Copy content Toggle raw display
ν12\nu^{12}== 38461β16+39190β15+91457β1481103β13+53112β12+93861 38461 \beta_{16} + 39190 \beta_{15} + 91457 \beta_{14} - 81103 \beta_{13} + 53112 \beta_{12} + \cdots - 93861 Copy content Toggle raw display
ν13\nu^{13}== 149613β16+133692β15+329175β14287489β13+221332β12+398621 149613 \beta_{16} + 133692 \beta_{15} + 329175 \beta_{14} - 287489 \beta_{13} + 221332 \beta_{12} + \cdots - 398621 Copy content Toggle raw display
ν14\nu^{14}== 539818β16+513491β15+1140848β141043078β13+698651β12+1362389 539818 \beta_{16} + 513491 \beta_{15} + 1140848 \beta_{14} - 1043078 \beta_{13} + 698651 \beta_{12} + \cdots - 1362389 Copy content Toggle raw display
ν15\nu^{15}== 2013096β16+1783860β15+4043297β143672837β13+2692678β12+5256266 2013096 \beta_{16} + 1783860 \beta_{15} + 4043297 \beta_{14} - 3672837 \beta_{13} + 2692678 \beta_{12} + \cdots - 5256266 Copy content Toggle raw display
ν16\nu^{16}== 7196125β16+6583561β15+14035487β1413096144β13+8890642β12+18209145 7196125 \beta_{16} + 6583561 \beta_{15} + 14035487 \beta_{14} - 13096144 \beta_{13} + 8890642 \beta_{12} + \cdots - 18209145 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.45762
3.00096
2.69188
2.63673
1.67442
1.32994
1.32368
1.31815
0.577346
−0.216237
−0.673774
−1.02051
−1.23460
−1.29570
−1.87628
−2.06015
−2.63348
1.00000 −3.45762 1.00000 −2.31501 −3.45762 2.74192 1.00000 8.95516 −2.31501
1.2 1.00000 −3.00096 1.00000 4.03995 −3.00096 −2.78062 1.00000 6.00574 4.03995
1.3 1.00000 −2.69188 1.00000 1.31987 −2.69188 2.55905 1.00000 4.24624 1.31987
1.4 1.00000 −2.63673 1.00000 −3.59467 −2.63673 −1.69075 1.00000 3.95235 −3.59467
1.5 1.00000 −1.67442 1.00000 −0.572222 −1.67442 −0.229301 1.00000 −0.196306 −0.572222
1.6 1.00000 −1.32994 1.00000 2.68374 −1.32994 −0.271741 1.00000 −1.23125 2.68374
1.7 1.00000 −1.32368 1.00000 −0.966345 −1.32368 1.91821 1.00000 −1.24787 −0.966345
1.8 1.00000 −1.31815 1.00000 1.46276 −1.31815 −4.53584 1.00000 −1.26249 1.46276
1.9 1.00000 −0.577346 1.00000 0.543375 −0.577346 4.26235 1.00000 −2.66667 0.543375
1.10 1.00000 0.216237 1.00000 0.737633 0.216237 0.342001 1.00000 −2.95324 0.737633
1.11 1.00000 0.673774 1.00000 2.41156 0.673774 −3.55111 1.00000 −2.54603 2.41156
1.12 1.00000 1.02051 1.00000 −4.21122 1.02051 2.47064 1.00000 −1.95855 −4.21122
1.13 1.00000 1.23460 1.00000 −1.34398 1.23460 −1.90837 1.00000 −1.47576 −1.34398
1.14 1.00000 1.29570 1.00000 1.60714 1.29570 −2.75710 1.00000 −1.32117 1.60714
1.15 1.00000 1.87628 1.00000 −2.40821 1.87628 1.70446 1.00000 0.520431 −2.40821
1.16 1.00000 2.06015 1.00000 −2.29448 2.06015 0.0148240 1.00000 1.24422 −2.29448
1.17 1.00000 2.63348 1.00000 −1.09989 2.63348 −3.28860 1.00000 3.93521 −1.09989
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.17
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1111 +1 +1
197197 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4334.2.a.d 17
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4334.2.a.d 17 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T317+7T3167T315137T31498T313+1048T312+1313T311++400 T_{3}^{17} + 7 T_{3}^{16} - 7 T_{3}^{15} - 137 T_{3}^{14} - 98 T_{3}^{13} + 1048 T_{3}^{12} + 1313 T_{3}^{11} + \cdots + 400 acting on S2new(Γ0(4334))S_{2}^{\mathrm{new}}(\Gamma_0(4334)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)17 (T - 1)^{17} Copy content Toggle raw display
33 T17+7T16++400 T^{17} + 7 T^{16} + \cdots + 400 Copy content Toggle raw display
55 T17+4T16++5147 T^{17} + 4 T^{16} + \cdots + 5147 Copy content Toggle raw display
77 T17+5T16++100 T^{17} + 5 T^{16} + \cdots + 100 Copy content Toggle raw display
1111 (T+1)17 (T + 1)^{17} Copy content Toggle raw display
1313 T17+18T16++772532 T^{17} + 18 T^{16} + \cdots + 772532 Copy content Toggle raw display
1717 T17++140740076 T^{17} + \cdots + 140740076 Copy content Toggle raw display
1919 T17+31T16+89994944 T^{17} + 31 T^{16} + \cdots - 89994944 Copy content Toggle raw display
2323 T17+6T16+726928 T^{17} + 6 T^{16} + \cdots - 726928 Copy content Toggle raw display
2929 T17+1614622436 T^{17} + \cdots - 1614622436 Copy content Toggle raw display
3131 T17+30T16+22065715 T^{17} + 30 T^{16} + \cdots - 22065715 Copy content Toggle raw display
3737 T17++1740996688 T^{17} + \cdots + 1740996688 Copy content Toggle raw display
4141 T17+4085969468 T^{17} + \cdots - 4085969468 Copy content Toggle raw display
4343 T17+23T16+92908 T^{17} + 23 T^{16} + \cdots - 92908 Copy content Toggle raw display
4747 T17+19T16+10194992 T^{17} + 19 T^{16} + \cdots - 10194992 Copy content Toggle raw display
5353 T17++365178260368 T^{17} + \cdots + 365178260368 Copy content Toggle raw display
5959 T17+28T16+7289225 T^{17} + 28 T^{16} + \cdots - 7289225 Copy content Toggle raw display
6161 T17+1699473732784 T^{17} + \cdots - 1699473732784 Copy content Toggle raw display
6767 T17+386291825862400 T^{17} + \cdots - 386291825862400 Copy content Toggle raw display
7171 T17++51038766188513 T^{17} + \cdots + 51038766188513 Copy content Toggle raw display
7373 T17+1774258011932 T^{17} + \cdots - 1774258011932 Copy content Toggle raw display
7979 T17+9468083562500 T^{17} + \cdots - 9468083562500 Copy content Toggle raw display
8383 T17++25755751965776 T^{17} + \cdots + 25755751965776 Copy content Toggle raw display
8989 T17++1574641256000 T^{17} + \cdots + 1574641256000 Copy content Toggle raw display
9797 T17++14372578999 T^{17} + \cdots + 14372578999 Copy content Toggle raw display
show more
show less