Properties

Label 4356.2.a.r
Level $4356$
Weight $2$
Character orbit 4356.a
Self dual yes
Analytic conductor $34.783$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4356,2,Mod(1,4356)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4356, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4356.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4356.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.7828351205\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + (2 \beta - 3) q^{7} + ( - 2 \beta - 1) q^{13} + ( - 3 \beta + 5) q^{17} + ( - 3 \beta - 2) q^{19} + 5 q^{23} + (\beta - 4) q^{25} - 2 q^{29} + ( - \beta + 5) q^{31} + ( - \beta + 2) q^{35}+ \cdots + (13 \beta - 6) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} - 4 q^{7} - 4 q^{13} + 7 q^{17} - 7 q^{19} + 10 q^{23} - 7 q^{25} - 4 q^{29} + 9 q^{31} + 3 q^{35} + 4 q^{41} - 14 q^{43} + q^{47} + 4 q^{49} - 11 q^{53} + q^{59} - 15 q^{61} - 7 q^{65} - 11 q^{67}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 0 0 −0.618034 0 −4.23607 0 0 0
1.2 0 0 0 1.61803 0 0.236068 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4356.2.a.r 2
3.b odd 2 1 1452.2.a.l 2
11.b odd 2 1 4356.2.a.w 2
11.c even 5 2 396.2.j.b 4
12.b even 2 1 5808.2.a.bq 2
33.d even 2 1 1452.2.a.m 2
33.f even 10 2 1452.2.i.f 4
33.f even 10 2 1452.2.i.g 4
33.h odd 10 2 132.2.i.a 4
33.h odd 10 2 1452.2.i.c 4
132.d odd 2 1 5808.2.a.bn 2
132.o even 10 2 528.2.y.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.2.i.a 4 33.h odd 10 2
396.2.j.b 4 11.c even 5 2
528.2.y.i 4 132.o even 10 2
1452.2.a.l 2 3.b odd 2 1
1452.2.a.m 2 33.d even 2 1
1452.2.i.c 4 33.h odd 10 2
1452.2.i.f 4 33.f even 10 2
1452.2.i.g 4 33.f even 10 2
4356.2.a.r 2 1.a even 1 1 trivial
4356.2.a.w 2 11.b odd 2 1
5808.2.a.bn 2 132.d odd 2 1
5808.2.a.bq 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4356))\):

\( T_{5}^{2} - T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} - 7T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} + 7T + 1 \) Copy content Toggle raw display
$23$ \( (T - 5)^{2} \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 9T + 19 \) Copy content Toggle raw display
$37$ \( T^{2} - 5 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$43$ \( T^{2} + 14T + 29 \) Copy content Toggle raw display
$47$ \( T^{2} - T - 101 \) Copy content Toggle raw display
$53$ \( T^{2} + 11T + 29 \) Copy content Toggle raw display
$59$ \( T^{2} - T - 151 \) Copy content Toggle raw display
$61$ \( T^{2} + 15T + 45 \) Copy content Toggle raw display
$67$ \( T^{2} + 11T + 29 \) Copy content Toggle raw display
$71$ \( T^{2} - 9T - 81 \) Copy content Toggle raw display
$73$ \( T^{2} + 18T + 36 \) Copy content Toggle raw display
$79$ \( T^{2} + 4T - 41 \) Copy content Toggle raw display
$83$ \( T^{2} - 8T + 11 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 89 \) Copy content Toggle raw display
$97$ \( T^{2} - T - 211 \) Copy content Toggle raw display
show more
show less