Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [435,3,Mod(278,435)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(435, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("435.278");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 435 = 3 \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 435.t (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.8528914997\) |
Analytic rank: | \(0\) |
Dimension: | \(232\) |
Relative dimension: | \(116\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
278.1 | −3.95364 | −0.942097 | − | 2.84824i | 11.6313 | −1.48769 | − | 4.77355i | 3.72471 | + | 11.2609i | −3.33539 | + | 3.33539i | −30.1712 | −7.22491 | + | 5.36663i | 5.88179 | + | 18.8729i | ||||||
278.2 | −3.88587 | −0.310934 | + | 2.98384i | 11.1000 | 4.98666 | + | 0.365024i | 1.20825 | − | 11.5948i | 4.48665 | − | 4.48665i | −27.5895 | −8.80664 | − | 1.85556i | −19.3775 | − | 1.41844i | ||||||
278.3 | −3.84641 | −2.97021 | + | 0.421723i | 10.7949 | −2.15430 | + | 4.51209i | 11.4246 | − | 1.62212i | −2.01617 | + | 2.01617i | −26.1358 | 8.64430 | − | 2.50521i | 8.28633 | − | 17.3553i | ||||||
278.4 | −3.73128 | 2.13163 | + | 2.11096i | 9.92244 | −4.98623 | + | 0.370846i | −7.95371 | − | 7.87658i | −8.54295 | + | 8.54295i | −22.0983 | 0.0877024 | + | 8.99957i | 18.6050 | − | 1.38373i | ||||||
278.5 | −3.69633 | 2.83997 | + | 0.966733i | 9.66287 | 4.62600 | − | 1.89741i | −10.4975 | − | 3.57337i | −2.45888 | + | 2.45888i | −20.9318 | 7.13085 | + | 5.49098i | −17.0992 | + | 7.01345i | ||||||
278.6 | −3.62901 | −0.785209 | + | 2.89542i | 9.16969 | −4.40007 | − | 2.37473i | 2.84953 | − | 10.5075i | 5.16860 | − | 5.16860i | −18.7609 | −7.76689 | − | 4.54702i | 15.9679 | + | 8.61793i | ||||||
278.7 | −3.60043 | 2.68965 | − | 1.32883i | 8.96309 | 0.718788 | + | 4.94806i | −9.68389 | + | 4.78435i | −2.02154 | + | 2.02154i | −17.8692 | 5.46843 | − | 7.14816i | −2.58795 | − | 17.8152i | ||||||
278.8 | −3.55971 | −1.57699 | − | 2.55208i | 8.67156 | 3.64447 | + | 3.42313i | 5.61363 | + | 9.08467i | 8.45974 | − | 8.45974i | −16.6294 | −4.02622 | + | 8.04920i | −12.9733 | − | 12.1854i | ||||||
278.9 | −3.51607 | 1.75635 | − | 2.43212i | 8.36273 | 3.82461 | − | 3.22061i | −6.17546 | + | 8.55151i | 3.02496 | − | 3.02496i | −15.3397 | −2.83045 | − | 8.54334i | −13.4476 | + | 11.3239i | ||||||
278.10 | −3.48411 | −2.55611 | + | 1.57045i | 8.13902 | 1.46538 | − | 4.78045i | 8.90576 | − | 5.47161i | −4.60769 | + | 4.60769i | −14.4208 | 4.06739 | − | 8.02847i | −5.10553 | + | 16.6556i | ||||||
278.11 | −3.38483 | 1.02035 | − | 2.82115i | 7.45706 | −4.68208 | + | 1.75447i | −3.45372 | + | 9.54910i | 4.93897 | − | 4.93897i | −11.7016 | −6.91776 | − | 5.75713i | 15.8480 | − | 5.93857i | ||||||
278.12 | −3.35734 | −2.73564 | − | 1.23136i | 7.27175 | 4.99772 | + | 0.150858i | 9.18449 | + | 4.13411i | −3.27150 | + | 3.27150i | −10.9844 | 5.96749 | + | 6.73714i | −16.7791 | − | 0.506482i | ||||||
278.13 | −3.33447 | 2.96349 | + | 0.466589i | 7.11866 | −0.694281 | − | 4.95156i | −9.88167 | − | 1.55582i | 6.53846 | − | 6.53846i | −10.3991 | 8.56459 | + | 2.76546i | 2.31506 | + | 16.5108i | ||||||
278.14 | −3.21045 | −2.87961 | − | 0.841353i | 6.30701 | −4.45336 | − | 2.27323i | 9.24484 | + | 2.70112i | 5.48202 | − | 5.48202i | −7.40653 | 7.58425 | + | 4.84553i | 14.2973 | + | 7.29810i | ||||||
278.15 | −3.15592 | 1.95115 | + | 2.27882i | 5.95983 | 1.06207 | + | 4.88590i | −6.15766 | − | 7.19177i | 2.48694 | − | 2.48694i | −6.18505 | −1.38604 | + | 8.89263i | −3.35180 | − | 15.4195i | ||||||
278.16 | −3.08915 | −0.883603 | − | 2.86692i | 5.54285 | −4.06793 | + | 2.90723i | 2.72958 | + | 8.85636i | −7.76116 | + | 7.76116i | −4.76611 | −7.43849 | + | 5.06644i | 12.5664 | − | 8.98086i | ||||||
278.17 | −3.08252 | −0.424294 | + | 2.96984i | 5.50194 | −3.69568 | + | 3.36778i | 1.30790 | − | 9.15461i | −0.0291339 | + | 0.0291339i | −4.62976 | −8.63995 | − | 2.52017i | 11.3920 | − | 10.3813i | ||||||
278.18 | −2.97576 | 1.62141 | + | 2.52409i | 4.85516 | −1.69404 | − | 4.70428i | −4.82493 | − | 7.51109i | 0.982362 | − | 0.982362i | −2.54476 | −3.74206 | + | 8.18517i | 5.04106 | + | 13.9988i | ||||||
278.19 | −2.94209 | −1.13113 | + | 2.77859i | 4.65590 | 3.38503 | + | 3.67989i | 3.32788 | − | 8.17486i | −9.18492 | + | 9.18492i | −1.92973 | −6.44110 | − | 6.28587i | −9.95906 | − | 10.8266i | ||||||
278.20 | −2.88498 | 2.57538 | − | 1.53865i | 4.32312 | −3.63148 | − | 3.43691i | −7.42992 | + | 4.43896i | −6.13316 | + | 6.13316i | −0.932202 | 4.26514 | − | 7.92519i | 10.4768 | + | 9.91542i | ||||||
See next 80 embeddings (of 232 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
145.e | even | 4 | 1 | inner |
435.t | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 435.3.t.a | yes | 232 |
3.b | odd | 2 | 1 | inner | 435.3.t.a | yes | 232 |
5.c | odd | 4 | 1 | 435.3.i.a | ✓ | 232 | |
15.e | even | 4 | 1 | 435.3.i.a | ✓ | 232 | |
29.c | odd | 4 | 1 | 435.3.i.a | ✓ | 232 | |
87.f | even | 4 | 1 | 435.3.i.a | ✓ | 232 | |
145.e | even | 4 | 1 | inner | 435.3.t.a | yes | 232 |
435.t | odd | 4 | 1 | inner | 435.3.t.a | yes | 232 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
435.3.i.a | ✓ | 232 | 5.c | odd | 4 | 1 | |
435.3.i.a | ✓ | 232 | 15.e | even | 4 | 1 | |
435.3.i.a | ✓ | 232 | 29.c | odd | 4 | 1 | |
435.3.i.a | ✓ | 232 | 87.f | even | 4 | 1 | |
435.3.t.a | yes | 232 | 1.a | even | 1 | 1 | trivial |
435.3.t.a | yes | 232 | 3.b | odd | 2 | 1 | inner |
435.3.t.a | yes | 232 | 145.e | even | 4 | 1 | inner |
435.3.t.a | yes | 232 | 435.t | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(435, [\chi])\).