Properties

Label 43560.2.a.be
Level 4356043560
Weight 22
Character orbit 43560.a
Self dual yes
Analytic conductor 347.828347.828
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [43560,2,Mod(1,43560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("43560.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 43560=23325112 43560 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 43560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 347.828351205347.828351205
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq5+4q7+6q132q17+4q19+8q23+q25+6q294q352q37+2q41+8q43+9q49+2q534q59+10q616q65+12q67+16q71++10q97+O(q100) q - q^{5} + 4 q^{7} + 6 q^{13} - 2 q^{17} + 4 q^{19} + 8 q^{23} + q^{25} + 6 q^{29} - 4 q^{35} - 2 q^{37} + 2 q^{41} + 8 q^{43} + 9 q^{49} + 2 q^{53} - 4 q^{59} + 10 q^{61} - 6 q^{65} + 12 q^{67} + 16 q^{71}+ \cdots + 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1
55 +1 +1
1111 1 -1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.