Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [435,2,Mod(37,435)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(435, base_ring=CyclotomicField(28))
chi = DirichletCharacter(H, H._module([0, 7, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("435.37");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.bm (of order \(28\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.47349248793\) |
Analytic rank: | \(0\) |
Dimension: | \(180\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{28})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{28}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −1.13407 | − | 2.35492i | 0.623490 | + | 0.781831i | −3.01255 | + | 3.77762i | −2.06879 | + | 0.848599i | 1.13407 | − | 2.35492i | 0.499368 | − | 4.43202i | 7.21599 | + | 1.64700i | −0.222521 | + | 0.974928i | 4.34453 | + | 3.90946i |
37.2 | −1.08732 | − | 2.25785i | 0.623490 | + | 0.781831i | −2.66862 | + | 3.34635i | 0.923461 | − | 2.03647i | 1.08732 | − | 2.25785i | −0.0657335 | + | 0.583401i | 5.57082 | + | 1.27150i | −0.222521 | + | 0.974928i | −5.60214 | + | 0.129268i |
37.3 | −0.828336 | − | 1.72006i | 0.623490 | + | 0.781831i | −1.02548 | + | 1.28591i | 1.86055 | + | 1.24031i | 0.828336 | − | 1.72006i | −0.298117 | + | 2.64586i | −0.661238 | − | 0.150923i | −0.222521 | + | 0.974928i | 0.592250 | − | 4.22764i |
37.4 | −0.781835 | − | 1.62350i | 0.623490 | + | 0.781831i | −0.777496 | + | 0.974949i | −1.76781 | − | 1.36925i | 0.781835 | − | 1.62350i | −0.238154 | + | 2.11367i | −1.32283 | − | 0.301928i | −0.222521 | + | 0.974928i | −0.840829 | + | 3.94056i |
37.5 | −0.616058 | − | 1.27926i | 0.623490 | + | 0.781831i | −0.00999478 | + | 0.0125331i | 2.23587 | + | 0.0294969i | 0.616058 | − | 1.27926i | 0.433423 | − | 3.84674i | −2.74635 | − | 0.626837i | −0.222521 | + | 0.974928i | −1.33969 | − | 2.87843i |
37.6 | −0.537625 | − | 1.11639i | 0.623490 | + | 0.781831i | 0.289694 | − | 0.363265i | −1.26866 | + | 1.84133i | 0.537625 | − | 1.11639i | −0.377119 | + | 3.34702i | −2.97736 | − | 0.679562i | −0.222521 | + | 0.974928i | 2.73771 | + | 0.426372i |
37.7 | −0.164366 | − | 0.341310i | 0.623490 | + | 0.781831i | 1.15750 | − | 1.45146i | −2.12222 | − | 0.704390i | 0.164366 | − | 0.341310i | 0.0298844 | − | 0.265232i | −1.42431 | − | 0.325089i | −0.222521 | + | 0.974928i | 0.108407 | + | 0.840114i |
37.8 | −0.102759 | − | 0.213381i | 0.623490 | + | 0.781831i | 1.21201 | − | 1.51981i | 1.24201 | − | 1.85941i | 0.102759 | − | 0.213381i | 0.0307732 | − | 0.273119i | −0.910639 | − | 0.207847i | −0.222521 | + | 0.974928i | −0.524392 | − | 0.0739495i |
37.9 | 0.110667 | + | 0.229802i | 0.623490 | + | 0.781831i | 1.20642 | − | 1.51280i | 2.10538 | + | 0.753254i | −0.110667 | + | 0.229802i | −0.315615 | + | 2.80116i | 0.978486 | + | 0.223333i | −0.222521 | + | 0.974928i | 0.0598960 | + | 0.567180i |
37.10 | 0.537697 | + | 1.11654i | 0.623490 | + | 0.781831i | 0.289438 | − | 0.362944i | −1.20234 | − | 1.88531i | −0.537697 | + | 1.11654i | 0.397131 | − | 3.52463i | 2.97726 | + | 0.679540i | −0.222521 | + | 0.974928i | 1.45852 | − | 2.35618i |
37.11 | 0.571502 | + | 1.18674i | 0.623490 | + | 0.781831i | 0.165250 | − | 0.207217i | −0.713695 | + | 2.11911i | −0.571502 | + | 1.18674i | 0.00550243 | − | 0.0488354i | 2.90866 | + | 0.663883i | −0.222521 | + | 0.974928i | −2.92271 | + | 0.364110i |
37.12 | 0.654914 | + | 1.35994i | 0.623490 | + | 0.781831i | −0.173552 | + | 0.217628i | 0.0447950 | − | 2.23562i | −0.654914 | + | 1.35994i | −0.524983 | + | 4.65935i | 2.53353 | + | 0.578262i | −0.222521 | + | 0.974928i | 3.06965 | − | 1.40322i |
37.13 | 0.792339 | + | 1.64531i | 0.623490 | + | 0.781831i | −0.832258 | + | 1.04362i | 2.09574 | − | 0.779653i | −0.792339 | + | 1.64531i | 0.472013 | − | 4.18923i | 1.18423 | + | 0.270293i | −0.222521 | + | 0.974928i | 2.94331 | + | 2.83039i |
37.14 | 1.05750 | + | 2.19593i | 0.623490 | + | 0.781831i | −2.45682 | + | 3.08075i | −2.23369 | − | 0.102994i | −1.05750 | + | 2.19593i | −0.0423490 | + | 0.375858i | −4.61082 | − | 1.05239i | −0.222521 | + | 0.974928i | −2.13597 | − | 5.01396i |
37.15 | 1.09386 | + | 2.27143i | 0.623490 | + | 0.781831i | −2.71589 | + | 3.40561i | 1.75028 | + | 1.39159i | −1.09386 | + | 2.27143i | −0.143430 | + | 1.27298i | −5.79065 | − | 1.32168i | −0.222521 | + | 0.974928i | −1.24635 | + | 5.49785i |
43.1 | −2.04531 | − | 1.63108i | −0.222521 | + | 0.974928i | 1.07783 | + | 4.72226i | −1.64083 | − | 1.51910i | 2.04531 | − | 1.63108i | 0.0136741 | + | 0.0217622i | 3.22777 | − | 6.70254i | −0.900969 | − | 0.433884i | 0.878234 | + | 5.78336i |
43.2 | −2.03116 | − | 1.61980i | −0.222521 | + | 0.974928i | 1.05683 | + | 4.63028i | 1.16991 | + | 1.90560i | 2.03116 | − | 1.61980i | 1.52677 | + | 2.42985i | 3.09909 | − | 6.43533i | −0.900969 | − | 0.433884i | 0.710399 | − | 5.76560i |
43.3 | −1.70467 | − | 1.35943i | −0.222521 | + | 0.974928i | 0.612805 | + | 2.68487i | 2.19664 | − | 0.418062i | 1.70467 | − | 1.35943i | −1.82909 | − | 2.91097i | 0.713223 | − | 1.48102i | −0.900969 | − | 0.433884i | −4.31286 | − | 2.27351i |
43.4 | −1.25592 | − | 1.00156i | −0.222521 | + | 0.974928i | 0.129161 | + | 0.565891i | −2.00721 | + | 0.985438i | 1.25592 | − | 1.00156i | 0.245610 | + | 0.390886i | −0.989403 | + | 2.05452i | −0.900969 | − | 0.433884i | 3.50787 | + | 0.772717i |
43.5 | −1.14581 | − | 0.913753i | −0.222521 | + | 0.974928i | 0.0328938 | + | 0.144117i | 1.79018 | − | 1.33987i | 1.14581 | − | 0.913753i | 2.18772 | + | 3.48174i | −1.17776 | + | 2.44563i | −0.900969 | − | 0.433884i | −3.27552 | − | 0.100541i |
See next 80 embeddings (of 180 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
145.t | even | 28 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 435.2.bm.a | yes | 180 |
5.c | odd | 4 | 1 | 435.2.bd.b | ✓ | 180 | |
29.f | odd | 28 | 1 | 435.2.bd.b | ✓ | 180 | |
145.t | even | 28 | 1 | inner | 435.2.bm.a | yes | 180 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
435.2.bd.b | ✓ | 180 | 5.c | odd | 4 | 1 | |
435.2.bd.b | ✓ | 180 | 29.f | odd | 28 | 1 | |
435.2.bm.a | yes | 180 | 1.a | even | 1 | 1 | trivial |
435.2.bm.a | yes | 180 | 145.t | even | 28 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{180} - 45 T_{2}^{178} + 1121 T_{2}^{176} - 20461 T_{2}^{174} + 305881 T_{2}^{172} + 210 T_{2}^{171} + \cdots + 12769 \) acting on \(S_{2}^{\mathrm{new}}(435, [\chi])\).