Properties

Label 4368.2.a.bl.1.2
Level $4368$
Weight $2$
Character 4368.1
Self dual yes
Analytic conductor $34.879$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4368,2,Mod(1,4368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1092)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.23607 q^{5} -1.00000 q^{7} +1.00000 q^{9} +1.23607 q^{11} +1.00000 q^{13} +3.23607 q^{15} +6.47214 q^{17} -2.47214 q^{19} -1.00000 q^{21} +4.47214 q^{23} +5.47214 q^{25} +1.00000 q^{27} -0.472136 q^{29} +1.23607 q^{33} -3.23607 q^{35} -4.47214 q^{37} +1.00000 q^{39} +0.763932 q^{41} -4.00000 q^{43} +3.23607 q^{45} +5.70820 q^{47} +1.00000 q^{49} +6.47214 q^{51} +10.0000 q^{53} +4.00000 q^{55} -2.47214 q^{57} -4.76393 q^{59} -2.94427 q^{61} -1.00000 q^{63} +3.23607 q^{65} -6.47214 q^{67} +4.47214 q^{69} -7.70820 q^{71} -4.47214 q^{73} +5.47214 q^{75} -1.23607 q^{77} +1.52786 q^{79} +1.00000 q^{81} -7.23607 q^{83} +20.9443 q^{85} -0.472136 q^{87} +12.1803 q^{89} -1.00000 q^{91} -8.00000 q^{95} -10.9443 q^{97} +1.23607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9} - 2 q^{11} + 2 q^{13} + 2 q^{15} + 4 q^{17} + 4 q^{19} - 2 q^{21} + 2 q^{25} + 2 q^{27} + 8 q^{29} - 2 q^{33} - 2 q^{35} + 2 q^{39} + 6 q^{41} - 8 q^{43} + 2 q^{45}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.23607 1.44721 0.723607 0.690212i \(-0.242483\pi\)
0.723607 + 0.690212i \(0.242483\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.23607 0.372689 0.186344 0.982485i \(-0.440336\pi\)
0.186344 + 0.982485i \(0.440336\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 3.23607 0.835549
\(16\) 0 0
\(17\) 6.47214 1.56972 0.784862 0.619671i \(-0.212734\pi\)
0.784862 + 0.619671i \(0.212734\pi\)
\(18\) 0 0
\(19\) −2.47214 −0.567147 −0.283573 0.958951i \(-0.591520\pi\)
−0.283573 + 0.958951i \(0.591520\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 4.47214 0.932505 0.466252 0.884652i \(-0.345604\pi\)
0.466252 + 0.884652i \(0.345604\pi\)
\(24\) 0 0
\(25\) 5.47214 1.09443
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −0.472136 −0.0876734 −0.0438367 0.999039i \(-0.513958\pi\)
−0.0438367 + 0.999039i \(0.513958\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 1.23607 0.215172
\(34\) 0 0
\(35\) −3.23607 −0.546995
\(36\) 0 0
\(37\) −4.47214 −0.735215 −0.367607 0.929981i \(-0.619823\pi\)
−0.367607 + 0.929981i \(0.619823\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 0.763932 0.119306 0.0596531 0.998219i \(-0.481001\pi\)
0.0596531 + 0.998219i \(0.481001\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 3.23607 0.482405
\(46\) 0 0
\(47\) 5.70820 0.832627 0.416314 0.909221i \(-0.363322\pi\)
0.416314 + 0.909221i \(0.363322\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 6.47214 0.906280
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −2.47214 −0.327442
\(58\) 0 0
\(59\) −4.76393 −0.620211 −0.310106 0.950702i \(-0.600364\pi\)
−0.310106 + 0.950702i \(0.600364\pi\)
\(60\) 0 0
\(61\) −2.94427 −0.376975 −0.188488 0.982076i \(-0.560359\pi\)
−0.188488 + 0.982076i \(0.560359\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 3.23607 0.401385
\(66\) 0 0
\(67\) −6.47214 −0.790697 −0.395349 0.918531i \(-0.629376\pi\)
−0.395349 + 0.918531i \(0.629376\pi\)
\(68\) 0 0
\(69\) 4.47214 0.538382
\(70\) 0 0
\(71\) −7.70820 −0.914796 −0.457398 0.889262i \(-0.651218\pi\)
−0.457398 + 0.889262i \(0.651218\pi\)
\(72\) 0 0
\(73\) −4.47214 −0.523424 −0.261712 0.965146i \(-0.584287\pi\)
−0.261712 + 0.965146i \(0.584287\pi\)
\(74\) 0 0
\(75\) 5.47214 0.631868
\(76\) 0 0
\(77\) −1.23607 −0.140863
\(78\) 0 0
\(79\) 1.52786 0.171898 0.0859491 0.996300i \(-0.472608\pi\)
0.0859491 + 0.996300i \(0.472608\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −7.23607 −0.794262 −0.397131 0.917762i \(-0.629994\pi\)
−0.397131 + 0.917762i \(0.629994\pi\)
\(84\) 0 0
\(85\) 20.9443 2.27173
\(86\) 0 0
\(87\) −0.472136 −0.0506183
\(88\) 0 0
\(89\) 12.1803 1.29111 0.645557 0.763712i \(-0.276625\pi\)
0.645557 + 0.763712i \(0.276625\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) −10.9443 −1.11122 −0.555611 0.831442i \(-0.687516\pi\)
−0.555611 + 0.831442i \(0.687516\pi\)
\(98\) 0 0
\(99\) 1.23607 0.124230
\(100\) 0 0
\(101\) 8.94427 0.889988 0.444994 0.895533i \(-0.353206\pi\)
0.444994 + 0.895533i \(0.353206\pi\)
\(102\) 0 0
\(103\) −0.944272 −0.0930419 −0.0465209 0.998917i \(-0.514813\pi\)
−0.0465209 + 0.998917i \(0.514813\pi\)
\(104\) 0 0
\(105\) −3.23607 −0.315808
\(106\) 0 0
\(107\) 12.4721 1.20573 0.602863 0.797844i \(-0.294026\pi\)
0.602863 + 0.797844i \(0.294026\pi\)
\(108\) 0 0
\(109\) 12.4721 1.19461 0.597307 0.802013i \(-0.296237\pi\)
0.597307 + 0.802013i \(0.296237\pi\)
\(110\) 0 0
\(111\) −4.47214 −0.424476
\(112\) 0 0
\(113\) 11.5279 1.08445 0.542225 0.840233i \(-0.317582\pi\)
0.542225 + 0.840233i \(0.317582\pi\)
\(114\) 0 0
\(115\) 14.4721 1.34953
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) −6.47214 −0.593300
\(120\) 0 0
\(121\) −9.47214 −0.861103
\(122\) 0 0
\(123\) 0.763932 0.0688814
\(124\) 0 0
\(125\) 1.52786 0.136656
\(126\) 0 0
\(127\) −6.47214 −0.574309 −0.287155 0.957884i \(-0.592709\pi\)
−0.287155 + 0.957884i \(0.592709\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 10.4721 0.914955 0.457477 0.889221i \(-0.348753\pi\)
0.457477 + 0.889221i \(0.348753\pi\)
\(132\) 0 0
\(133\) 2.47214 0.214361
\(134\) 0 0
\(135\) 3.23607 0.278516
\(136\) 0 0
\(137\) 10.7639 0.919625 0.459812 0.888016i \(-0.347917\pi\)
0.459812 + 0.888016i \(0.347917\pi\)
\(138\) 0 0
\(139\) 17.8885 1.51729 0.758643 0.651506i \(-0.225863\pi\)
0.758643 + 0.651506i \(0.225863\pi\)
\(140\) 0 0
\(141\) 5.70820 0.480717
\(142\) 0 0
\(143\) 1.23607 0.103365
\(144\) 0 0
\(145\) −1.52786 −0.126882
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −17.2361 −1.41203 −0.706017 0.708195i \(-0.749510\pi\)
−0.706017 + 0.708195i \(0.749510\pi\)
\(150\) 0 0
\(151\) 20.9443 1.70442 0.852210 0.523199i \(-0.175262\pi\)
0.852210 + 0.523199i \(0.175262\pi\)
\(152\) 0 0
\(153\) 6.47214 0.523241
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) −4.47214 −0.352454
\(162\) 0 0
\(163\) −6.47214 −0.506937 −0.253468 0.967344i \(-0.581571\pi\)
−0.253468 + 0.967344i \(0.581571\pi\)
\(164\) 0 0
\(165\) 4.00000 0.311400
\(166\) 0 0
\(167\) −4.18034 −0.323484 −0.161742 0.986833i \(-0.551711\pi\)
−0.161742 + 0.986833i \(0.551711\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −2.47214 −0.189049
\(172\) 0 0
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 0 0
\(175\) −5.47214 −0.413655
\(176\) 0 0
\(177\) −4.76393 −0.358079
\(178\) 0 0
\(179\) −10.9443 −0.818013 −0.409007 0.912531i \(-0.634125\pi\)
−0.409007 + 0.912531i \(0.634125\pi\)
\(180\) 0 0
\(181\) −15.8885 −1.18099 −0.590493 0.807043i \(-0.701067\pi\)
−0.590493 + 0.807043i \(0.701067\pi\)
\(182\) 0 0
\(183\) −2.94427 −0.217647
\(184\) 0 0
\(185\) −14.4721 −1.06401
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −10.9443 −0.791900 −0.395950 0.918272i \(-0.629585\pi\)
−0.395950 + 0.918272i \(0.629585\pi\)
\(192\) 0 0
\(193\) −26.3607 −1.89748 −0.948742 0.316053i \(-0.897642\pi\)
−0.948742 + 0.316053i \(0.897642\pi\)
\(194\) 0 0
\(195\) 3.23607 0.231740
\(196\) 0 0
\(197\) 5.23607 0.373054 0.186527 0.982450i \(-0.440277\pi\)
0.186527 + 0.982450i \(0.440277\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −6.47214 −0.456509
\(202\) 0 0
\(203\) 0.472136 0.0331374
\(204\) 0 0
\(205\) 2.47214 0.172661
\(206\) 0 0
\(207\) 4.47214 0.310835
\(208\) 0 0
\(209\) −3.05573 −0.211369
\(210\) 0 0
\(211\) 24.3607 1.67706 0.838529 0.544857i \(-0.183416\pi\)
0.838529 + 0.544857i \(0.183416\pi\)
\(212\) 0 0
\(213\) −7.70820 −0.528157
\(214\) 0 0
\(215\) −12.9443 −0.882792
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −4.47214 −0.302199
\(220\) 0 0
\(221\) 6.47214 0.435363
\(222\) 0 0
\(223\) 1.52786 0.102313 0.0511567 0.998691i \(-0.483709\pi\)
0.0511567 + 0.998691i \(0.483709\pi\)
\(224\) 0 0
\(225\) 5.47214 0.364809
\(226\) 0 0
\(227\) 11.2361 0.745764 0.372882 0.927879i \(-0.378370\pi\)
0.372882 + 0.927879i \(0.378370\pi\)
\(228\) 0 0
\(229\) 1.41641 0.0935989 0.0467994 0.998904i \(-0.485098\pi\)
0.0467994 + 0.998904i \(0.485098\pi\)
\(230\) 0 0
\(231\) −1.23607 −0.0813273
\(232\) 0 0
\(233\) −21.4164 −1.40304 −0.701518 0.712652i \(-0.747494\pi\)
−0.701518 + 0.712652i \(0.747494\pi\)
\(234\) 0 0
\(235\) 18.4721 1.20499
\(236\) 0 0
\(237\) 1.52786 0.0992454
\(238\) 0 0
\(239\) 19.1246 1.23707 0.618534 0.785758i \(-0.287727\pi\)
0.618534 + 0.785758i \(0.287727\pi\)
\(240\) 0 0
\(241\) −7.52786 −0.484912 −0.242456 0.970162i \(-0.577953\pi\)
−0.242456 + 0.970162i \(0.577953\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 3.23607 0.206745
\(246\) 0 0
\(247\) −2.47214 −0.157298
\(248\) 0 0
\(249\) −7.23607 −0.458567
\(250\) 0 0
\(251\) −14.4721 −0.913473 −0.456737 0.889602i \(-0.650982\pi\)
−0.456737 + 0.889602i \(0.650982\pi\)
\(252\) 0 0
\(253\) 5.52786 0.347534
\(254\) 0 0
\(255\) 20.9443 1.31158
\(256\) 0 0
\(257\) −26.8328 −1.67379 −0.836893 0.547367i \(-0.815630\pi\)
−0.836893 + 0.547367i \(0.815630\pi\)
\(258\) 0 0
\(259\) 4.47214 0.277885
\(260\) 0 0
\(261\) −0.472136 −0.0292245
\(262\) 0 0
\(263\) −8.47214 −0.522414 −0.261207 0.965283i \(-0.584121\pi\)
−0.261207 + 0.965283i \(0.584121\pi\)
\(264\) 0 0
\(265\) 32.3607 1.98790
\(266\) 0 0
\(267\) 12.1803 0.745425
\(268\) 0 0
\(269\) −12.9443 −0.789226 −0.394613 0.918847i \(-0.629121\pi\)
−0.394613 + 0.918847i \(0.629121\pi\)
\(270\) 0 0
\(271\) −3.41641 −0.207532 −0.103766 0.994602i \(-0.533089\pi\)
−0.103766 + 0.994602i \(0.533089\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) 6.76393 0.407880
\(276\) 0 0
\(277\) 19.8885 1.19499 0.597493 0.801874i \(-0.296163\pi\)
0.597493 + 0.801874i \(0.296163\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.6525 0.754783 0.377392 0.926054i \(-0.376821\pi\)
0.377392 + 0.926054i \(0.376821\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) −0.763932 −0.0450935
\(288\) 0 0
\(289\) 24.8885 1.46403
\(290\) 0 0
\(291\) −10.9443 −0.641565
\(292\) 0 0
\(293\) 0.763932 0.0446294 0.0223147 0.999751i \(-0.492896\pi\)
0.0223147 + 0.999751i \(0.492896\pi\)
\(294\) 0 0
\(295\) −15.4164 −0.897578
\(296\) 0 0
\(297\) 1.23607 0.0717239
\(298\) 0 0
\(299\) 4.47214 0.258630
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) 0 0
\(303\) 8.94427 0.513835
\(304\) 0 0
\(305\) −9.52786 −0.545564
\(306\) 0 0
\(307\) −29.8885 −1.70583 −0.852915 0.522050i \(-0.825167\pi\)
−0.852915 + 0.522050i \(0.825167\pi\)
\(308\) 0 0
\(309\) −0.944272 −0.0537178
\(310\) 0 0
\(311\) 10.4721 0.593820 0.296910 0.954905i \(-0.404044\pi\)
0.296910 + 0.954905i \(0.404044\pi\)
\(312\) 0 0
\(313\) −32.8328 −1.85582 −0.927910 0.372804i \(-0.878396\pi\)
−0.927910 + 0.372804i \(0.878396\pi\)
\(314\) 0 0
\(315\) −3.23607 −0.182332
\(316\) 0 0
\(317\) −5.81966 −0.326865 −0.163432 0.986555i \(-0.552257\pi\)
−0.163432 + 0.986555i \(0.552257\pi\)
\(318\) 0 0
\(319\) −0.583592 −0.0326749
\(320\) 0 0
\(321\) 12.4721 0.696127
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) 5.47214 0.303539
\(326\) 0 0
\(327\) 12.4721 0.689711
\(328\) 0 0
\(329\) −5.70820 −0.314703
\(330\) 0 0
\(331\) −18.8328 −1.03515 −0.517573 0.855639i \(-0.673164\pi\)
−0.517573 + 0.855639i \(0.673164\pi\)
\(332\) 0 0
\(333\) −4.47214 −0.245072
\(334\) 0 0
\(335\) −20.9443 −1.14431
\(336\) 0 0
\(337\) 22.3607 1.21806 0.609032 0.793146i \(-0.291558\pi\)
0.609032 + 0.793146i \(0.291558\pi\)
\(338\) 0 0
\(339\) 11.5279 0.626108
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 14.4721 0.779154
\(346\) 0 0
\(347\) −22.0000 −1.18102 −0.590511 0.807030i \(-0.701074\pi\)
−0.590511 + 0.807030i \(0.701074\pi\)
\(348\) 0 0
\(349\) −25.4164 −1.36051 −0.680255 0.732976i \(-0.738131\pi\)
−0.680255 + 0.732976i \(0.738131\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) 14.6525 0.779873 0.389936 0.920842i \(-0.372497\pi\)
0.389936 + 0.920842i \(0.372497\pi\)
\(354\) 0 0
\(355\) −24.9443 −1.32390
\(356\) 0 0
\(357\) −6.47214 −0.342542
\(358\) 0 0
\(359\) 18.1803 0.959522 0.479761 0.877399i \(-0.340723\pi\)
0.479761 + 0.877399i \(0.340723\pi\)
\(360\) 0 0
\(361\) −12.8885 −0.678344
\(362\) 0 0
\(363\) −9.47214 −0.497158
\(364\) 0 0
\(365\) −14.4721 −0.757506
\(366\) 0 0
\(367\) 7.05573 0.368306 0.184153 0.982898i \(-0.441046\pi\)
0.184153 + 0.982898i \(0.441046\pi\)
\(368\) 0 0
\(369\) 0.763932 0.0397687
\(370\) 0 0
\(371\) −10.0000 −0.519174
\(372\) 0 0
\(373\) 27.5279 1.42534 0.712669 0.701500i \(-0.247486\pi\)
0.712669 + 0.701500i \(0.247486\pi\)
\(374\) 0 0
\(375\) 1.52786 0.0788986
\(376\) 0 0
\(377\) −0.472136 −0.0243162
\(378\) 0 0
\(379\) 21.8885 1.12434 0.562169 0.827022i \(-0.309967\pi\)
0.562169 + 0.827022i \(0.309967\pi\)
\(380\) 0 0
\(381\) −6.47214 −0.331578
\(382\) 0 0
\(383\) 24.1803 1.23556 0.617779 0.786352i \(-0.288033\pi\)
0.617779 + 0.786352i \(0.288033\pi\)
\(384\) 0 0
\(385\) −4.00000 −0.203859
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) 28.9443 1.46377
\(392\) 0 0
\(393\) 10.4721 0.528249
\(394\) 0 0
\(395\) 4.94427 0.248773
\(396\) 0 0
\(397\) 0.111456 0.00559383 0.00279691 0.999996i \(-0.499110\pi\)
0.00279691 + 0.999996i \(0.499110\pi\)
\(398\) 0 0
\(399\) 2.47214 0.123762
\(400\) 0 0
\(401\) −14.7639 −0.737276 −0.368638 0.929573i \(-0.620176\pi\)
−0.368638 + 0.929573i \(0.620176\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.23607 0.160802
\(406\) 0 0
\(407\) −5.52786 −0.274006
\(408\) 0 0
\(409\) −34.9443 −1.72788 −0.863942 0.503592i \(-0.832011\pi\)
−0.863942 + 0.503592i \(0.832011\pi\)
\(410\) 0 0
\(411\) 10.7639 0.530946
\(412\) 0 0
\(413\) 4.76393 0.234418
\(414\) 0 0
\(415\) −23.4164 −1.14947
\(416\) 0 0
\(417\) 17.8885 0.876006
\(418\) 0 0
\(419\) −3.41641 −0.166902 −0.0834512 0.996512i \(-0.526594\pi\)
−0.0834512 + 0.996512i \(0.526594\pi\)
\(420\) 0 0
\(421\) 35.8885 1.74910 0.874550 0.484935i \(-0.161157\pi\)
0.874550 + 0.484935i \(0.161157\pi\)
\(422\) 0 0
\(423\) 5.70820 0.277542
\(424\) 0 0
\(425\) 35.4164 1.71795
\(426\) 0 0
\(427\) 2.94427 0.142483
\(428\) 0 0
\(429\) 1.23607 0.0596779
\(430\) 0 0
\(431\) 11.7082 0.563964 0.281982 0.959420i \(-0.409008\pi\)
0.281982 + 0.959420i \(0.409008\pi\)
\(432\) 0 0
\(433\) 22.0000 1.05725 0.528626 0.848855i \(-0.322707\pi\)
0.528626 + 0.848855i \(0.322707\pi\)
\(434\) 0 0
\(435\) −1.52786 −0.0732555
\(436\) 0 0
\(437\) −11.0557 −0.528867
\(438\) 0 0
\(439\) 32.9443 1.57234 0.786172 0.618008i \(-0.212060\pi\)
0.786172 + 0.618008i \(0.212060\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −9.41641 −0.447387 −0.223694 0.974660i \(-0.571811\pi\)
−0.223694 + 0.974660i \(0.571811\pi\)
\(444\) 0 0
\(445\) 39.4164 1.86852
\(446\) 0 0
\(447\) −17.2361 −0.815238
\(448\) 0 0
\(449\) 7.12461 0.336231 0.168116 0.985767i \(-0.446232\pi\)
0.168116 + 0.985767i \(0.446232\pi\)
\(450\) 0 0
\(451\) 0.944272 0.0444640
\(452\) 0 0
\(453\) 20.9443 0.984048
\(454\) 0 0
\(455\) −3.23607 −0.151709
\(456\) 0 0
\(457\) −12.4721 −0.583422 −0.291711 0.956507i \(-0.594225\pi\)
−0.291711 + 0.956507i \(0.594225\pi\)
\(458\) 0 0
\(459\) 6.47214 0.302093
\(460\) 0 0
\(461\) −29.7082 −1.38365 −0.691825 0.722066i \(-0.743193\pi\)
−0.691825 + 0.722066i \(0.743193\pi\)
\(462\) 0 0
\(463\) −15.4164 −0.716461 −0.358231 0.933633i \(-0.616620\pi\)
−0.358231 + 0.933633i \(0.616620\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.47214 −0.299495 −0.149747 0.988724i \(-0.547846\pi\)
−0.149747 + 0.988724i \(0.547846\pi\)
\(468\) 0 0
\(469\) 6.47214 0.298855
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 0 0
\(473\) −4.94427 −0.227338
\(474\) 0 0
\(475\) −13.5279 −0.620701
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) 0 0
\(479\) 30.0689 1.37388 0.686941 0.726713i \(-0.258953\pi\)
0.686941 + 0.726713i \(0.258953\pi\)
\(480\) 0 0
\(481\) −4.47214 −0.203912
\(482\) 0 0
\(483\) −4.47214 −0.203489
\(484\) 0 0
\(485\) −35.4164 −1.60818
\(486\) 0 0
\(487\) 22.8328 1.03465 0.517327 0.855788i \(-0.326927\pi\)
0.517327 + 0.855788i \(0.326927\pi\)
\(488\) 0 0
\(489\) −6.47214 −0.292680
\(490\) 0 0
\(491\) −7.52786 −0.339728 −0.169864 0.985468i \(-0.554333\pi\)
−0.169864 + 0.985468i \(0.554333\pi\)
\(492\) 0 0
\(493\) −3.05573 −0.137623
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) 7.70820 0.345760
\(498\) 0 0
\(499\) 13.8885 0.621737 0.310868 0.950453i \(-0.399380\pi\)
0.310868 + 0.950453i \(0.399380\pi\)
\(500\) 0 0
\(501\) −4.18034 −0.186764
\(502\) 0 0
\(503\) −1.52786 −0.0681241 −0.0340620 0.999420i \(-0.510844\pi\)
−0.0340620 + 0.999420i \(0.510844\pi\)
\(504\) 0 0
\(505\) 28.9443 1.28800
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −27.5967 −1.22320 −0.611602 0.791165i \(-0.709475\pi\)
−0.611602 + 0.791165i \(0.709475\pi\)
\(510\) 0 0
\(511\) 4.47214 0.197836
\(512\) 0 0
\(513\) −2.47214 −0.109147
\(514\) 0 0
\(515\) −3.05573 −0.134651
\(516\) 0 0
\(517\) 7.05573 0.310311
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −3.05573 −0.133874 −0.0669369 0.997757i \(-0.521323\pi\)
−0.0669369 + 0.997757i \(0.521323\pi\)
\(522\) 0 0
\(523\) 1.88854 0.0825803 0.0412901 0.999147i \(-0.486853\pi\)
0.0412901 + 0.999147i \(0.486853\pi\)
\(524\) 0 0
\(525\) −5.47214 −0.238824
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.00000 −0.130435
\(530\) 0 0
\(531\) −4.76393 −0.206737
\(532\) 0 0
\(533\) 0.763932 0.0330896
\(534\) 0 0
\(535\) 40.3607 1.74494
\(536\) 0 0
\(537\) −10.9443 −0.472280
\(538\) 0 0
\(539\) 1.23607 0.0532412
\(540\) 0 0
\(541\) −10.9443 −0.470531 −0.235266 0.971931i \(-0.575596\pi\)
−0.235266 + 0.971931i \(0.575596\pi\)
\(542\) 0 0
\(543\) −15.8885 −0.681843
\(544\) 0 0
\(545\) 40.3607 1.72886
\(546\) 0 0
\(547\) 36.9443 1.57962 0.789812 0.613350i \(-0.210178\pi\)
0.789812 + 0.613350i \(0.210178\pi\)
\(548\) 0 0
\(549\) −2.94427 −0.125658
\(550\) 0 0
\(551\) 1.16718 0.0497237
\(552\) 0 0
\(553\) −1.52786 −0.0649714
\(554\) 0 0
\(555\) −14.4721 −0.614308
\(556\) 0 0
\(557\) −33.2361 −1.40826 −0.704129 0.710072i \(-0.748662\pi\)
−0.704129 + 0.710072i \(0.748662\pi\)
\(558\) 0 0
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) −36.9443 −1.55702 −0.778508 0.627635i \(-0.784023\pi\)
−0.778508 + 0.627635i \(0.784023\pi\)
\(564\) 0 0
\(565\) 37.3050 1.56943
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 9.41641 0.394756 0.197378 0.980327i \(-0.436757\pi\)
0.197378 + 0.980327i \(0.436757\pi\)
\(570\) 0 0
\(571\) −44.3607 −1.85644 −0.928218 0.372036i \(-0.878660\pi\)
−0.928218 + 0.372036i \(0.878660\pi\)
\(572\) 0 0
\(573\) −10.9443 −0.457204
\(574\) 0 0
\(575\) 24.4721 1.02056
\(576\) 0 0
\(577\) 1.05573 0.0439505 0.0219753 0.999759i \(-0.493004\pi\)
0.0219753 + 0.999759i \(0.493004\pi\)
\(578\) 0 0
\(579\) −26.3607 −1.09551
\(580\) 0 0
\(581\) 7.23607 0.300203
\(582\) 0 0
\(583\) 12.3607 0.511927
\(584\) 0 0
\(585\) 3.23607 0.133795
\(586\) 0 0
\(587\) 27.5967 1.13904 0.569520 0.821978i \(-0.307129\pi\)
0.569520 + 0.821978i \(0.307129\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 5.23607 0.215383
\(592\) 0 0
\(593\) 40.1803 1.65001 0.825004 0.565126i \(-0.191173\pi\)
0.825004 + 0.565126i \(0.191173\pi\)
\(594\) 0 0
\(595\) −20.9443 −0.858631
\(596\) 0 0
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) −35.3050 −1.44252 −0.721261 0.692664i \(-0.756437\pi\)
−0.721261 + 0.692664i \(0.756437\pi\)
\(600\) 0 0
\(601\) 26.9443 1.09908 0.549540 0.835467i \(-0.314803\pi\)
0.549540 + 0.835467i \(0.314803\pi\)
\(602\) 0 0
\(603\) −6.47214 −0.263566
\(604\) 0 0
\(605\) −30.6525 −1.24620
\(606\) 0 0
\(607\) −13.8885 −0.563719 −0.281859 0.959456i \(-0.590951\pi\)
−0.281859 + 0.959456i \(0.590951\pi\)
\(608\) 0 0
\(609\) 0.472136 0.0191319
\(610\) 0 0
\(611\) 5.70820 0.230929
\(612\) 0 0
\(613\) 41.7771 1.68736 0.843680 0.536846i \(-0.180384\pi\)
0.843680 + 0.536846i \(0.180384\pi\)
\(614\) 0 0
\(615\) 2.47214 0.0996861
\(616\) 0 0
\(617\) −45.2361 −1.82114 −0.910568 0.413360i \(-0.864355\pi\)
−0.910568 + 0.413360i \(0.864355\pi\)
\(618\) 0 0
\(619\) −25.3050 −1.01709 −0.508546 0.861035i \(-0.669817\pi\)
−0.508546 + 0.861035i \(0.669817\pi\)
\(620\) 0 0
\(621\) 4.47214 0.179461
\(622\) 0 0
\(623\) −12.1803 −0.487995
\(624\) 0 0
\(625\) −22.4164 −0.896656
\(626\) 0 0
\(627\) −3.05573 −0.122034
\(628\) 0 0
\(629\) −28.9443 −1.15408
\(630\) 0 0
\(631\) −5.52786 −0.220061 −0.110030 0.993928i \(-0.535095\pi\)
−0.110030 + 0.993928i \(0.535095\pi\)
\(632\) 0 0
\(633\) 24.3607 0.968250
\(634\) 0 0
\(635\) −20.9443 −0.831148
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) −7.70820 −0.304932
\(640\) 0 0
\(641\) −29.7771 −1.17612 −0.588062 0.808816i \(-0.700109\pi\)
−0.588062 + 0.808816i \(0.700109\pi\)
\(642\) 0 0
\(643\) −42.8328 −1.68916 −0.844581 0.535428i \(-0.820150\pi\)
−0.844581 + 0.535428i \(0.820150\pi\)
\(644\) 0 0
\(645\) −12.9443 −0.509680
\(646\) 0 0
\(647\) −42.8328 −1.68393 −0.841966 0.539531i \(-0.818602\pi\)
−0.841966 + 0.539531i \(0.818602\pi\)
\(648\) 0 0
\(649\) −5.88854 −0.231146
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.36068 0.248913 0.124456 0.992225i \(-0.460281\pi\)
0.124456 + 0.992225i \(0.460281\pi\)
\(654\) 0 0
\(655\) 33.8885 1.32413
\(656\) 0 0
\(657\) −4.47214 −0.174475
\(658\) 0 0
\(659\) −35.8885 −1.39802 −0.699010 0.715112i \(-0.746376\pi\)
−0.699010 + 0.715112i \(0.746376\pi\)
\(660\) 0 0
\(661\) 13.4164 0.521838 0.260919 0.965361i \(-0.415974\pi\)
0.260919 + 0.965361i \(0.415974\pi\)
\(662\) 0 0
\(663\) 6.47214 0.251357
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) −2.11146 −0.0817559
\(668\) 0 0
\(669\) 1.52786 0.0590706
\(670\) 0 0
\(671\) −3.63932 −0.140494
\(672\) 0 0
\(673\) 4.11146 0.158485 0.0792425 0.996855i \(-0.474750\pi\)
0.0792425 + 0.996855i \(0.474750\pi\)
\(674\) 0 0
\(675\) 5.47214 0.210623
\(676\) 0 0
\(677\) 31.4164 1.20743 0.603715 0.797200i \(-0.293686\pi\)
0.603715 + 0.797200i \(0.293686\pi\)
\(678\) 0 0
\(679\) 10.9443 0.420003
\(680\) 0 0
\(681\) 11.2361 0.430567
\(682\) 0 0
\(683\) −42.7639 −1.63632 −0.818158 0.574993i \(-0.805005\pi\)
−0.818158 + 0.574993i \(0.805005\pi\)
\(684\) 0 0
\(685\) 34.8328 1.33089
\(686\) 0 0
\(687\) 1.41641 0.0540393
\(688\) 0 0
\(689\) 10.0000 0.380970
\(690\) 0 0
\(691\) 52.3607 1.99189 0.995947 0.0899413i \(-0.0286680\pi\)
0.995947 + 0.0899413i \(0.0286680\pi\)
\(692\) 0 0
\(693\) −1.23607 −0.0469543
\(694\) 0 0
\(695\) 57.8885 2.19584
\(696\) 0 0
\(697\) 4.94427 0.187278
\(698\) 0 0
\(699\) −21.4164 −0.810043
\(700\) 0 0
\(701\) −37.7771 −1.42682 −0.713410 0.700746i \(-0.752850\pi\)
−0.713410 + 0.700746i \(0.752850\pi\)
\(702\) 0 0
\(703\) 11.0557 0.416975
\(704\) 0 0
\(705\) 18.4721 0.695701
\(706\) 0 0
\(707\) −8.94427 −0.336384
\(708\) 0 0
\(709\) −26.3607 −0.989996 −0.494998 0.868894i \(-0.664831\pi\)
−0.494998 + 0.868894i \(0.664831\pi\)
\(710\) 0 0
\(711\) 1.52786 0.0572994
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) 19.1246 0.714222
\(718\) 0 0
\(719\) −53.3050 −1.98794 −0.993970 0.109656i \(-0.965025\pi\)
−0.993970 + 0.109656i \(0.965025\pi\)
\(720\) 0 0
\(721\) 0.944272 0.0351665
\(722\) 0 0
\(723\) −7.52786 −0.279964
\(724\) 0 0
\(725\) −2.58359 −0.0959522
\(726\) 0 0
\(727\) 22.8328 0.846822 0.423411 0.905938i \(-0.360833\pi\)
0.423411 + 0.905938i \(0.360833\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −25.8885 −0.957522
\(732\) 0 0
\(733\) 7.52786 0.278048 0.139024 0.990289i \(-0.455603\pi\)
0.139024 + 0.990289i \(0.455603\pi\)
\(734\) 0 0
\(735\) 3.23607 0.119364
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 4.58359 0.168610 0.0843051 0.996440i \(-0.473133\pi\)
0.0843051 + 0.996440i \(0.473133\pi\)
\(740\) 0 0
\(741\) −2.47214 −0.0908162
\(742\) 0 0
\(743\) 11.3475 0.416300 0.208150 0.978097i \(-0.433256\pi\)
0.208150 + 0.978097i \(0.433256\pi\)
\(744\) 0 0
\(745\) −55.7771 −2.04351
\(746\) 0 0
\(747\) −7.23607 −0.264754
\(748\) 0 0
\(749\) −12.4721 −0.455722
\(750\) 0 0
\(751\) −36.9443 −1.34812 −0.674058 0.738679i \(-0.735450\pi\)
−0.674058 + 0.738679i \(0.735450\pi\)
\(752\) 0 0
\(753\) −14.4721 −0.527394
\(754\) 0 0
\(755\) 67.7771 2.46666
\(756\) 0 0
\(757\) 14.5836 0.530050 0.265025 0.964242i \(-0.414620\pi\)
0.265025 + 0.964242i \(0.414620\pi\)
\(758\) 0 0
\(759\) 5.52786 0.200649
\(760\) 0 0
\(761\) 3.81966 0.138463 0.0692313 0.997601i \(-0.477945\pi\)
0.0692313 + 0.997601i \(0.477945\pi\)
\(762\) 0 0
\(763\) −12.4721 −0.451522
\(764\) 0 0
\(765\) 20.9443 0.757242
\(766\) 0 0
\(767\) −4.76393 −0.172016
\(768\) 0 0
\(769\) −16.4721 −0.594000 −0.297000 0.954877i \(-0.595986\pi\)
−0.297000 + 0.954877i \(0.595986\pi\)
\(770\) 0 0
\(771\) −26.8328 −0.966360
\(772\) 0 0
\(773\) −33.1246 −1.19141 −0.595705 0.803204i \(-0.703127\pi\)
−0.595705 + 0.803204i \(0.703127\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.47214 0.160437
\(778\) 0 0
\(779\) −1.88854 −0.0676641
\(780\) 0 0
\(781\) −9.52786 −0.340934
\(782\) 0 0
\(783\) −0.472136 −0.0168728
\(784\) 0 0
\(785\) −58.2492 −2.07900
\(786\) 0 0
\(787\) −52.3607 −1.86646 −0.933228 0.359284i \(-0.883021\pi\)
−0.933228 + 0.359284i \(0.883021\pi\)
\(788\) 0 0
\(789\) −8.47214 −0.301616
\(790\) 0 0
\(791\) −11.5279 −0.409884
\(792\) 0 0
\(793\) −2.94427 −0.104554
\(794\) 0 0
\(795\) 32.3607 1.14772
\(796\) 0 0
\(797\) −21.5279 −0.762556 −0.381278 0.924460i \(-0.624516\pi\)
−0.381278 + 0.924460i \(0.624516\pi\)
\(798\) 0 0
\(799\) 36.9443 1.30699
\(800\) 0 0
\(801\) 12.1803 0.430371
\(802\) 0 0
\(803\) −5.52786 −0.195074
\(804\) 0 0
\(805\) −14.4721 −0.510076
\(806\) 0 0
\(807\) −12.9443 −0.455660
\(808\) 0 0
\(809\) 3.52786 0.124033 0.0620165 0.998075i \(-0.480247\pi\)
0.0620165 + 0.998075i \(0.480247\pi\)
\(810\) 0 0
\(811\) −36.0000 −1.26413 −0.632065 0.774915i \(-0.717793\pi\)
−0.632065 + 0.774915i \(0.717793\pi\)
\(812\) 0 0
\(813\) −3.41641 −0.119819
\(814\) 0 0
\(815\) −20.9443 −0.733646
\(816\) 0 0
\(817\) 9.88854 0.345956
\(818\) 0 0
\(819\) −1.00000 −0.0349428
\(820\) 0 0
\(821\) −15.3475 −0.535632 −0.267816 0.963470i \(-0.586302\pi\)
−0.267816 + 0.963470i \(0.586302\pi\)
\(822\) 0 0
\(823\) 23.7771 0.828817 0.414409 0.910091i \(-0.363988\pi\)
0.414409 + 0.910091i \(0.363988\pi\)
\(824\) 0 0
\(825\) 6.76393 0.235490
\(826\) 0 0
\(827\) −47.4853 −1.65123 −0.825613 0.564237i \(-0.809170\pi\)
−0.825613 + 0.564237i \(0.809170\pi\)
\(828\) 0 0
\(829\) 6.00000 0.208389 0.104194 0.994557i \(-0.466774\pi\)
0.104194 + 0.994557i \(0.466774\pi\)
\(830\) 0 0
\(831\) 19.8885 0.689926
\(832\) 0 0
\(833\) 6.47214 0.224246
\(834\) 0 0
\(835\) −13.5279 −0.468151
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 52.1803 1.80147 0.900733 0.434374i \(-0.143030\pi\)
0.900733 + 0.434374i \(0.143030\pi\)
\(840\) 0 0
\(841\) −28.7771 −0.992313
\(842\) 0 0
\(843\) 12.6525 0.435774
\(844\) 0 0
\(845\) 3.23607 0.111324
\(846\) 0 0
\(847\) 9.47214 0.325466
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) −20.0000 −0.685591
\(852\) 0 0
\(853\) 32.8328 1.12417 0.562087 0.827078i \(-0.309999\pi\)
0.562087 + 0.827078i \(0.309999\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) 23.0557 0.787569 0.393784 0.919203i \(-0.371166\pi\)
0.393784 + 0.919203i \(0.371166\pi\)
\(858\) 0 0
\(859\) 45.8885 1.56570 0.782848 0.622212i \(-0.213766\pi\)
0.782848 + 0.622212i \(0.213766\pi\)
\(860\) 0 0
\(861\) −0.763932 −0.0260347
\(862\) 0 0
\(863\) 29.8197 1.01507 0.507537 0.861630i \(-0.330556\pi\)
0.507537 + 0.861630i \(0.330556\pi\)
\(864\) 0 0
\(865\) 38.8328 1.32036
\(866\) 0 0
\(867\) 24.8885 0.845259
\(868\) 0 0
\(869\) 1.88854 0.0640645
\(870\) 0 0
\(871\) −6.47214 −0.219300
\(872\) 0 0
\(873\) −10.9443 −0.370407
\(874\) 0 0
\(875\) −1.52786 −0.0516512
\(876\) 0 0
\(877\) −27.8885 −0.941729 −0.470865 0.882205i \(-0.656058\pi\)
−0.470865 + 0.882205i \(0.656058\pi\)
\(878\) 0 0
\(879\) 0.763932 0.0257668
\(880\) 0 0
\(881\) −22.8328 −0.769257 −0.384629 0.923071i \(-0.625670\pi\)
−0.384629 + 0.923071i \(0.625670\pi\)
\(882\) 0 0
\(883\) −11.4164 −0.384193 −0.192096 0.981376i \(-0.561529\pi\)
−0.192096 + 0.981376i \(0.561529\pi\)
\(884\) 0 0
\(885\) −15.4164 −0.518217
\(886\) 0 0
\(887\) 58.8328 1.97541 0.987706 0.156321i \(-0.0499634\pi\)
0.987706 + 0.156321i \(0.0499634\pi\)
\(888\) 0 0
\(889\) 6.47214 0.217068
\(890\) 0 0
\(891\) 1.23607 0.0414098
\(892\) 0 0
\(893\) −14.1115 −0.472222
\(894\) 0 0
\(895\) −35.4164 −1.18384
\(896\) 0 0
\(897\) 4.47214 0.149320
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 64.7214 2.15618
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) −51.4164 −1.70914
\(906\) 0 0
\(907\) −16.3607 −0.543247 −0.271624 0.962404i \(-0.587561\pi\)
−0.271624 + 0.962404i \(0.587561\pi\)
\(908\) 0 0
\(909\) 8.94427 0.296663
\(910\) 0 0
\(911\) 3.88854 0.128833 0.0644166 0.997923i \(-0.479481\pi\)
0.0644166 + 0.997923i \(0.479481\pi\)
\(912\) 0 0
\(913\) −8.94427 −0.296012
\(914\) 0 0
\(915\) −9.52786 −0.314981
\(916\) 0 0
\(917\) −10.4721 −0.345820
\(918\) 0 0
\(919\) −10.4721 −0.345444 −0.172722 0.984971i \(-0.555256\pi\)
−0.172722 + 0.984971i \(0.555256\pi\)
\(920\) 0 0
\(921\) −29.8885 −0.984861
\(922\) 0 0
\(923\) −7.70820 −0.253719
\(924\) 0 0
\(925\) −24.4721 −0.804639
\(926\) 0 0
\(927\) −0.944272 −0.0310140
\(928\) 0 0
\(929\) −13.3475 −0.437918 −0.218959 0.975734i \(-0.570266\pi\)
−0.218959 + 0.975734i \(0.570266\pi\)
\(930\) 0 0
\(931\) −2.47214 −0.0810210
\(932\) 0 0
\(933\) 10.4721 0.342842
\(934\) 0 0
\(935\) 25.8885 0.846646
\(936\) 0 0
\(937\) −5.05573 −0.165163 −0.0825817 0.996584i \(-0.526317\pi\)
−0.0825817 + 0.996584i \(0.526317\pi\)
\(938\) 0 0
\(939\) −32.8328 −1.07146
\(940\) 0 0
\(941\) 16.5410 0.539222 0.269611 0.962969i \(-0.413105\pi\)
0.269611 + 0.962969i \(0.413105\pi\)
\(942\) 0 0
\(943\) 3.41641 0.111254
\(944\) 0 0
\(945\) −3.23607 −0.105269
\(946\) 0 0
\(947\) 41.5967 1.35171 0.675856 0.737033i \(-0.263774\pi\)
0.675856 + 0.737033i \(0.263774\pi\)
\(948\) 0 0
\(949\) −4.47214 −0.145172
\(950\) 0 0
\(951\) −5.81966 −0.188715
\(952\) 0 0
\(953\) 57.1935 1.85268 0.926340 0.376690i \(-0.122938\pi\)
0.926340 + 0.376690i \(0.122938\pi\)
\(954\) 0 0
\(955\) −35.4164 −1.14605
\(956\) 0 0
\(957\) −0.583592 −0.0188649
\(958\) 0 0
\(959\) −10.7639 −0.347585
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 12.4721 0.401909
\(964\) 0 0
\(965\) −85.3050 −2.74606
\(966\) 0 0
\(967\) −4.36068 −0.140230 −0.0701150 0.997539i \(-0.522337\pi\)
−0.0701150 + 0.997539i \(0.522337\pi\)
\(968\) 0 0
\(969\) −16.0000 −0.513994
\(970\) 0 0
\(971\) 5.88854 0.188972 0.0944862 0.995526i \(-0.469879\pi\)
0.0944862 + 0.995526i \(0.469879\pi\)
\(972\) 0 0
\(973\) −17.8885 −0.573480
\(974\) 0 0
\(975\) 5.47214 0.175249
\(976\) 0 0
\(977\) −14.7639 −0.472340 −0.236170 0.971712i \(-0.575892\pi\)
−0.236170 + 0.971712i \(0.575892\pi\)
\(978\) 0 0
\(979\) 15.0557 0.481183
\(980\) 0 0
\(981\) 12.4721 0.398205
\(982\) 0 0
\(983\) −18.8754 −0.602031 −0.301016 0.953619i \(-0.597326\pi\)
−0.301016 + 0.953619i \(0.597326\pi\)
\(984\) 0 0
\(985\) 16.9443 0.539889
\(986\) 0 0
\(987\) −5.70820 −0.181694
\(988\) 0 0
\(989\) −17.8885 −0.568823
\(990\) 0 0
\(991\) −41.8885 −1.33063 −0.665317 0.746561i \(-0.731703\pi\)
−0.665317 + 0.746561i \(0.731703\pi\)
\(992\) 0 0
\(993\) −18.8328 −0.597641
\(994\) 0 0
\(995\) 51.7771 1.64144
\(996\) 0 0
\(997\) −53.7771 −1.70314 −0.851569 0.524243i \(-0.824348\pi\)
−0.851569 + 0.524243i \(0.824348\pi\)
\(998\) 0 0
\(999\) −4.47214 −0.141492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4368.2.a.bl.1.2 2
4.3 odd 2 1092.2.a.f.1.2 2
12.11 even 2 3276.2.a.l.1.1 2
28.27 even 2 7644.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.a.f.1.2 2 4.3 odd 2
3276.2.a.l.1.1 2 12.11 even 2
4368.2.a.bl.1.2 2 1.1 even 1 trivial
7644.2.a.p.1.1 2 28.27 even 2