Properties

Label 435.3.k.a
Level 435435
Weight 33
Character orbit 435.k
Analytic conductor 11.85311.853
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,3,Mod(244,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.244");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 435=3529 435 = 3 \cdot 5 \cdot 29
Weight: k k == 3 3
Character orbit: [χ][\chi] == 435.k (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.852891499711.8528914997
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β1q3β2q4+5β2q5+3β2q6+(4β34β1)q75β3q8+3β2q9+5β3q10+(7β2+7)q11++(21β2+21)q99+O(q100) q + \beta_1 q^{2} + \beta_1 q^{3} - \beta_{2} q^{4} + 5 \beta_{2} q^{5} + 3 \beta_{2} q^{6} + ( - 4 \beta_{3} - 4 \beta_1) q^{7} - 5 \beta_{3} q^{8} + 3 \beta_{2} q^{9} + 5 \beta_{3} q^{10} + ( - 7 \beta_{2} + 7) q^{11}+ \cdots + (21 \beta_{2} + 21) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+28q11+48q14+44q16+44q19+20q20+48q21+60q24100q25+48q2660q3044q31+12q36+48q39+20q4128q4460q45192q46++84q99+O(q100) 4 q + 28 q^{11} + 48 q^{14} + 44 q^{16} + 44 q^{19} + 20 q^{20} + 48 q^{21} + 60 q^{24} - 100 q^{25} + 48 q^{26} - 60 q^{30} - 44 q^{31} + 12 q^{36} + 48 q^{39} + 20 q^{41} - 28 q^{44} - 60 q^{45} - 192 q^{46}+ \cdots + 84 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/435Z)×\left(\mathbb{Z}/435\mathbb{Z}\right)^\times.

nn 3131 146146 262262
χ(n)\chi(n) β2-\beta_{2} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
244.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i −1.22474 + 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i −6.12372 6.12372i 3.00000i 6.12372 + 6.12372i
244.2 1.22474 1.22474i 1.22474 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i 6.12372 + 6.12372i 3.00000i −6.12372 6.12372i
394.1 −1.22474 1.22474i −1.22474 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i −6.12372 + 6.12372i 3.00000i 6.12372 6.12372i
394.2 1.22474 + 1.22474i 1.22474 + 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i 6.12372 6.12372i 3.00000i −6.12372 + 6.12372i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
29.c odd 4 1 inner
145.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.3.k.a 4
5.b even 2 1 inner 435.3.k.a 4
29.c odd 4 1 inner 435.3.k.a 4
145.f odd 4 1 inner 435.3.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.3.k.a 4 1.a even 1 1 trivial
435.3.k.a 4 5.b even 2 1 inner
435.3.k.a 4 29.c odd 4 1 inner
435.3.k.a 4 145.f odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+9 T_{2}^{4} + 9 acting on S3new(435,[χ])S_{3}^{\mathrm{new}}(435, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+9 T^{4} + 9 Copy content Toggle raw display
33 T4+9 T^{4} + 9 Copy content Toggle raw display
55 (T2+25)2 (T^{2} + 25)^{2} Copy content Toggle raw display
77 (T2+96)2 (T^{2} + 96)^{2} Copy content Toggle raw display
1111 (T214T+98)2 (T^{2} - 14 T + 98)^{2} Copy content Toggle raw display
1313 (T296)2 (T^{2} - 96)^{2} Copy content Toggle raw display
1717 T4+186624 T^{4} + 186624 Copy content Toggle raw display
1919 (T222T+242)2 (T^{2} - 22 T + 242)^{2} Copy content Toggle raw display
2323 (T2+1536)2 (T^{2} + 1536)^{2} Copy content Toggle raw display
2929 (T2+841)2 (T^{2} + 841)^{2} Copy content Toggle raw display
3131 (T2+22T+242)2 (T^{2} + 22 T + 242)^{2} Copy content Toggle raw display
3737 T4+5531904 T^{4} + 5531904 Copy content Toggle raw display
4141 (T210T+50)2 (T^{2} - 10 T + 50)^{2} Copy content Toggle raw display
4343 T4+5531904 T^{4} + 5531904 Copy content Toggle raw display
4747 T4+33732864 T^{4} + 33732864 Copy content Toggle raw display
5353 (T2+7776)2 (T^{2} + 7776)^{2} Copy content Toggle raw display
5959 (T+24)4 (T + 24)^{4} Copy content Toggle raw display
6161 (T298T+4802)2 (T^{2} - 98 T + 4802)^{2} Copy content Toggle raw display
6767 (T2384)2 (T^{2} - 384)^{2} Copy content Toggle raw display
7171 (T2+16900)2 (T^{2} + 16900)^{2} Copy content Toggle raw display
7373 T4+2304 T^{4} + 2304 Copy content Toggle raw display
7979 (T222T+242)2 (T^{2} - 22 T + 242)^{2} Copy content Toggle raw display
8383 (T2+13824)2 (T^{2} + 13824)^{2} Copy content Toggle raw display
8989 (T2+154T+11858)2 (T^{2} + 154 T + 11858)^{2} Copy content Toggle raw display
9797 T4+186624 T^{4} + 186624 Copy content Toggle raw display
show more
show less