[N,k,chi] = [4334,2,Mod(1,4334)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4334.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
11 11 1 1
+ 1 +1 + 1
197 197 1 9 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 3 17 + 7 T 3 16 − 7 T 3 15 − 137 T 3 14 − 98 T 3 13 + 1048 T 3 12 + 1313 T 3 11 + ⋯ + 400 T_{3}^{17} + 7 T_{3}^{16} - 7 T_{3}^{15} - 137 T_{3}^{14} - 98 T_{3}^{13} + 1048 T_{3}^{12} + 1313 T_{3}^{11} + \cdots + 400 T 3 1 7 + 7 T 3 1 6 − 7 T 3 1 5 − 1 3 7 T 3 1 4 − 9 8 T 3 1 3 + 1 0 4 8 T 3 1 2 + 1 3 1 3 T 3 1 1 + ⋯ + 4 0 0
T3^17 + 7*T3^16 - 7*T3^15 - 137*T3^14 - 98*T3^13 + 1048*T3^12 + 1313*T3^11 - 4085*T3^10 - 6021*T3^9 + 8879*T3^8 + 13530*T3^7 - 11150*T3^6 - 15676*T3^5 + 8037*T3^4 + 8646*T3^3 - 3040*T3^2 - 1640*T3 + 400
acting on S 2 n e w ( Γ 0 ( 4334 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(4334)) S 2 n e w ( Γ 0 ( 4 3 3 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 1 ) 17 (T - 1)^{17} ( T − 1 ) 1 7
(T - 1)^17
3 3 3
T 17 + 7 T 16 + ⋯ + 400 T^{17} + 7 T^{16} + \cdots + 400 T 1 7 + 7 T 1 6 + ⋯ + 4 0 0
T^17 + 7*T^16 - 7*T^15 - 137*T^14 - 98*T^13 + 1048*T^12 + 1313*T^11 - 4085*T^10 - 6021*T^9 + 8879*T^8 + 13530*T^7 - 11150*T^6 - 15676*T^5 + 8037*T^4 + 8646*T^3 - 3040*T^2 - 1640*T + 400
5 5 5
T 17 + 4 T 16 + ⋯ + 5147 T^{17} + 4 T^{16} + \cdots + 5147 T 1 7 + 4 T 1 6 + ⋯ + 5 1 4 7
T^17 + 4*T^16 - 36*T^15 - 147*T^14 + 464*T^13 + 1972*T^12 - 2823*T^11 - 12805*T^10 + 8778*T^9 + 43928*T^8 - 13942*T^7 - 81069*T^6 + 9737*T^5 + 77505*T^4 - 1355*T^3 - 33995*T^2 - 309*T + 5147
7 7 7
T 17 + 5 T 16 + ⋯ + 100 T^{17} + 5 T^{16} + \cdots + 100 T 1 7 + 5 T 1 6 + ⋯ + 1 0 0
T^17 + 5*T^16 - 43*T^15 - 228*T^14 + 684*T^13 + 3965*T^12 - 5242*T^11 - 34421*T^10 + 20072*T^9 + 159010*T^8 - 32363*T^7 - 374123*T^6 - 2869*T^5 + 362972*T^4 + 47538*T^3 - 36255*T^2 - 6220*T + 100
11 11 1 1
( T + 1 ) 17 (T + 1)^{17} ( T + 1 ) 1 7
(T + 1)^17
13 13 1 3
T 17 + 18 T 16 + ⋯ + 772532 T^{17} + 18 T^{16} + \cdots + 772532 T 1 7 + 1 8 T 1 6 + ⋯ + 7 7 2 5 3 2
T^17 + 18*T^16 + 63*T^15 - 701*T^14 - 5961*T^13 - 3641*T^12 + 111905*T^11 + 383896*T^10 - 293369*T^9 - 3876685*T^8 - 5552804*T^7 + 8755840*T^6 + 31373574*T^5 + 18367264*T^4 - 30769050*T^3 - 45989697*T^2 - 16426056*T + 772532
17 17 1 7
T 17 + ⋯ + 140740076 T^{17} + \cdots + 140740076 T 1 7 + ⋯ + 1 4 0 7 4 0 0 7 6
T^17 + 10*T^16 - 92*T^15 - 1067*T^14 + 2675*T^13 + 40201*T^12 - 37867*T^11 - 755132*T^10 + 323750*T^9 + 7848649*T^8 - 1725467*T^7 - 46447793*T^6 + 4365316*T^5 + 152532229*T^4 + 1318925*T^3 - 248453291*T^2 - 19045134*T + 140740076
19 19 1 9
T 17 + 31 T 16 + ⋯ − 89994944 T^{17} + 31 T^{16} + \cdots - 89994944 T 1 7 + 3 1 T 1 6 + ⋯ − 8 9 9 9 4 9 4 4
T^17 + 31*T^16 + 284*T^15 - 738*T^14 - 28414*T^13 - 134714*T^12 + 485790*T^11 + 6294695*T^10 + 12678038*T^9 - 65439515*T^8 - 340453325*T^7 - 220817131*T^6 + 1742169472*T^5 + 3997043824*T^4 + 940074832*T^3 - 4870546299*T^2 - 3747059376*T - 89994944
23 23 2 3
T 17 + 6 T 16 + ⋯ − 726928 T^{17} + 6 T^{16} + \cdots - 726928 T 1 7 + 6 T 1 6 + ⋯ − 7 2 6 9 2 8
T^17 + 6*T^16 - 179*T^15 - 968*T^14 + 11777*T^13 + 55349*T^12 - 355589*T^11 - 1389628*T^10 + 5096672*T^9 + 15465758*T^8 - 34352872*T^7 - 73513200*T^6 + 101481505*T^5 + 118350181*T^4 - 106205620*T^3 - 13004688*T^2 + 11586048*T - 726928
29 29 2 9
T 17 + ⋯ − 1614622436 T^{17} + \cdots - 1614622436 T 1 7 + ⋯ − 1 6 1 4 6 2 2 4 3 6
T^17 + 16*T^16 - 86*T^15 - 2589*T^14 - 4409*T^13 + 132549*T^12 + 531896*T^11 - 2790270*T^10 - 15958201*T^9 + 25038828*T^8 + 212193019*T^7 - 69670768*T^6 - 1375365788*T^5 - 240154585*T^4 + 4066444343*T^3 + 1547191597*T^2 - 4048313942*T - 1614622436
31 31 3 1
T 17 + 30 T 16 + ⋯ − 22065715 T^{17} + 30 T^{16} + \cdots - 22065715 T 1 7 + 3 0 T 1 6 + ⋯ − 2 2 0 6 5 7 1 5
T^17 + 30*T^16 + 190*T^15 - 2575*T^14 - 37404*T^13 - 60086*T^12 + 1362611*T^11 + 7898161*T^10 + 438913*T^9 - 125292978*T^8 - 416553446*T^7 - 282339886*T^6 + 1278680656*T^5 + 3462151322*T^4 + 3558878247*T^3 + 1480411996*T^2 + 82685000*T - 22065715
37 37 3 7
T 17 + ⋯ + 1740996688 T^{17} + \cdots + 1740996688 T 1 7 + ⋯ + 1 7 4 0 9 9 6 6 8 8
T^17 + 23*T^16 - 78*T^15 - 5273*T^14 - 23405*T^13 + 320777*T^12 + 2683992*T^11 - 1998654*T^10 - 67588221*T^9 - 108510989*T^8 + 557019514*T^7 + 1661679710*T^6 - 662270619*T^5 - 6676044245*T^4 - 6508299510*T^3 + 1458450776*T^2 + 4758929272*T + 1740996688
41 41 4 1
T 17 + ⋯ − 4085969468 T^{17} + \cdots - 4085969468 T 1 7 + ⋯ − 4 0 8 5 9 6 9 4 6 8
T^17 + 7*T^16 - 289*T^15 - 2374*T^14 + 29343*T^13 + 292627*T^12 - 1155847*T^11 - 16316815*T^10 + 7382385*T^9 + 423098676*T^8 + 488173175*T^7 - 4866860355*T^6 - 8635045510*T^5 + 25583988861*T^4 + 49320975441*T^3 - 51105495401*T^2 - 89724702678*T - 4085969468
43 43 4 3
T 17 + 23 T 16 + ⋯ − 92908 T^{17} + 23 T^{16} + \cdots - 92908 T 1 7 + 2 3 T 1 6 + ⋯ − 9 2 9 0 8
T^17 + 23*T^16 - 65*T^15 - 4797*T^14 - 17056*T^13 + 324501*T^12 + 1824110*T^11 - 9889137*T^10 - 67517804*T^9 + 147864588*T^8 + 1091271891*T^7 - 1108884090*T^6 - 6749226990*T^5 + 4355191308*T^4 + 5505605039*T^3 - 3980063769*T^2 + 520458468*T - 92908
47 47 4 7
T 17 + 19 T 16 + ⋯ − 10194992 T^{17} + 19 T^{16} + \cdots - 10194992 T 1 7 + 1 9 T 1 6 + ⋯ − 1 0 1 9 4 9 9 2
T^17 + 19*T^16 - 122*T^15 - 4319*T^14 - 11096*T^13 + 269980*T^12 + 1566186*T^11 - 4663529*T^10 - 48185582*T^9 - 9691391*T^8 + 515012044*T^7 + 480377044*T^6 - 2327576715*T^5 - 2236625745*T^4 + 4012193074*T^3 + 2685938376*T^2 - 1381559208*T - 10194992
53 53 5 3
T 17 + ⋯ + 365178260368 T^{17} + \cdots + 365178260368 T 1 7 + ⋯ + 3 6 5 1 7 8 2 6 0 3 6 8
T^17 + 30*T^16 + 38*T^15 - 6977*T^14 - 56992*T^13 + 487954*T^12 + 7182767*T^11 - 2695117*T^10 - 353288825*T^9 - 928884265*T^8 + 7110345252*T^7 + 33317633043*T^6 - 38870062959*T^5 - 381313030287*T^4 - 264894578878*T^3 + 1024066757448*T^2 + 1247145903368*T + 365178260368
59 59 5 9
T 17 + 28 T 16 + ⋯ − 7289225 T^{17} + 28 T^{16} + \cdots - 7289225 T 1 7 + 2 8 T 1 6 + ⋯ − 7 2 8 9 2 2 5
T^17 + 28*T^16 - 14*T^15 - 6390*T^14 - 35098*T^13 + 455928*T^12 + 3359210*T^11 - 16270775*T^10 - 124148511*T^9 + 370369325*T^8 + 2071552327*T^7 - 5400278648*T^6 - 13463642513*T^5 + 34101750578*T^4 + 28864974403*T^3 - 70524388204*T^2 - 2424887535*T - 7289225
61 61 6 1
T 17 + ⋯ − 1699473732784 T^{17} + \cdots - 1699473732784 T 1 7 + ⋯ − 1 6 9 9 4 7 3 7 3 2 7 8 4
T^17 + 19*T^16 - 317*T^15 - 8002*T^14 + 18055*T^13 + 1195425*T^12 + 3028357*T^11 - 75731786*T^10 - 392172576*T^9 + 1882214626*T^8 + 15573628587*T^7 - 5573048269*T^6 - 234378645434*T^5 - 334189225264*T^4 + 971763416594*T^3 + 2251975789099*T^2 - 70484652060*T - 1699473732784
67 67 6 7
T 17 + ⋯ − 386291825862400 T^{17} + \cdots - 386291825862400 T 1 7 + ⋯ − 3 8 6 2 9 1 8 2 5 8 6 2 4 0 0
T^17 + 35*T^16 - 226*T^15 - 19443*T^14 - 69255*T^13 + 4081729*T^12 + 26359702*T^11 - 445486971*T^10 - 3154653464*T^9 + 30204541543*T^8 + 178526970589*T^7 - 1372682214687*T^6 - 4552209101647*T^5 + 38781818986349*T^4 + 16652539629202*T^3 - 490563079672484*T^2 + 936585416184320*T - 386291825862400
71 71 7 1
T 17 + ⋯ + 51038766188513 T^{17} + \cdots + 51038766188513 T 1 7 + ⋯ + 5 1 0 3 8 7 6 6 1 8 8 5 1 3
T^17 - T^16 - 520*T^15 + 1619*T^14 + 109193*T^13 - 553170*T^12 - 11441466*T^11 + 81714751*T^10 + 580793159*T^9 - 6049045668*T^8 - 8301632645*T^7 + 219692487790*T^6 - 375902353003*T^5 - 3018915598669*T^4 + 12477558406439*T^3 - 5624977166980*T^2 - 39287292975298*T + 51038766188513
73 73 7 3
T 17 + ⋯ − 1774258011932 T^{17} + \cdots - 1774258011932 T 1 7 + ⋯ − 1 7 7 4 2 5 8 0 1 1 9 3 2
T^17 + 10*T^16 - 783*T^15 - 7024*T^14 + 242438*T^13 + 1926826*T^12 - 37873744*T^11 - 267457225*T^10 + 3141273026*T^9 + 20258395157*T^8 - 133074710116*T^7 - 835132599711*T^6 + 2504885386548*T^5 + 17137600378686*T^4 - 10427014860693*T^3 - 135501285271871*T^2 - 135064675469328*T - 1774258011932
79 79 7 9
T 17 + ⋯ − 9468083562500 T^{17} + \cdots - 9468083562500 T 1 7 + ⋯ − 9 4 6 8 0 8 3 5 6 2 5 0 0
T^17 + 27*T^16 - 447*T^15 - 19076*T^14 - 36411*T^13 + 4199129*T^12 + 40254734*T^11 - 217059270*T^10 - 5281262805*T^9 - 21832622706*T^8 + 122236513455*T^7 + 1636255398257*T^6 + 7396330971859*T^5 + 16901556254450*T^4 + 17550020746199*T^3 - 696716760575*T^2 - 16485488941250*T - 9468083562500
83 83 8 3
T 17 + ⋯ + 25755751965776 T^{17} + \cdots + 25755751965776 T 1 7 + ⋯ + 2 5 7 5 5 7 5 1 9 6 5 7 7 6
T^17 + 40*T^16 + 145*T^15 - 12736*T^14 - 142073*T^13 + 1244360*T^12 + 23903082*T^11 - 11641659*T^10 - 1669433217*T^9 - 4673448624*T^8 + 50114809403*T^7 + 256633856924*T^6 - 411756714481*T^5 - 4493584914730*T^4 - 5276561726643*T^3 + 15658165249951*T^2 + 40746489281776*T + 25755751965776
89 89 8 9
T 17 + ⋯ + 1574641256000 T^{17} + \cdots + 1574641256000 T 1 7 + ⋯ + 1 5 7 4 6 4 1 2 5 6 0 0 0
T^17 + 17*T^16 - 318*T^15 - 6632*T^14 + 25779*T^13 + 876824*T^12 - 297725*T^11 - 56684101*T^10 - 39708881*T^9 + 2060097528*T^8 + 1486158022*T^7 - 43658671004*T^6 - 9856936198*T^5 + 507697381195*T^4 - 231092110662*T^3 - 2546003315780*T^2 + 2540040607600*T + 1574641256000
97 97 9 7
T 17 + ⋯ + 14372578999 T^{17} + \cdots + 14372578999 T 1 7 + ⋯ + 1 4 3 7 2 5 7 8 9 9 9
T^17 + 34*T^16 - 148*T^15 - 15493*T^14 - 85082*T^13 + 2097002*T^12 + 19504803*T^11 - 89199823*T^10 - 1260473526*T^9 + 644946612*T^8 + 33170031069*T^7 + 35425074449*T^6 - 334479641937*T^5 - 625963224705*T^4 + 617303213685*T^3 + 1125805584791*T^2 - 353834003096*T + 14372578999
show more
show less