Properties

Label 435.3.k.a
Level $435$
Weight $3$
Character orbit 435.k
Analytic conductor $11.853$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,3,Mod(244,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.244");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 435.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8528914997\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_1 q^{3} - \beta_{2} q^{4} + 5 \beta_{2} q^{5} + 3 \beta_{2} q^{6} + ( - 4 \beta_{3} - 4 \beta_1) q^{7} - 5 \beta_{3} q^{8} + 3 \beta_{2} q^{9} + 5 \beta_{3} q^{10} + ( - 7 \beta_{2} + 7) q^{11}+ \cdots + (21 \beta_{2} + 21) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 28 q^{11} + 48 q^{14} + 44 q^{16} + 44 q^{19} + 20 q^{20} + 48 q^{21} + 60 q^{24} - 100 q^{25} + 48 q^{26} - 60 q^{30} - 44 q^{31} + 12 q^{36} + 48 q^{39} + 20 q^{41} - 28 q^{44} - 60 q^{45} - 192 q^{46}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(-\beta_{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
244.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i −1.22474 + 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i −6.12372 6.12372i 3.00000i 6.12372 + 6.12372i
244.2 1.22474 1.22474i 1.22474 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i 6.12372 + 6.12372i 3.00000i −6.12372 6.12372i
394.1 −1.22474 1.22474i −1.22474 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i −6.12372 + 6.12372i 3.00000i 6.12372 6.12372i
394.2 1.22474 + 1.22474i 1.22474 + 1.22474i 1.00000i 5.00000i 3.00000i 9.79796i 6.12372 6.12372i 3.00000i −6.12372 + 6.12372i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
29.c odd 4 1 inner
145.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.3.k.a 4
5.b even 2 1 inner 435.3.k.a 4
29.c odd 4 1 inner 435.3.k.a 4
145.f odd 4 1 inner 435.3.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.3.k.a 4 1.a even 1 1 trivial
435.3.k.a 4 5.b even 2 1 inner
435.3.k.a 4 29.c odd 4 1 inner
435.3.k.a 4 145.f odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 9 \) acting on \(S_{3}^{\mathrm{new}}(435, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 9 \) Copy content Toggle raw display
$3$ \( T^{4} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 96)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 14 T + 98)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 96)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 186624 \) Copy content Toggle raw display
$19$ \( (T^{2} - 22 T + 242)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 1536)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 841)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 22 T + 242)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 5531904 \) Copy content Toggle raw display
$41$ \( (T^{2} - 10 T + 50)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 5531904 \) Copy content Toggle raw display
$47$ \( T^{4} + 33732864 \) Copy content Toggle raw display
$53$ \( (T^{2} + 7776)^{2} \) Copy content Toggle raw display
$59$ \( (T + 24)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 98 T + 4802)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 384)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 16900)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 2304 \) Copy content Toggle raw display
$79$ \( (T^{2} - 22 T + 242)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 13824)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 154 T + 11858)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 186624 \) Copy content Toggle raw display
show more
show less