Properties

Label 435.2.f.e.289.4
Level 435435
Weight 22
Character 435.289
Analytic conductor 3.4733.473
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(289,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 435=3529 435 = 3 \cdot 5 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 435.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.473492487933.47349248793
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x1111x9+55x866x7+328x6214x5+207x4+383x3++209 x^{12} - x^{11} - 11 x^{9} + 55 x^{8} - 66 x^{7} + 328 x^{6} - 214 x^{5} + 207 x^{4} + 383 x^{3} + \cdots + 209 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 26 2^{6}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 289.4
Root 2.447731.33046i2.44773 - 1.33046i of defining polynomial
Character χ\chi == 435.289
Dual form 435.2.f.e.289.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.97264q21.00000q3+1.89129q4+(1.38075+1.75885i)q5+1.97264q60.520254iq7+0.214447q8+1.00000q9+(2.723713.46956i)q10+2.16411iq111.89129q121.53375iq13+1.02627iq14+(1.380751.75885i)q154.20560q16+2.47957q171.97264q184.70989iq19+(2.61139+3.32649i)q20+0.520254iq214.26900iq22+1.46369iq230.214447q24+(1.18708+4.85704i)q25+3.02552iq261.00000q270.983951iq28+(2.29579+4.87128i)q29+(2.72371+3.46956i)q30+4.64210iq31+7.86723q322.16411iq334.89129q34+(0.9150470.718339i)q35+1.89129q36+1.77536q37+9.29090iq38+1.53375iq39+(0.296097+0.377179i)q40+9.71408iq411.02627iq42+5.39269q43+4.09296iq44+(1.38075+1.75885i)q452.88733iq46+3.68312q47+4.20560q48+6.72934q49+(2.341689.58117i)q502.47957q512.90076iq52+7.74965iq53+1.97264q54+(3.80634+2.98808i)q550.111567iq56+4.70989iq57+(4.528769.60925i)q581.91288q59+(2.611393.32649i)q60+7.66501iq619.15717iq620.520254iq637.10796q64+(2.697632.11771i)q65+4.26900iq66+7.88749iq67+4.68959q681.46369iq69+(1.80505+1.41702i)q709.78001q71+0.214447q724.70676q733.50215q74+(1.187084.85704i)q758.90777iq76+1.12589q773.02552iq7812.3714iq79+(5.806877.39701i)q80+1.00000q8119.1623iq82+7.32647iq83+0.983951iq84+(3.42366+4.36119i)q8510.6378q86+(2.295794.87128i)q87+0.464086iq887.66235iq89+(2.723713.46956i)q900.797938q91+2.76827iq924.64210iq937.26545q94+(8.283976.50316i)q957.86723q961.64507q9713.2745q98+2.16411iq99+O(q100)q-1.97264 q^{2} -1.00000 q^{3} +1.89129 q^{4} +(1.38075 + 1.75885i) q^{5} +1.97264 q^{6} -0.520254i q^{7} +0.214447 q^{8} +1.00000 q^{9} +(-2.72371 - 3.46956i) q^{10} +2.16411i q^{11} -1.89129 q^{12} -1.53375i q^{13} +1.02627i q^{14} +(-1.38075 - 1.75885i) q^{15} -4.20560 q^{16} +2.47957 q^{17} -1.97264 q^{18} -4.70989i q^{19} +(2.61139 + 3.32649i) q^{20} +0.520254i q^{21} -4.26900i q^{22} +1.46369i q^{23} -0.214447 q^{24} +(-1.18708 + 4.85704i) q^{25} +3.02552i q^{26} -1.00000 q^{27} -0.983951i q^{28} +(2.29579 + 4.87128i) q^{29} +(2.72371 + 3.46956i) q^{30} +4.64210i q^{31} +7.86723 q^{32} -2.16411i q^{33} -4.89129 q^{34} +(0.915047 - 0.718339i) q^{35} +1.89129 q^{36} +1.77536 q^{37} +9.29090i q^{38} +1.53375i q^{39} +(0.296097 + 0.377179i) q^{40} +9.71408i q^{41} -1.02627i q^{42} +5.39269 q^{43} +4.09296i q^{44} +(1.38075 + 1.75885i) q^{45} -2.88733i q^{46} +3.68312 q^{47} +4.20560 q^{48} +6.72934 q^{49} +(2.34168 - 9.58117i) q^{50} -2.47957 q^{51} -2.90076i q^{52} +7.74965i q^{53} +1.97264 q^{54} +(-3.80634 + 2.98808i) q^{55} -0.111567i q^{56} +4.70989i q^{57} +(-4.52876 - 9.60925i) q^{58} -1.91288 q^{59} +(-2.61139 - 3.32649i) q^{60} +7.66501i q^{61} -9.15717i q^{62} -0.520254i q^{63} -7.10796 q^{64} +(2.69763 - 2.11771i) q^{65} +4.26900i q^{66} +7.88749i q^{67} +4.68959 q^{68} -1.46369i q^{69} +(-1.80505 + 1.41702i) q^{70} -9.78001 q^{71} +0.214447 q^{72} -4.70676 q^{73} -3.50215 q^{74} +(1.18708 - 4.85704i) q^{75} -8.90777i q^{76} +1.12589 q^{77} -3.02552i q^{78} -12.3714i q^{79} +(-5.80687 - 7.39701i) q^{80} +1.00000 q^{81} -19.1623i q^{82} +7.32647i q^{83} +0.983951i q^{84} +(3.42366 + 4.36119i) q^{85} -10.6378 q^{86} +(-2.29579 - 4.87128i) q^{87} +0.464086i q^{88} -7.66235i q^{89} +(-2.72371 - 3.46956i) q^{90} -0.797938 q^{91} +2.76827i q^{92} -4.64210i q^{93} -7.26545 q^{94} +(8.28397 - 6.50316i) q^{95} -7.86723 q^{96} -1.64507 q^{97} -13.2745 q^{98} +2.16411i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q12q3+16q46q5+12q92q1016q12+6q15+32q16+8q1720q20+12q2512q27+8q29+2q30+40q3252q34+14q35+16q36++112q98+O(q100) 12 q - 12 q^{3} + 16 q^{4} - 6 q^{5} + 12 q^{9} - 2 q^{10} - 16 q^{12} + 6 q^{15} + 32 q^{16} + 8 q^{17} - 20 q^{20} + 12 q^{25} - 12 q^{27} + 8 q^{29} + 2 q^{30} + 40 q^{32} - 52 q^{34} + 14 q^{35} + 16 q^{36}+ \cdots + 112 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/435Z)×\left(\mathbb{Z}/435\mathbb{Z}\right)^\times.

nn 3131 146146 262262
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.97264 −1.39486 −0.697432 0.716651i 0.745674π-0.745674\pi
−0.697432 + 0.716651i 0.745674π0.745674\pi
33 −1.00000 −0.577350
44 1.89129 0.945645
55 1.38075 + 1.75885i 0.617488 + 0.786580i
66 1.97264 0.805325
77 0.520254i 0.196638i −0.995155 0.0983188i 0.968654π-0.968654\pi
0.995155 0.0983188i 0.0313465π-0.0313465\pi
88 0.214447 0.0758184
99 1.00000 0.333333
1010 −2.72371 3.46956i −0.861312 1.09717i
1111 2.16411i 0.652504i 0.945283 + 0.326252i 0.105786π0.105786\pi
−0.945283 + 0.326252i 0.894214π0.894214\pi
1212 −1.89129 −0.545968
1313 1.53375i 0.425385i −0.977119 0.212692i 0.931777π-0.931777\pi
0.977119 0.212692i 0.0682232π-0.0682232\pi
1414 1.02627i 0.274283i
1515 −1.38075 1.75885i −0.356507 0.454132i
1616 −4.20560 −1.05140
1717 2.47957 0.601384 0.300692 0.953721i 0.402782π-0.402782\pi
0.300692 + 0.953721i 0.402782π0.402782\pi
1818 −1.97264 −0.464955
1919 4.70989i 1.08052i −0.841497 0.540262i 0.818325π-0.818325\pi
0.841497 0.540262i 0.181675π-0.181675\pi
2020 2.61139 + 3.32649i 0.583924 + 0.743825i
2121 0.520254i 0.113529i
2222 4.26900i 0.910153i
2323 1.46369i 0.305201i 0.988288 + 0.152600i 0.0487648π0.0487648\pi
−0.988288 + 0.152600i 0.951235π0.951235\pi
2424 −0.214447 −0.0437738
2525 −1.18708 + 4.85704i −0.237416 + 0.971408i
2626 3.02552i 0.593354i
2727 −1.00000 −0.192450
2828 0.983951i 0.185949i
2929 2.29579 + 4.87128i 0.426318 + 0.904573i
3030 2.72371 + 3.46956i 0.497279 + 0.633453i
3131 4.64210i 0.833746i 0.908965 + 0.416873i 0.136874π0.136874\pi
−0.908965 + 0.416873i 0.863126π0.863126\pi
3232 7.86723 1.39074
3333 2.16411i 0.376723i
3434 −4.89129 −0.838849
3535 0.915047 0.718339i 0.154671 0.121421i
3636 1.89129 0.315215
3737 1.77536 0.291868 0.145934 0.989294i 0.453381π-0.453381\pi
0.145934 + 0.989294i 0.453381π0.453381\pi
3838 9.29090i 1.50718i
3939 1.53375i 0.245596i
4040 0.296097 + 0.377179i 0.0468170 + 0.0596372i
4141 9.71408i 1.51708i 0.651624 + 0.758542i 0.274088π0.274088\pi
−0.651624 + 0.758542i 0.725912π0.725912\pi
4242 1.02627i 0.158357i
4343 5.39269 0.822377 0.411188 0.911550i 0.365114π-0.365114\pi
0.411188 + 0.911550i 0.365114π0.365114\pi
4444 4.09296i 0.617036i
4545 1.38075 + 1.75885i 0.205829 + 0.262193i
4646 2.88733i 0.425714i
4747 3.68312 0.537238 0.268619 0.963246i 0.413433π-0.413433\pi
0.268619 + 0.963246i 0.413433π0.413433\pi
4848 4.20560 0.607027
4949 6.72934 0.961334
5050 2.34168 9.58117i 0.331163 1.35498i
5151 −2.47957 −0.347209
5252 2.90076i 0.402263i
5353 7.74965i 1.06450i 0.846588 + 0.532248i 0.178653π0.178653\pi
−0.846588 + 0.532248i 0.821347π0.821347\pi
5454 1.97264 0.268442
5555 −3.80634 + 2.98808i −0.513246 + 0.402913i
5656 0.111567i 0.0149087i
5757 4.70989i 0.623840i
5858 −4.52876 9.60925i −0.594655 1.26176i
5959 −1.91288 −0.249035 −0.124518 0.992217i 0.539738π-0.539738\pi
−0.124518 + 0.992217i 0.539738π0.539738\pi
6060 −2.61139 3.32649i −0.337129 0.429448i
6161 7.66501i 0.981404i 0.871328 + 0.490702i 0.163260π0.163260\pi
−0.871328 + 0.490702i 0.836740π0.836740\pi
6262 9.15717i 1.16296i
6363 0.520254i 0.0655458i
6464 −7.10796 −0.888495
6565 2.69763 2.11771i 0.334599 0.262670i
6666 4.26900i 0.525477i
6767 7.88749i 0.963611i 0.876278 + 0.481805i 0.160019π0.160019\pi
−0.876278 + 0.481805i 0.839981π0.839981\pi
6868 4.68959 0.568696
6969 1.46369i 0.176208i
7070 −1.80505 + 1.41702i −0.215745 + 0.169366i
7171 −9.78001 −1.16067 −0.580337 0.814376i 0.697079π-0.697079\pi
−0.580337 + 0.814376i 0.697079π0.697079\pi
7272 0.214447 0.0252728
7373 −4.70676 −0.550885 −0.275442 0.961318i 0.588824π-0.588824\pi
−0.275442 + 0.961318i 0.588824π0.588824\pi
7474 −3.50215 −0.407116
7575 1.18708 4.85704i 0.137072 0.560843i
7676 8.90777i 1.02179i
7777 1.12589 0.128307
7878 3.02552i 0.342573i
7979 12.3714i 1.39189i −0.718093 0.695947i 0.754985π-0.754985\pi
0.718093 0.695947i 0.245015π-0.245015\pi
8080 −5.80687 7.39701i −0.649228 0.827011i
8181 1.00000 0.111111
8282 19.1623i 2.11613i
8383 7.32647i 0.804184i 0.915599 + 0.402092i 0.131717π0.131717\pi
−0.915599 + 0.402092i 0.868283π0.868283\pi
8484 0.983951i 0.107358i
8585 3.42366 + 4.36119i 0.371348 + 0.473037i
8686 −10.6378 −1.14710
8787 −2.29579 4.87128i −0.246135 0.522256i
8888 0.464086i 0.0494718i
8989 7.66235i 0.812207i −0.913827 0.406104i 0.866887π-0.866887\pi
0.913827 0.406104i 0.133113π-0.133113\pi
9090 −2.72371 3.46956i −0.287104 0.365724i
9191 −0.797938 −0.0836466
9292 2.76827i 0.288612i
9393 4.64210i 0.481364i
9494 −7.26545 −0.749374
9595 8.28397 6.50316i 0.849918 0.667210i
9696 −7.86723 −0.802946
9797 −1.64507 −0.167031 −0.0835156 0.996506i 0.526615π-0.526615\pi
−0.0835156 + 0.996506i 0.526615π0.526615\pi
9898 −13.2745 −1.34093
9999 2.16411i 0.217501i
100100 −2.24512 + 9.18607i −0.224512 + 0.918607i
101101 3.20388i 0.318798i −0.987214 0.159399i 0.949044π-0.949044\pi
0.987214 0.159399i 0.0509556π-0.0509556\pi
102102 4.89129 0.484310
103103 7.80019i 0.768575i 0.923213 + 0.384288i 0.125553π0.125553\pi
−0.923213 + 0.384288i 0.874447π0.874447\pi
104104 0.328907i 0.0322520i
105105 −0.915047 + 0.718339i −0.0892994 + 0.0701027i
106106 15.2872i 1.48483i
107107 18.4094i 1.77971i −0.456246 0.889854i 0.650806π-0.650806\pi
0.456246 0.889854i 0.349194π-0.349194\pi
108108 −1.89129 −0.181989
109109 17.4302 1.66951 0.834755 0.550621i 0.185609π-0.185609\pi
0.834755 + 0.550621i 0.185609π0.185609\pi
110110 7.50851 5.89440i 0.715909 0.562009i
111111 −1.77536 −0.168510
112112 2.18798i 0.206745i
113113 −6.78282 −0.638074 −0.319037 0.947742i 0.603359π-0.603359\pi
−0.319037 + 0.947742i 0.603359π0.603359\pi
114114 9.29090i 0.870172i
115115 −2.57441 + 2.02099i −0.240065 + 0.188458i
116116 4.34201 + 9.21299i 0.403145 + 0.855405i
117117 1.53375i 0.141795i
118118 3.77341 0.347370
119119 1.29001i 0.118255i
120120 −0.296097 0.377179i −0.0270298 0.0344316i
121121 6.31663 0.574239
122122 15.1203i 1.36892i
123123 9.71408i 0.875889i
124124 8.77956i 0.788428i
125125 −10.1818 + 4.61844i −0.910692 + 0.413086i
126126 1.02627i 0.0914275i
127127 −14.0473 −1.24649 −0.623247 0.782025i 0.714187π-0.714187\pi
−0.623247 + 0.782025i 0.714187π0.714187\pi
128128 −1.71304 −0.151413
129129 −5.39269 −0.474799
130130 −5.32143 + 4.17748i −0.466720 + 0.366389i
131131 9.19950i 0.803764i 0.915692 + 0.401882i 0.131644π0.131644\pi
−0.915692 + 0.401882i 0.868356π0.868356\pi
132132 4.09296i 0.356246i
133133 −2.45034 −0.212471
134134 15.5591i 1.34411i
135135 −1.38075 1.75885i −0.118836 0.151377i
136136 0.531736 0.0455960
137137 16.6227 1.42017 0.710086 0.704115i 0.248656π-0.248656\pi
0.710086 + 0.704115i 0.248656π0.248656\pi
138138 2.88733i 0.245786i
139139 1.13775 0.0965027 0.0482514 0.998835i 0.484635π-0.484635\pi
0.0482514 + 0.998835i 0.484635π0.484635\pi
140140 1.73062 1.35859i 0.146264 0.114821i
141141 −3.68312 −0.310175
142142 19.2924 1.61898
143143 3.31920 0.277565
144144 −4.20560 −0.350467
145145 −5.39792 + 10.7639i −0.448273 + 0.893897i
146146 9.28472 0.768409
147147 −6.72934 −0.555026
148148 3.35773 0.276003
149149 0.981478 0.0804058 0.0402029 0.999192i 0.487200π-0.487200\pi
0.0402029 + 0.999192i 0.487200π0.487200\pi
150150 −2.34168 + 9.58117i −0.191197 + 0.782299i
151151 11.4798 0.934214 0.467107 0.884201i 0.345296π-0.345296\pi
0.467107 + 0.884201i 0.345296π0.345296\pi
152152 1.01002i 0.0819235i
153153 2.47957 0.200461
154154 −2.22096 −0.178970
155155 −8.16475 + 6.40956i −0.655808 + 0.514829i
156156 2.90076i 0.232247i
157157 −8.00465 −0.638841 −0.319420 0.947613i 0.603488π-0.603488\pi
−0.319420 + 0.947613i 0.603488π0.603488\pi
158158 24.4043i 1.94150i
159159 7.74965i 0.614587i
160160 10.8626 + 13.8372i 0.858767 + 1.09393i
161161 0.761492 0.0600140
162162 −1.97264 −0.154985
163163 −2.46129 −0.192783 −0.0963915 0.995344i 0.530730π-0.530730\pi
−0.0963915 + 0.995344i 0.530730π0.530730\pi
164164 18.3721i 1.43462i
165165 3.80634 2.98808i 0.296323 0.232622i
166166 14.4524i 1.12173i
167167 4.98139i 0.385471i −0.981251 0.192736i 0.938264π-0.938264\pi
0.981251 0.192736i 0.0617360π-0.0617360\pi
168168 0.111567i 0.00860757i
169169 10.6476 0.819048
170170 −6.75363 8.60303i −0.517980 0.659822i
171171 4.70989i 0.360174i
172172 10.1991 0.777676
173173 15.0543i 1.14456i 0.820058 + 0.572280i 0.193941π0.193941\pi
−0.820058 + 0.572280i 0.806059π0.806059\pi
174174 4.52876 + 9.60925i 0.343325 + 0.728475i
175175 2.52689 + 0.617584i 0.191015 + 0.0466850i
176176 9.10139i 0.686043i
177177 1.91288 0.143781
178178 15.1150i 1.13292i
179179 −25.1991 −1.88347 −0.941736 0.336352i 0.890807π-0.890807\pi
−0.941736 + 0.336352i 0.890807π0.890807\pi
180180 2.61139 + 3.32649i 0.194641 + 0.247942i
181181 5.27495 0.392084 0.196042 0.980595i 0.437191π-0.437191\pi
0.196042 + 0.980595i 0.437191π0.437191\pi
182182 1.57404 0.116676
183183 7.66501i 0.566614i
184184 0.313884i 0.0231398i
185185 2.45133 + 3.12259i 0.180225 + 0.229578i
186186 9.15717i 0.671437i
187187 5.36606i 0.392405i
188188 6.96585 0.508037
189189 0.520254i 0.0378429i
190190 −16.3413 + 12.8284i −1.18552 + 0.930667i
191191 3.31544i 0.239897i −0.992780 0.119949i 0.961727π-0.961727\pi
0.992780 0.119949i 0.0382730π-0.0382730\pi
192192 7.10796 0.512973
193193 5.69128 0.409667 0.204834 0.978797i 0.434335π-0.434335\pi
0.204834 + 0.978797i 0.434335π0.434335\pi
194194 3.24512 0.232986
195195 −2.69763 + 2.11771i −0.193181 + 0.151653i
196196 12.7271 0.909080
197197 0.314623i 0.0224160i −0.999937 0.0112080i 0.996432π-0.996432\pi
0.999937 0.0112080i 0.00356769π-0.00356769\pi
198198 4.26900i 0.303384i
199199 2.94247 0.208586 0.104293 0.994547i 0.466742π-0.466742\pi
0.104293 + 0.994547i 0.466742π0.466742\pi
200200 −0.254566 + 1.04158i −0.0180005 + 0.0736506i
201201 7.88749i 0.556341i
202202 6.32008i 0.444679i
203203 2.53430 1.19440i 0.177873 0.0838301i
204204 −4.68959 −0.328337
205205 −17.0856 + 13.4127i −1.19331 + 0.936782i
206206 15.3869i 1.07206i
207207 1.46369i 0.101734i
208208 6.45033i 0.447250i
209209 10.1927 0.705045
210210 1.80505 1.41702i 0.124561 0.0977837i
211211 6.92301i 0.476600i −0.971192 0.238300i 0.923410π-0.923410\pi
0.971192 0.238300i 0.0765901π-0.0765901\pi
212212 14.6568i 1.00664i
213213 9.78001 0.670115
214214 36.3151i 2.48245i
215215 7.44593 + 9.48491i 0.507808 + 0.646865i
216216 −0.214447 −0.0145913
217217 2.41507 0.163946
218218 −34.3834 −2.32874
219219 4.70676 0.318053
220220 −7.19888 + 5.65133i −0.485349 + 0.381013i
221221 3.80303i 0.255820i
222222 3.50215 0.235049
223223 28.4693i 1.90644i −0.302272 0.953222i 0.597745π-0.597745\pi
0.302272 0.953222i 0.402255π-0.402255\pi
224224 4.09296i 0.273472i
225225 −1.18708 + 4.85704i −0.0791388 + 0.323803i
226226 13.3800 0.890026
227227 7.15024i 0.474578i 0.971439 + 0.237289i 0.0762589π0.0762589\pi
−0.971439 + 0.237289i 0.923741π0.923741\pi
228228 8.90777i 0.589931i
229229 9.94406i 0.657122i −0.944483 0.328561i 0.893436π-0.893436\pi
0.944483 0.328561i 0.106564π-0.106564\pi
230230 5.07837 3.98667i 0.334858 0.262873i
231231 −1.12589 −0.0740779
232232 0.492325 + 1.04463i 0.0323227 + 0.0685833i
233233 13.5734i 0.889222i −0.895724 0.444611i 0.853342π-0.853342\pi
0.895724 0.444611i 0.146658π-0.146658\pi
234234 3.02552i 0.197785i
235235 5.08545 + 6.47804i 0.331738 + 0.422581i
236236 −3.61780 −0.235499
237237 12.3714i 0.803611i
238238 2.54471i 0.164949i
239239 15.5469 1.00564 0.502821 0.864390i 0.332295π-0.332295\pi
0.502821 + 0.864390i 0.332295π0.332295\pi
240240 5.80687 + 7.39701i 0.374832 + 0.477475i
241241 −18.2171 −1.17346 −0.586732 0.809781i 0.699586π-0.699586\pi
−0.586732 + 0.809781i 0.699586π0.699586\pi
242242 −12.4604 −0.800985
243243 −1.00000 −0.0641500
244244 14.4967i 0.928059i
245245 9.29150 + 11.8359i 0.593612 + 0.756166i
246246 19.1623i 1.22175i
247247 −7.22378 −0.459638
248248 0.995484i 0.0632133i
249249 7.32647i 0.464296i
250250 20.0851 9.11050i 1.27029 0.576199i
251251 5.16558i 0.326048i 0.986622 + 0.163024i 0.0521248π0.0521248\pi
−0.986622 + 0.163024i 0.947875π0.947875\pi
252252 0.983951i 0.0619831i
253253 −3.16759 −0.199145
254254 27.7102 1.73869
255255 −3.42366 4.36119i −0.214398 0.273108i
256256 17.5951 1.09970
257257 19.6922i 1.22837i −0.789163 0.614184i 0.789485π-0.789485\pi
0.789163 0.614184i 0.210515π-0.210515\pi
258258 10.6378 0.662281
259259 0.923640i 0.0573922i
260260 5.10199 4.00521i 0.316412 0.248393i
261261 2.29579 + 4.87128i 0.142106 + 0.301524i
262262 18.1472i 1.12114i
263263 11.9634 0.737697 0.368848 0.929490i 0.379752π-0.379752\pi
0.368848 + 0.929490i 0.379752π0.379752\pi
264264 0.464086i 0.0285625i
265265 −13.6304 + 10.7003i −0.837312 + 0.657314i
266266 4.83363 0.296369
267267 7.66235i 0.468928i
268268 14.9175i 0.911233i
269269 16.5561i 1.00945i −0.863282 0.504723i 0.831595π-0.831595\pi
0.863282 0.504723i 0.168405π-0.168405\pi
270270 2.72371 + 3.46956i 0.165760 + 0.211151i
271271 25.4539i 1.54621i −0.634277 0.773106i 0.718702π-0.718702\pi
0.634277 0.773106i 0.281298π-0.281298\pi
272272 −10.4281 −0.632296
273273 0.797938 0.0482934
274274 −32.7905 −1.98095
275275 −10.5112 2.56897i −0.633847 0.154915i
276276 2.76827i 0.166630i
277277 30.7150i 1.84549i 0.385415 + 0.922743i 0.374058π0.374058\pi
−0.385415 + 0.922743i 0.625942π0.625942\pi
278278 −2.24437 −0.134608
279279 4.64210i 0.277915i
280280 0.196229 0.154045i 0.0117269 0.00920597i
281281 22.7775 1.35879 0.679395 0.733773i 0.262242π-0.262242\pi
0.679395 + 0.733773i 0.262242π0.262242\pi
282282 7.26545 0.432651
283283 30.6646i 1.82282i −0.411499 0.911410i 0.634995π-0.634995\pi
0.411499 0.911410i 0.365005π-0.365005\pi
284284 −18.4968 −1.09759
285285 −8.28397 + 6.50316i −0.490700 + 0.385214i
286286 −6.54756 −0.387165
287287 5.05379 0.298316
288288 7.86723 0.463581
289289 −10.8517 −0.638337
290290 10.6481 21.2333i 0.625280 1.24686i
291291 1.64507 0.0964355
292292 −8.90185 −0.520941
293293 −0.956588 −0.0558845 −0.0279422 0.999610i 0.508895π-0.508895\pi
−0.0279422 + 0.999610i 0.508895π0.508895\pi
294294 13.2745 0.774186
295295 −2.64120 3.36446i −0.153776 0.195886i
296296 0.380721 0.0221290
297297 2.16411i 0.125574i
298298 −1.93610 −0.112155
299299 2.24493 0.129828
300300 2.24512 9.18607i 0.129622 0.530358i
301301 2.80557i 0.161710i
302302 −22.6455 −1.30310
303303 3.20388i 0.184058i
304304 19.8079i 1.13606i
305305 −13.4816 + 10.5834i −0.771953 + 0.606005i
306306 −4.89129 −0.279616
307307 31.8260 1.81641 0.908203 0.418530i 0.137455π-0.137455\pi
0.908203 + 0.418530i 0.137455π0.137455\pi
308308 2.12938 0.121333
309309 7.80019i 0.443737i
310310 16.1061 12.6437i 0.914763 0.718116i
311311 1.83226i 0.103898i −0.998650 0.0519489i 0.983457π-0.983457\pi
0.998650 0.0519489i 0.0165433π-0.0165433\pi
312312 0.328907i 0.0186207i
313313 16.8539i 0.952639i −0.879272 0.476320i 0.841971π-0.841971\pi
0.879272 0.476320i 0.158029π-0.158029\pi
314314 15.7903 0.891095
315315 0.915047 0.718339i 0.0515571 0.0404738i
316316 23.3979i 1.31624i
317317 −29.0897 −1.63384 −0.816920 0.576751i 0.804320π-0.804320\pi
−0.816920 + 0.576751i 0.804320π0.804320\pi
318318 15.2872i 0.857265i
319319 −10.5420 + 4.96835i −0.590237 + 0.278174i
320320 −9.81429 12.5018i −0.548635 0.698873i
321321 18.4094i 1.02751i
322322 −1.50215 −0.0837113
323323 11.6785i 0.649810i
324324 1.89129 0.105072
325325 7.44947 + 1.82068i 0.413222 + 0.100993i
326326 4.85522 0.268906
327327 −17.4302 −0.963892
328328 2.08315i 0.115023i
329329 1.91616i 0.105641i
330330 −7.50851 + 5.89440i −0.413330 + 0.324476i
331331 15.3405i 0.843191i −0.906784 0.421596i 0.861470π-0.861470\pi
0.906784 0.421596i 0.138530π-0.138530\pi
332332 13.8565i 0.760472i
333333 1.77536 0.0972893
334334 9.82646i 0.537680i
335335 −13.8729 + 10.8906i −0.757957 + 0.595018i
336336 2.18798i 0.119364i
337337 −21.0799 −1.14830 −0.574148 0.818751i 0.694667π-0.694667\pi
−0.574148 + 0.818751i 0.694667π0.694667\pi
338338 −21.0039 −1.14246
339339 6.78282 0.368392
340340 6.47513 + 8.24826i 0.351163 + 0.447325i
341341 −10.0460 −0.544022
342342 9.29090i 0.502394i
343343 7.14274i 0.385672i
344344 1.15644 0.0623513
345345 2.57441 2.02099i 0.138602 0.108806i
346346 29.6967i 1.59650i
347347 24.5985i 1.32051i 0.751040 + 0.660257i 0.229553π0.229553\pi
−0.751040 + 0.660257i 0.770447π0.770447\pi
348348 −4.34201 9.21299i −0.232756 0.493868i
349349 −22.7037 −1.21530 −0.607649 0.794205i 0.707887π-0.707887\pi
−0.607649 + 0.794205i 0.707887π0.707887\pi
350350 −4.98464 1.21827i −0.266440 0.0651192i
351351 1.53375i 0.0818653i
352352 17.0255i 0.907464i
353353 1.38426i 0.0736769i 0.999321 + 0.0368385i 0.0117287π0.0117287\pi
−0.999321 + 0.0368385i 0.988271π0.988271\pi
354354 −3.77341 −0.200554
355355 −13.5037 17.2015i −0.716703 0.912963i
356356 14.4917i 0.768059i
357357 1.29001i 0.0682744i
358358 49.7087 2.62719
359359 21.6876i 1.14463i −0.820035 0.572313i 0.806046π-0.806046\pi
0.820035 0.572313i 0.193954π-0.193954\pi
360360 0.296097 + 0.377179i 0.0156057 + 0.0198791i
361361 −3.18307 −0.167530
362362 −10.4056 −0.546904
363363 −6.31663 −0.331537
364364 −1.50913 −0.0791000
365365 −6.49884 8.27847i −0.340165 0.433315i
366366 15.1203i 0.790349i
367367 0.210815 0.0110044 0.00550222 0.999985i 0.498249π-0.498249\pi
0.00550222 + 0.999985i 0.498249π0.498249\pi
368368 6.15571i 0.320889i
369369 9.71408i 0.505695i
370370 −4.83557 6.15974i −0.251389 0.320229i
371371 4.03179 0.209320
372372 8.77956i 0.455199i
373373 5.66464i 0.293304i −0.989188 0.146652i 0.953150π-0.953150\pi
0.989188 0.146652i 0.0468498π-0.0468498\pi
374374 10.5853i 0.547352i
375375 10.1818 4.61844i 0.525788 0.238495i
376376 0.789833 0.0407325
377377 7.47131 3.52116i 0.384792 0.181349i
378378 1.02627i 0.0527857i
379379 12.5695i 0.645650i 0.946459 + 0.322825i 0.104633π0.104633\pi
−0.946459 + 0.322825i 0.895367π0.895367\pi
380380 15.6674 12.2994i 0.803720 0.630944i
381381 14.0473 0.719664
382382 6.54016i 0.334624i
383383 23.0968i 1.18019i −0.807333 0.590096i 0.799090π-0.799090\pi
0.807333 0.590096i 0.200910π-0.200910\pi
384384 1.71304 0.0874182
385385 1.55456 + 1.98026i 0.0792279 + 0.100923i
386386 −11.2268 −0.571430
387387 5.39269 0.274126
388388 −3.11130 −0.157952
389389 20.5826i 1.04358i 0.853074 + 0.521789i 0.174735π0.174735\pi
−0.853074 + 0.521789i 0.825265π0.825265\pi
390390 5.32143 4.17748i 0.269461 0.211535i
391391 3.62933i 0.183543i
392392 1.44308 0.0728868
393393 9.19950i 0.464053i
394394 0.620637i 0.0312672i
395395 21.7594 17.0818i 1.09484 0.859479i
396396 4.09296i 0.205679i
397397 26.2539i 1.31764i −0.752298 0.658822i 0.771055π-0.771055\pi
0.752298 0.658822i 0.228945π-0.228945\pi
398398 −5.80441 −0.290949
399399 2.45034 0.122670
400400 4.99240 20.4268i 0.249620 1.02134i
401401 −17.1621 −0.857034 −0.428517 0.903534i 0.640964π-0.640964\pi
−0.428517 + 0.903534i 0.640964π0.640964\pi
402402 15.5591i 0.776020i
403403 7.11981 0.354663
404404 6.05946i 0.301469i
405405 1.38075 + 1.75885i 0.0686098 + 0.0873978i
406406 −4.99925 + 2.35611i −0.248109 + 0.116932i
407407 3.84208i 0.190445i
408408 −0.531736 −0.0263249
409409 14.9034i 0.736925i −0.929643 0.368462i 0.879884π-0.879884\pi
0.929643 0.368462i 0.120116π-0.120116\pi
410410 33.7036 26.4583i 1.66450 1.30668i
411411 −16.6227 −0.819936
412412 14.7524i 0.726799i
413413 0.995181i 0.0489697i
414414 2.88733i 0.141905i
415415 −12.8861 + 10.1160i −0.632555 + 0.496574i
416416 12.0663i 0.591601i
417417 −1.13775 −0.0557159
418418 −20.1065 −0.983442
419419 −19.5741 −0.956259 −0.478129 0.878289i 0.658685π-0.658685\pi
−0.478129 + 0.878289i 0.658685π0.658685\pi
420420 −1.73062 + 1.35859i −0.0844455 + 0.0662922i
421421 8.71742i 0.424861i −0.977176 0.212431i 0.931862π-0.931862\pi
0.977176 0.212431i 0.0681379π-0.0681379\pi
422422 13.6566i 0.664792i
423423 3.68312 0.179079
424424 1.66189i 0.0807084i
425425 −2.94345 + 12.0434i −0.142778 + 0.584190i
426426 −19.2924 −0.934720
427427 3.98775 0.192981
428428 34.8176i 1.68297i
429429 −3.31920 −0.160252
430430 −14.6881 18.7103i −0.708323 0.902289i
431431 −26.7125 −1.28669 −0.643347 0.765574i 0.722455π-0.722455\pi
−0.643347 + 0.765574i 0.722455π0.722455\pi
432432 4.20560 0.202342
433433 34.3298 1.64978 0.824892 0.565290i 0.191236π-0.191236\pi
0.824892 + 0.565290i 0.191236π0.191236\pi
434434 −4.76406 −0.228682
435435 5.39792 10.7639i 0.258811 0.516092i
436436 32.9655 1.57876
437437 6.89383 0.329777
438438 −9.28472 −0.443641
439439 −30.4762 −1.45455 −0.727274 0.686347i 0.759213π-0.759213\pi
−0.727274 + 0.686347i 0.759213π0.759213\pi
440440 −0.816257 + 0.640785i −0.0389135 + 0.0305482i
441441 6.72934 0.320445
442442 7.50200i 0.356834i
443443 17.3948 0.826451 0.413225 0.910629i 0.364402π-0.364402\pi
0.413225 + 0.910629i 0.364402π0.364402\pi
444444 −3.35773 −0.159351
445445 13.4769 10.5798i 0.638866 0.501528i
446446 56.1595i 2.65923i
447447 −0.981478 −0.0464223
448448 3.69795i 0.174712i
449449 1.06526i 0.0502726i −0.999684 0.0251363i 0.991998π-0.991998\pi
0.999684 0.0251363i 0.00800197π-0.00800197\pi
450450 2.34168 9.58117i 0.110388 0.451661i
451451 −21.0223 −0.989903
452452 −12.8283 −0.603391
453453 −11.4798 −0.539368
454454 14.1048i 0.661972i
455455 −1.10175 1.40345i −0.0516508 0.0657948i
456456 1.01002i 0.0472986i
457457 1.01761i 0.0476020i −0.999717 0.0238010i 0.992423π-0.992423\pi
0.999717 0.0238010i 0.00757681π-0.00757681\pi
458458 19.6160i 0.916596i
459459 −2.47957 −0.115736
460460 −4.86895 + 3.82227i −0.227016 + 0.178214i
461461 3.17621i 0.147931i 0.997261 + 0.0739655i 0.0235655π0.0235655\pi
−0.997261 + 0.0739655i 0.976435π0.976435\pi
462462 2.22096 0.103329
463463 1.75704i 0.0816565i 0.999166 + 0.0408283i 0.0129997π0.0129997\pi
−0.999166 + 0.0408283i 0.987000π0.987000\pi
464464 −9.65519 20.4867i −0.448231 0.951069i
465465 8.16475 6.40956i 0.378631 0.297236i
466466 26.7753i 1.24034i
467467 35.9537 1.66374 0.831870 0.554970i 0.187270π-0.187270\pi
0.831870 + 0.554970i 0.187270π0.187270\pi
468468 2.90076i 0.134088i
469469 4.10350 0.189482
470470 −10.0317 12.7788i −0.462730 0.589443i
471471 8.00465 0.368835
472472 −0.410210 −0.0188815
473473 11.6704i 0.536604i
474474 24.4043i 1.12093i
475475 22.8761 + 5.59103i 1.04963 + 0.256534i
476476 2.43978i 0.111827i
477477 7.74965i 0.354832i
478478 −30.6683 −1.40273
479479 41.1172i 1.87869i 0.342969 + 0.939347i 0.388567π0.388567\pi
−0.342969 + 0.939347i 0.611433π0.611433\pi
480480 −10.8626 13.8372i −0.495809 0.631581i
481481 2.72296i 0.124156i
482482 35.9356 1.63682
483483 −0.761492 −0.0346491
484484 11.9466 0.543026
485485 −2.27142 2.89342i −0.103140 0.131383i
486486 1.97264 0.0894805
487487 9.80926i 0.444500i −0.974990 0.222250i 0.928660π-0.928660\pi
0.974990 0.222250i 0.0713401π-0.0713401\pi
488488 1.64374i 0.0744085i
489489 2.46129 0.111303
490490 −18.3287 23.3478i −0.828008 1.05475i
491491 41.7524i 1.88426i 0.335245 + 0.942131i 0.391181π0.391181\pi
−0.335245 + 0.942131i 0.608819π0.608819\pi
492492 18.3721i 0.828280i
493493 5.69258 + 12.0787i 0.256381 + 0.543996i
494494 14.2499 0.641132
495495 −3.80634 + 2.98808i −0.171082 + 0.134304i
496496 19.5228i 0.876602i
497497 5.08809i 0.228232i
498498 14.4524i 0.647629i
499499 2.50030 0.111929 0.0559644 0.998433i 0.482177π-0.482177\pi
0.0559644 + 0.998433i 0.482177π0.482177\pi
500500 −19.2568 + 8.73481i −0.861191 + 0.390633i
501501 4.98139i 0.222552i
502502 10.1898i 0.454793i
503503 23.3850 1.04268 0.521342 0.853348i 0.325431π-0.325431\pi
0.521342 + 0.853348i 0.325431π0.325431\pi
504504 0.111567i 0.00496958i
505505 5.63513 4.42374i 0.250760 0.196854i
506506 6.24850 0.277780
507507 −10.6476 −0.472877
508508 −26.5675 −1.17874
509509 19.8085 0.877997 0.438999 0.898488i 0.355333π-0.355333\pi
0.438999 + 0.898488i 0.355333π0.355333\pi
510510 6.75363 + 8.60303i 0.299056 + 0.380948i
511511 2.44871i 0.108325i
512512 −31.2827 −1.38251
513513 4.70989i 0.207947i
514514 38.8456i 1.71340i
515515 −13.7193 + 10.7701i −0.604546 + 0.474586i
516516 −10.1991 −0.448992
517517 7.97068i 0.350550i
518518 1.82200i 0.0800543i
519519 15.0543i 0.660812i
520520 0.578497 0.454137i 0.0253688 0.0199152i
521521 −26.0978 −1.14337 −0.571684 0.820474i 0.693709π-0.693709\pi
−0.571684 + 0.820474i 0.693709π0.693709\pi
522522 −4.52876 9.60925i −0.198218 0.420585i
523523 20.8084i 0.909888i 0.890520 + 0.454944i 0.150341π0.150341\pi
−0.890520 + 0.454944i 0.849659π0.849659\pi
524524 17.3989i 0.760075i
525525 −2.52689 0.617584i −0.110283 0.0269536i
526526 −23.5995 −1.02899
527527 11.5104i 0.501402i
528528 9.10139i 0.396087i
529529 20.8576 0.906852
530530 26.8879 21.1078i 1.16794 0.916863i
531531 −1.91288 −0.0830118
532532 −4.63430 −0.200922
533533 14.8989 0.645345
534534 15.1150i 0.654091i
535535 32.3794 25.4188i 1.39988 1.09895i
536536 1.69145i 0.0730594i
537537 25.1991 1.08742
538538 32.6592i 1.40804i
539539 14.5630i 0.627274i
540540 −2.61139 3.32649i −0.112376 0.143149i
541541 46.2267i 1.98744i 0.111881 + 0.993722i 0.464312π0.464312\pi
−0.111881 + 0.993722i 0.535688π0.535688\pi
542542 50.2112i 2.15676i
543543 −5.27495 −0.226370
544544 19.5074 0.836371
545545 24.0667 + 30.6570i 1.03090 + 1.31320i
546546 −1.57404 −0.0673627
547547 24.3321i 1.04037i 0.854055 + 0.520183i 0.174136π0.174136\pi
−0.854055 + 0.520183i 0.825864π0.825864\pi
548548 31.4383 1.34298
549549 7.66501i 0.327135i
550550 20.7347 + 5.06765i 0.884130 + 0.216085i
551551 22.9432 10.8129i 0.977412 0.460646i
552552 0.313884i 0.0133598i
553553 −6.43628 −0.273699
554554 60.5895i 2.57420i
555555 −2.45133 3.12259i −0.104053 0.132547i
556556 2.15181 0.0912573
557557 32.6439i 1.38316i −0.722298 0.691582i 0.756914π-0.756914\pi
0.722298 0.691582i 0.243086π-0.243086\pi
558558 9.15717i 0.387654i
559559 8.27101i 0.349827i
560560 −3.84832 + 3.02105i −0.162621 + 0.127663i
561561 5.36606i 0.226555i
562562 −44.9316 −1.89533
563563 −5.69605 −0.240060 −0.120030 0.992770i 0.538299π-0.538299\pi
−0.120030 + 0.992770i 0.538299π0.538299\pi
564564 −6.96585 −0.293315
565565 −9.36535 11.9299i −0.394003 0.501896i
566566 60.4900i 2.54259i
567567 0.520254i 0.0218486i
568568 −2.09729 −0.0880004
569569 23.0314i 0.965526i −0.875751 0.482763i 0.839633π-0.839633\pi
0.875751 0.482763i 0.160367π-0.160367\pi
570570 16.3413 12.8284i 0.684460 0.537321i
571571 12.1948 0.510336 0.255168 0.966897i 0.417869π-0.417869\pi
0.255168 + 0.966897i 0.417869π0.417869\pi
572572 6.27756 0.262478
573573 3.31544i 0.138505i
574574 −9.96928 −0.416110
575575 −7.10921 1.73752i −0.296475 0.0724597i
576576 −7.10796 −0.296165
577577 23.1192 0.962466 0.481233 0.876593i 0.340189π-0.340189\pi
0.481233 + 0.876593i 0.340189π0.340189\pi
578578 21.4065 0.890393
579579 −5.69128 −0.236522
580580 −10.2090 + 20.3577i −0.423907 + 0.845309i
581581 3.81162 0.158133
582582 −3.24512 −0.134514
583583 −16.7711 −0.694588
584584 −1.00935 −0.0417672
585585 2.69763 2.11771i 0.111533 0.0875567i
586586 1.88700 0.0779512
587587 16.0091i 0.660767i −0.943847 0.330384i 0.892822π-0.892822\pi
0.943847 0.330384i 0.107178π-0.107178\pi
588588 −12.7271 −0.524858
589589 21.8638 0.900882
590590 5.21012 + 6.63684i 0.214497 + 0.273235i
591591 0.314623i 0.0129419i
592592 −7.46648 −0.306870
593593 20.9155i 0.858896i −0.903092 0.429448i 0.858708π-0.858708\pi
0.903092 0.429448i 0.141292π-0.141292\pi
594594 4.26900i 0.175159i
595595 2.26892 1.78117i 0.0930168 0.0730209i
596596 1.85626 0.0760353
597597 −2.94247 −0.120427
598598 −4.42843 −0.181092
599599 39.3957i 1.60967i 0.593502 + 0.804833i 0.297745π0.297745\pi
−0.593502 + 0.804833i 0.702255π0.702255\pi
600600 0.254566 1.04158i 0.0103926 0.0425222i
601601 18.3996i 0.750533i 0.926917 + 0.375267i 0.122449π0.122449\pi
−0.926917 + 0.375267i 0.877551π0.877551\pi
602602 5.53436i 0.225564i
603603 7.88749i 0.321204i
604604 21.7116 0.883434
605605 8.72166 + 11.1100i 0.354586 + 0.451685i
606606 6.32008i 0.256736i
607607 −34.8854 −1.41596 −0.707978 0.706235i 0.750392π-0.750392\pi
−0.707978 + 0.706235i 0.750392π0.750392\pi
608608 37.0538i 1.50273i
609609 −2.53430 + 1.19440i −0.102695 + 0.0483993i
610610 26.5942 20.8772i 1.07677 0.845295i
611611 5.64897i 0.228533i
612612 4.68959 0.189565
613613 34.3711i 1.38824i 0.719861 + 0.694118i 0.244205π0.244205\pi
−0.719861 + 0.694118i 0.755795π0.755795\pi
614614 −62.7811 −2.53364
615615 17.0856 13.4127i 0.688957 0.540851i
616616 0.241443 0.00972801
617617 −32.4140 −1.30494 −0.652469 0.757815i 0.726267π-0.726267\pi
−0.652469 + 0.757815i 0.726267π0.726267\pi
618618 15.3869i 0.618953i
619619 37.2406i 1.49683i −0.663232 0.748414i 0.730816π-0.730816\pi
0.663232 0.748414i 0.269184π-0.269184\pi
620620 −15.4419 + 12.1223i −0.620161 + 0.486845i
621621 1.46369i 0.0587359i
622622 3.61437i 0.144923i
623623 −3.98637 −0.159710
624624 6.45033i 0.258220i
625625 −22.1817 11.5314i −0.887267 0.461256i
626626 33.2466i 1.32880i
627627 −10.1927 −0.407058
628628 −15.1391 −0.604116
629629 4.40214 0.175525
630630 −1.80505 + 1.41702i −0.0719151 + 0.0564554i
631631 −20.0296 −0.797366 −0.398683 0.917089i 0.630533π-0.630533\pi
−0.398683 + 0.917089i 0.630533π0.630533\pi
632632 2.65301i 0.105531i
633633 6.92301i 0.275165i
634634 57.3834 2.27898
635635 −19.3957 24.7070i −0.769696 0.980468i
636636 14.6568i 0.581181i
637637 10.3211i 0.408937i
638638 20.7955 9.80073i 0.823301 0.388015i
639639 −9.78001 −0.386891
640640 −2.36527 3.01297i −0.0934956 0.119098i
641641 30.4877i 1.20419i −0.798424 0.602096i 0.794332π-0.794332\pi
0.798424 0.602096i 0.205668π-0.205668\pi
642642 36.3151i 1.43324i
643643 9.71287i 0.383038i −0.981489 0.191519i 0.938659π-0.938659\pi
0.981489 0.191519i 0.0613414π-0.0613414\pi
644644 1.44020 0.0567519
645645 −7.44593 9.48491i −0.293183 0.373468i
646646 23.0374i 0.906396i
647647 26.7628i 1.05215i 0.850437 + 0.526077i 0.176337π0.176337\pi
−0.850437 + 0.526077i 0.823663π0.823663\pi
648648 0.214447 0.00842427
649649 4.13967i 0.162496i
650650 −14.6951 3.59154i −0.576389 0.140872i
651651 −2.41507 −0.0946542
652652 −4.65501 −0.182304
653653 −47.1066 −1.84342 −0.921712 0.387875i 0.873209π-0.873209\pi
−0.921712 + 0.387875i 0.873209π0.873209\pi
654654 34.3834 1.34450
655655 −16.1805 + 12.7022i −0.632224 + 0.496315i
656656 40.8536i 1.59506i
657657 −4.70676 −0.183628
658658 3.77988i 0.147355i
659659 18.2896i 0.712460i −0.934398 0.356230i 0.884062π-0.884062\pi
0.934398 0.356230i 0.115938π-0.115938\pi
660660 7.19888 5.65133i 0.280216 0.219978i
661661 27.5526 1.07167 0.535836 0.844322i 0.319997π-0.319997\pi
0.535836 + 0.844322i 0.319997π0.319997\pi
662662 30.2613i 1.17614i
663663 3.80303i 0.147698i
664664 1.57114i 0.0609719i
665665 −3.38330 4.30977i −0.131199 0.167126i
666666 −3.50215 −0.135705
667667 −7.13005 + 3.36033i −0.276077 + 0.130113i
668668 9.42124i 0.364519i
669669 28.4693i 1.10069i
670670 27.3661 21.4832i 1.05725 0.829969i
671671 −16.5879 −0.640369
672672 4.09296i 0.157889i
673673 23.9569i 0.923472i −0.887017 0.461736i 0.847227π-0.847227\pi
0.887017 0.461736i 0.152773π-0.152773\pi
674674 41.5830 1.60172
675675 1.18708 4.85704i 0.0456908 0.186948i
676676 20.1377 0.774528
677677 22.9391 0.881620 0.440810 0.897600i 0.354691π-0.354691\pi
0.440810 + 0.897600i 0.354691π0.354691\pi
678678 −13.3800 −0.513857
679679 0.855852i 0.0328446i
680680 0.734192 + 0.935242i 0.0281550 + 0.0358649i
681681 7.15024i 0.273998i
682682 19.8171 0.758837
683683 34.1942i 1.30840i −0.756320 0.654202i 0.773005π-0.773005\pi
0.756320 0.654202i 0.226995π-0.226995\pi
684684 8.90777i 0.340597i
685685 22.9517 + 29.2367i 0.876939 + 1.11708i
686686 14.0900i 0.537960i
687687 9.94406i 0.379390i
688688 −22.6795 −0.864648
689689 11.8860 0.452821
690690 −5.07837 + 3.98667i −0.193330 + 0.151770i
691691 3.83582 0.145922 0.0729608 0.997335i 0.476755π-0.476755\pi
0.0729608 + 0.997335i 0.476755π0.476755\pi
692692 28.4721i 1.08235i
693693 1.12589 0.0427689
694694 48.5238i 1.84194i
695695 1.57094 + 2.00113i 0.0595893 + 0.0759071i
696696 −0.492325 1.04463i −0.0186615 0.0395966i
697697 24.0868i 0.912351i
698698 44.7860 1.69518
699699 13.5734i 0.513393i
700700 4.77909 + 1.16803i 0.180633 + 0.0441474i
701701 49.0619 1.85304 0.926522 0.376241i 0.122783π-0.122783\pi
0.926522 + 0.376241i 0.122783π0.122783\pi
702702 3.02552i 0.114191i
703703 8.36177i 0.315370i
704704 15.3824i 0.579746i
705705 −5.08545 6.47804i −0.191529 0.243977i
706706 2.73065i 0.102769i
707707 −1.66683 −0.0626876
708708 3.61780 0.135965
709709 −9.68605 −0.363767 −0.181884 0.983320i 0.558219π-0.558219\pi
−0.181884 + 0.983320i 0.558219π0.558219\pi
710710 26.6379 + 33.9324i 0.999702 + 1.27346i
711711 12.3714i 0.463965i
712712 1.64317i 0.0615802i
713713 −6.79461 −0.254460
714714 2.54471i 0.0952335i
715715 4.58297 + 5.83796i 0.171393 + 0.218327i
716716 −47.6589 −1.78110
717717 −15.5469 −0.580608
718718 42.7817i 1.59660i
719719 −34.8915 −1.30123 −0.650617 0.759406i 0.725490π-0.725490\pi
−0.650617 + 0.759406i 0.725490π0.725490\pi
720720 −5.80687 7.39701i −0.216409 0.275670i
721721 4.05808 0.151131
722722 6.27904 0.233682
723723 18.2171 0.677500
724724 9.97646 0.370772
725725 −26.3853 + 5.36815i −0.979925 + 0.199368i
726726 12.4604 0.462449
727727 −26.3086 −0.975731 −0.487866 0.872919i 0.662224π-0.662224\pi
−0.487866 + 0.872919i 0.662224π0.662224\pi
728728 −0.171115 −0.00634195
729729 1.00000 0.0370370
730730 12.8198 + 16.3304i 0.474484 + 0.604415i
731731 13.3715 0.494565
732732 14.4967i 0.535815i
733733 −30.8872 −1.14084 −0.570422 0.821352i 0.693220π-0.693220\pi
−0.570422 + 0.821352i 0.693220π0.693220\pi
734734 −0.415861 −0.0153497
735735 −9.29150 11.8359i −0.342722 0.436573i
736736 11.5152i 0.424456i
737737 −17.0694 −0.628759
738738 19.1623i 0.705375i
739739 7.59328i 0.279323i 0.990199 + 0.139662i 0.0446015π0.0446015\pi
−0.990199 + 0.139662i 0.955398π0.955398\pi
740740 4.63617 + 5.90573i 0.170429 + 0.217099i
741741 7.22378 0.265372
742742 −7.95324 −0.291973
743743 33.4121 1.22577 0.612886 0.790172i 0.290009π-0.290009\pi
0.612886 + 0.790172i 0.290009π0.290009\pi
744744 0.995484i 0.0364962i
745745 1.35517 + 1.72627i 0.0496497 + 0.0632456i
746746 11.1743i 0.409119i
747747 7.32647i 0.268061i
748748 10.1488i 0.371076i
749749 −9.57758 −0.349957
750750 −20.0851 + 9.11050i −0.733403 + 0.332669i
751751 24.7607i 0.903532i −0.892137 0.451766i 0.850794π-0.850794\pi
0.892137 0.451766i 0.149206π-0.149206\pi
752752 −15.4897 −0.564853
753753 5.16558i 0.188244i
754754 −14.7382 + 6.94597i −0.536732 + 0.252957i
755755 15.8507 + 20.1912i 0.576866 + 0.734834i
756756 0.983951i 0.0357859i
757757 29.8424 1.08464 0.542321 0.840172i 0.317546π-0.317546\pi
0.542321 + 0.840172i 0.317546π0.317546\pi
758758 24.7950i 0.900594i
759759 3.16759 0.114976
760760 1.77647 1.39458i 0.0644394 0.0505868i
761761 −19.7600 −0.716300 −0.358150 0.933664i 0.616592π-0.616592\pi
−0.358150 + 0.933664i 0.616592π0.616592\pi
762762 −27.7102 −1.00383
763763 9.06813i 0.328288i
764764 6.27046i 0.226857i
765765 3.42366 + 4.36119i 0.123783 + 0.157679i
766766 45.5616i 1.64621i
767767 2.93387i 0.105936i
768768 −17.5951 −0.634909
769769 32.7782i 1.18201i −0.806667 0.591007i 0.798731π-0.798731\pi
0.806667 0.591007i 0.201269π-0.201269\pi
770770 −3.06659 3.90633i −0.110512 0.140774i
771771 19.6922i 0.709198i
772772 10.7639 0.387400
773773 −26.1210 −0.939507 −0.469753 0.882798i 0.655657π-0.655657\pi
−0.469753 + 0.882798i 0.655657π0.655657\pi
774774 −10.6378 −0.382368
775775 −22.5469 5.51056i −0.809908 0.197945i
776776 −0.352779 −0.0126640
777777 0.923640i 0.0331354i
778778 40.6019i 1.45565i
779779 45.7523 1.63924
780780 −5.10199 + 4.00521i −0.182681 + 0.143410i
781781 21.1650i 0.757344i
782782 7.15934i 0.256018i
783783 −2.29579 4.87128i −0.0820449 0.174085i
784784 −28.3009 −1.01075
785785 −11.0524 14.0789i −0.394477 0.502499i
786786 18.1472i 0.647291i
787787 37.7291i 1.34490i 0.740143 + 0.672449i 0.234758π0.234758\pi
−0.740143 + 0.672449i 0.765242π0.765242\pi
788788 0.595044i 0.0211976i
789789 −11.9634 −0.425909
790790 −42.9234 + 33.6962i −1.52715 + 1.19886i
791791 3.52879i 0.125469i
792792 0.464086i 0.0164906i
793793 11.7562 0.417474
794794 51.7893i 1.83793i
795795 13.6304 10.7003i 0.483422 0.379500i
796796 5.56506 0.197248
797797 13.7227 0.486084 0.243042 0.970016i 0.421855π-0.421855\pi
0.243042 + 0.970016i 0.421855π0.421855\pi
798798 −4.83363 −0.171108
799799 9.13256 0.323087
800800 −9.33904 + 38.2114i −0.330185 + 1.35098i
801801 7.66235i 0.270736i
802802 33.8546 1.19545
803803 10.1859i 0.359454i
804804 14.9175i 0.526101i
805805 1.05143 + 1.33935i 0.0370579 + 0.0472058i
806806 −14.0448 −0.494707
807807 16.5561i 0.582804i
808808 0.687061i 0.0241707i
809809 20.1211i 0.707422i 0.935355 + 0.353711i 0.115080π0.115080\pi
−0.935355 + 0.353711i 0.884920π0.884920\pi
810810 −2.72371 3.46956i −0.0957013 0.121908i
811811 −18.6829 −0.656044 −0.328022 0.944670i 0.606382π-0.606382\pi
−0.328022 + 0.944670i 0.606382π0.606382\pi
812812 4.79310 2.25895i 0.168205 0.0792735i
813813 25.4539i 0.892706i
814814 7.57903i 0.265645i
815815 −3.39841 4.32903i −0.119041 0.151639i
816816 10.4281 0.365056
817817 25.3990i 0.888597i
818818 29.3989i 1.02791i
819819 −0.797938 −0.0278822
820820 −32.3138 + 25.3672i −1.12845 + 0.885863i
821821 23.2361 0.810944 0.405472 0.914107i 0.367107π-0.367107\pi
0.405472 + 0.914107i 0.367107π0.367107\pi
822822 32.7905 1.14370
823823 23.2939 0.811976 0.405988 0.913878i 0.366928π-0.366928\pi
0.405988 + 0.913878i 0.366928π0.366928\pi
824824 1.67273i 0.0582722i
825825 10.5112 + 2.56897i 0.365952 + 0.0894402i
826826 1.96313i 0.0683060i
827827 −7.45967 −0.259398 −0.129699 0.991553i 0.541401π-0.541401\pi
−0.129699 + 0.991553i 0.541401π0.541401\pi
828828 2.76827i 0.0962039i
829829 13.0042i 0.451654i −0.974167 0.225827i 0.927492π-0.927492\pi
0.974167 0.225827i 0.0725084π-0.0725084\pi
830830 25.4196 19.9552i 0.882328 0.692653i
831831 30.7150i 1.06549i
832832 10.9018i 0.377952i
833833 16.6859 0.578131
834834 2.24437 0.0777160
835835 8.76149 6.87803i 0.303204 0.238024i
836836 19.2774 0.666722
837837 4.64210i 0.160455i
838838 38.6126 1.33385
839839 42.3972i 1.46371i 0.681459 + 0.731857i 0.261346π0.261346\pi
−0.681459 + 0.731857i 0.738654π0.738654\pi
840840 −0.196229 + 0.154045i −0.00677054 + 0.00531507i
841841 −18.4587 + 22.3669i −0.636506 + 0.771272i
842842 17.1963i 0.592623i
843843 −22.7775 −0.784498
844844 13.0934i 0.450694i
845845 14.7017 + 18.7275i 0.505752 + 0.644247i
846846 −7.26545 −0.249791
847847 3.28625i 0.112917i
848848 32.5920i 1.11921i
849849 30.6646i 1.05241i
850850 5.80636 23.7572i 0.199157 0.814865i
851851 2.59859i 0.0890784i
852852 18.4968 0.633691
853853 33.8135 1.15775 0.578876 0.815416i 0.303492π-0.303492\pi
0.578876 + 0.815416i 0.303492π0.303492\pi
854854 −7.86638 −0.269182
855855 8.28397 6.50316i 0.283306 0.222403i
856856 3.94784i 0.134935i
857857 39.2819i 1.34184i −0.741528 0.670922i 0.765898π-0.765898\pi
0.741528 0.670922i 0.234102π-0.234102\pi
858858 6.54756 0.223530
859859 11.9843i 0.408900i 0.978877 + 0.204450i 0.0655406π0.0655406\pi
−0.978877 + 0.204450i 0.934459π0.934459\pi
860860 14.0824 + 17.9387i 0.480206 + 0.611705i
861861 −5.05379 −0.172233
862862 52.6940 1.79476
863863 36.8424i 1.25413i 0.778967 + 0.627065i 0.215744π0.215744\pi
−0.778967 + 0.627065i 0.784256π0.784256\pi
864864 −7.86723 −0.267649
865865 −26.4783 + 20.7862i −0.900288 + 0.706752i
866866 −67.7202 −2.30122
867867 10.8517 0.368544
868868 4.56760 0.155034
869869 26.7731 0.908216
870870 −10.6481 + 21.2333i −0.361005 + 0.719877i
871871 12.0974 0.409905
872872 3.73785 0.126580
873873 −1.64507 −0.0556771
874874 −13.5990 −0.459993
875875 2.40276 + 5.29715i 0.0812282 + 0.179076i
876876 8.90185 0.300766
877877 2.27276i 0.0767456i 0.999263 + 0.0383728i 0.0122174π0.0122174\pi
−0.999263 + 0.0383728i 0.987783π0.987783\pi
878878 60.1184 2.02890
879879 0.956588 0.0322649
880880 16.0079 12.5667i 0.539628 0.423623i
881881 55.3714i 1.86551i −0.360512 0.932755i 0.617398π-0.617398\pi
0.360512 0.932755i 0.382602π-0.382602\pi
882882 −13.2745 −0.446976
883883 7.65846i 0.257728i 0.991662 + 0.128864i 0.0411330π0.0411330\pi
−0.991662 + 0.128864i 0.958867π0.958867\pi
884884 7.19264i 0.241915i
885885 2.64120 + 3.36446i 0.0887828 + 0.113095i
886886 −34.3136 −1.15279
887887 3.86090 0.129636 0.0648181 0.997897i 0.479353π-0.479353\pi
0.0648181 + 0.997897i 0.479353π0.479353\pi
888888 −0.380721 −0.0127762
889889 7.30815i 0.245108i
890890 −26.5850 + 20.8700i −0.891131 + 0.699564i
891891 2.16411i 0.0725004i
892892 53.8436i 1.80282i
893893 17.3471i 0.580498i
894894 1.93610 0.0647528
895895 −34.7936 44.3214i −1.16302 1.48150i
896896 0.891216i 0.0297734i
897897 −2.24493 −0.0749561
898898 2.10136i 0.0701234i
899899 −22.6130 + 10.6573i −0.754185 + 0.355441i
900900 −2.24512 + 9.18607i −0.0748372 + 0.306202i
901901 19.2158i 0.640171i
902902 41.4694 1.38078
903903 2.80557i 0.0933634i
904904 −1.45455 −0.0483777
905905 7.28337 + 9.27784i 0.242107 + 0.308406i
906906 22.6455 0.752346
907907 −4.71465 −0.156547 −0.0782737 0.996932i 0.524941π-0.524941\pi
−0.0782737 + 0.996932i 0.524941π0.524941\pi
908908 13.5232i 0.448782i
909909 3.20388i 0.106266i
910910 2.17335 + 2.76850i 0.0720458 + 0.0917747i
911911 6.38523i 0.211552i −0.994390 0.105776i 0.966267π-0.966267\pi
0.994390 0.105776i 0.0337326π-0.0337326\pi
912912 19.8079i 0.655906i
913913 −15.8553 −0.524733
914914 2.00738i 0.0663983i
915915 13.4816 10.5834i 0.445687 0.349877i
916916 18.8071i 0.621404i
917917 4.78607 0.158050
918918 4.89129 0.161437
919919 40.2376 1.32732 0.663658 0.748036i 0.269003π-0.269003\pi
0.663658 + 0.748036i 0.269003π0.269003\pi
920920 −0.552074 + 0.433394i −0.0182013 + 0.0142886i
921921 −31.8260 −1.04870
922922 6.26551i 0.206344i
923923 15.0001i 0.493733i
924924 −2.12938 −0.0700514
925925 −2.10750 + 8.62301i −0.0692943 + 0.283523i
926926 3.46600i 0.113900i
927927 7.80019i 0.256192i
928928 18.0615 + 38.3234i 0.592899 + 1.25803i
929929 −56.7497 −1.86190 −0.930949 0.365149i 0.881018π-0.881018\pi
−0.930949 + 0.365149i 0.881018π0.881018\pi
930930 −16.1061 + 12.6437i −0.528139 + 0.414604i
931931 31.6944i 1.03874i
932932 25.6712i 0.840888i
933933 1.83226i 0.0599854i
934934 −70.9236 −2.32069
935935 −9.43808 + 7.40917i −0.308658 + 0.242306i
936936 0.328907i 0.0107507i
937937 42.7198i 1.39559i −0.716296 0.697797i 0.754164π-0.754164\pi
0.716296 0.697797i 0.245836π-0.245836\pi
938938 −8.09471 −0.264302
939939 16.8539i 0.550006i
940940 9.61806 + 12.2519i 0.313707 + 0.399611i
941941 32.3400 1.05425 0.527127 0.849787i 0.323269π-0.323269\pi
0.527127 + 0.849787i 0.323269π0.323269\pi
942942 −15.7903 −0.514474
943943 −14.2184 −0.463016
944944 8.04480 0.261836
945945 −0.915047 + 0.718339i −0.0297665 + 0.0233676i
946946 23.0214i 0.748489i
947947 −44.3486 −1.44114 −0.720568 0.693384i 0.756119π-0.756119\pi
−0.720568 + 0.693384i 0.756119π0.756119\pi
948948 23.3979i 0.759930i
949949 7.21898i 0.234338i
950950 −45.1263 11.0291i −1.46409 0.357830i
951951 29.0897 0.943298
952952 0.276638i 0.00896588i
953953 26.0460i 0.843712i −0.906663 0.421856i 0.861379π-0.861379\pi
0.906663 0.421856i 0.138621π-0.138621\pi
954954 15.2872i 0.494942i
955955 5.83136 4.57779i 0.188698 0.148134i
956956 29.4036 0.950981
957957 10.5420 4.96835i 0.340774 0.160604i
958958 81.1093i 2.62052i
959959 8.64802i 0.279259i
960960 9.81429 + 12.5018i 0.316755 + 0.403494i
961961 9.45088 0.304867
962962 5.37140i 0.173181i
963963 18.4094i 0.593236i
964964 −34.4537 −1.10968
965965 7.85821 + 10.0101i 0.252965 + 0.322236i
966966 1.50215 0.0483307
967967 −15.3861 −0.494785 −0.247392 0.968915i 0.579574π-0.579574\pi
−0.247392 + 0.968915i 0.579574π0.579574\pi
968968 1.35458 0.0435379
969969 11.6785i 0.375168i
970970 4.48068 + 5.70766i 0.143866 + 0.183262i
971971 9.79636i 0.314380i −0.987568 0.157190i 0.949756π-0.949756\pi
0.987568 0.157190i 0.0502436π-0.0502436\pi
972972 −1.89129 −0.0606631
973973 0.591919i 0.0189761i
974974 19.3501i 0.620017i
975975 −7.44947 1.82068i −0.238574 0.0583085i
976976 32.2360i 1.03185i
977977 26.1850i 0.837734i −0.908048 0.418867i 0.862427π-0.862427\pi
0.908048 0.418867i 0.137573π-0.137573\pi
978978 −4.85522 −0.155253
979979 16.5822 0.529968
980980 17.5729 + 22.3851i 0.561346 + 0.715064i
981981 17.4302 0.556503
982982 82.3623i 2.62829i
983983 −0.127997 −0.00408247 −0.00204123 0.999998i 0.500650π-0.500650\pi
−0.00204123 + 0.999998i 0.500650π0.500650\pi
984984 2.08315i 0.0664085i
985985 0.553374 0.434415i 0.0176320 0.0138416i
986986 −11.2294 23.8268i −0.357617 0.758801i
987987 1.91616i 0.0609920i
988988 −13.6623 −0.434654
989989 7.89323i 0.250990i
990990 7.50851 5.89440i 0.238636 0.187336i
991991 18.1627 0.576957 0.288478 0.957486i 0.406851π-0.406851\pi
0.288478 + 0.957486i 0.406851π0.406851\pi
992992 36.5205i 1.15953i
993993 15.3405i 0.486817i
994994 10.0369i 0.318353i
995995 4.06280 + 5.17535i 0.128799 + 0.164070i
996996 13.8565i 0.439059i
997997 −51.0941 −1.61817 −0.809083 0.587694i 0.800036π-0.800036\pi
−0.809083 + 0.587694i 0.800036π0.800036\pi
998998 −4.93218 −0.156125
999999 −1.77536 −0.0561700
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.2.f.e.289.4 yes 12
3.2 odd 2 1305.2.f.k.289.9 12
5.2 odd 4 2175.2.d.j.376.17 24
5.3 odd 4 2175.2.d.j.376.8 24
5.4 even 2 435.2.f.f.289.9 yes 12
15.14 odd 2 1305.2.f.l.289.4 12
29.28 even 2 435.2.f.f.289.10 yes 12
87.86 odd 2 1305.2.f.l.289.3 12
145.28 odd 4 2175.2.d.j.376.7 24
145.57 odd 4 2175.2.d.j.376.18 24
145.144 even 2 inner 435.2.f.e.289.3 12
435.434 odd 2 1305.2.f.k.289.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.f.e.289.3 12 145.144 even 2 inner
435.2.f.e.289.4 yes 12 1.1 even 1 trivial
435.2.f.f.289.9 yes 12 5.4 even 2
435.2.f.f.289.10 yes 12 29.28 even 2
1305.2.f.k.289.9 12 3.2 odd 2
1305.2.f.k.289.10 12 435.434 odd 2
1305.2.f.l.289.3 12 87.86 odd 2
1305.2.f.l.289.4 12 15.14 odd 2
2175.2.d.j.376.7 24 145.28 odd 4
2175.2.d.j.376.8 24 5.3 odd 4
2175.2.d.j.376.17 24 5.2 odd 4
2175.2.d.j.376.18 24 145.57 odd 4