Properties

Label 4368.2.a.bq.1.2
Level $4368$
Weight $2$
Character 4368.1
Self dual yes
Analytic conductor $34.879$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4368,2,Mod(1,4368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.81361\) of defining polynomial
Character \(\chi\) \(=\) 4368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.28917 q^{5} +1.00000 q^{7} +1.00000 q^{9} -4.20555 q^{11} -1.00000 q^{13} -1.28917 q^{15} +1.62721 q^{17} +6.33804 q^{19} +1.00000 q^{21} +2.71083 q^{23} -3.33804 q^{25} +1.00000 q^{27} -4.33804 q^{29} +7.49472 q^{31} -4.20555 q^{33} -1.28917 q^{35} +3.42166 q^{37} -1.00000 q^{39} -7.62721 q^{41} +4.91638 q^{43} -1.28917 q^{45} +1.08362 q^{47} +1.00000 q^{49} +1.62721 q^{51} +1.75971 q^{53} +5.42166 q^{55} +6.33804 q^{57} +4.57834 q^{59} -5.25443 q^{61} +1.00000 q^{63} +1.28917 q^{65} -8.67609 q^{67} +2.71083 q^{69} +6.78389 q^{71} +4.07306 q^{73} -3.33804 q^{75} -4.20555 q^{77} +8.91638 q^{79} +1.00000 q^{81} +4.33804 q^{83} -2.09775 q^{85} -4.33804 q^{87} +4.54359 q^{89} -1.00000 q^{91} +7.49472 q^{93} -8.17081 q^{95} +11.3275 q^{97} -4.20555 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} + 3 q^{7} + 3 q^{9} + 2 q^{11} - 3 q^{13} - 3 q^{15} - 8 q^{17} + 7 q^{19} + 3 q^{21} + 9 q^{23} + 2 q^{25} + 3 q^{27} - q^{29} + 7 q^{31} + 2 q^{33} - 3 q^{35} + 12 q^{37} - 3 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.28917 −0.576534 −0.288267 0.957550i \(-0.593079\pi\)
−0.288267 + 0.957550i \(0.593079\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.20555 −1.26802 −0.634011 0.773324i \(-0.718592\pi\)
−0.634011 + 0.773324i \(0.718592\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −1.28917 −0.332862
\(16\) 0 0
\(17\) 1.62721 0.394657 0.197329 0.980337i \(-0.436773\pi\)
0.197329 + 0.980337i \(0.436773\pi\)
\(18\) 0 0
\(19\) 6.33804 1.45405 0.727024 0.686613i \(-0.240903\pi\)
0.727024 + 0.686613i \(0.240903\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 2.71083 0.565247 0.282624 0.959231i \(-0.408795\pi\)
0.282624 + 0.959231i \(0.408795\pi\)
\(24\) 0 0
\(25\) −3.33804 −0.667609
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −4.33804 −0.805555 −0.402777 0.915298i \(-0.631955\pi\)
−0.402777 + 0.915298i \(0.631955\pi\)
\(30\) 0 0
\(31\) 7.49472 1.34609 0.673046 0.739601i \(-0.264986\pi\)
0.673046 + 0.739601i \(0.264986\pi\)
\(32\) 0 0
\(33\) −4.20555 −0.732092
\(34\) 0 0
\(35\) −1.28917 −0.217909
\(36\) 0 0
\(37\) 3.42166 0.562518 0.281259 0.959632i \(-0.409248\pi\)
0.281259 + 0.959632i \(0.409248\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −7.62721 −1.19117 −0.595585 0.803292i \(-0.703080\pi\)
−0.595585 + 0.803292i \(0.703080\pi\)
\(42\) 0 0
\(43\) 4.91638 0.749741 0.374871 0.927077i \(-0.377687\pi\)
0.374871 + 0.927077i \(0.377687\pi\)
\(44\) 0 0
\(45\) −1.28917 −0.192178
\(46\) 0 0
\(47\) 1.08362 0.158062 0.0790310 0.996872i \(-0.474817\pi\)
0.0790310 + 0.996872i \(0.474817\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.62721 0.227855
\(52\) 0 0
\(53\) 1.75971 0.241714 0.120857 0.992670i \(-0.461436\pi\)
0.120857 + 0.992670i \(0.461436\pi\)
\(54\) 0 0
\(55\) 5.42166 0.731057
\(56\) 0 0
\(57\) 6.33804 0.839494
\(58\) 0 0
\(59\) 4.57834 0.596049 0.298024 0.954558i \(-0.403672\pi\)
0.298024 + 0.954558i \(0.403672\pi\)
\(60\) 0 0
\(61\) −5.25443 −0.672760 −0.336380 0.941726i \(-0.609203\pi\)
−0.336380 + 0.941726i \(0.609203\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 1.28917 0.159902
\(66\) 0 0
\(67\) −8.67609 −1.05995 −0.529976 0.848012i \(-0.677799\pi\)
−0.529976 + 0.848012i \(0.677799\pi\)
\(68\) 0 0
\(69\) 2.71083 0.326346
\(70\) 0 0
\(71\) 6.78389 0.805099 0.402550 0.915398i \(-0.368124\pi\)
0.402550 + 0.915398i \(0.368124\pi\)
\(72\) 0 0
\(73\) 4.07306 0.476715 0.238358 0.971177i \(-0.423391\pi\)
0.238358 + 0.971177i \(0.423391\pi\)
\(74\) 0 0
\(75\) −3.33804 −0.385444
\(76\) 0 0
\(77\) −4.20555 −0.479267
\(78\) 0 0
\(79\) 8.91638 1.00317 0.501586 0.865108i \(-0.332750\pi\)
0.501586 + 0.865108i \(0.332750\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.33804 0.476162 0.238081 0.971245i \(-0.423482\pi\)
0.238081 + 0.971245i \(0.423482\pi\)
\(84\) 0 0
\(85\) −2.09775 −0.227533
\(86\) 0 0
\(87\) −4.33804 −0.465087
\(88\) 0 0
\(89\) 4.54359 0.481620 0.240810 0.970572i \(-0.422587\pi\)
0.240810 + 0.970572i \(0.422587\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 7.49472 0.777166
\(94\) 0 0
\(95\) −8.17081 −0.838307
\(96\) 0 0
\(97\) 11.3275 1.15013 0.575066 0.818107i \(-0.304976\pi\)
0.575066 + 0.818107i \(0.304976\pi\)
\(98\) 0 0
\(99\) −4.20555 −0.422674
\(100\) 0 0
\(101\) 14.3033 1.42323 0.711616 0.702569i \(-0.247964\pi\)
0.711616 + 0.702569i \(0.247964\pi\)
\(102\) 0 0
\(103\) 19.6655 1.93770 0.968851 0.247645i \(-0.0796565\pi\)
0.968851 + 0.247645i \(0.0796565\pi\)
\(104\) 0 0
\(105\) −1.28917 −0.125810
\(106\) 0 0
\(107\) −2.20555 −0.213219 −0.106609 0.994301i \(-0.533999\pi\)
−0.106609 + 0.994301i \(0.533999\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 3.42166 0.324770
\(112\) 0 0
\(113\) −2.17081 −0.204212 −0.102106 0.994774i \(-0.532558\pi\)
−0.102106 + 0.994774i \(0.532558\pi\)
\(114\) 0 0
\(115\) −3.49472 −0.325884
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) 1.62721 0.149166
\(120\) 0 0
\(121\) 6.68665 0.607877
\(122\) 0 0
\(123\) −7.62721 −0.687723
\(124\) 0 0
\(125\) 10.7491 0.961433
\(126\) 0 0
\(127\) 0.745574 0.0661590 0.0330795 0.999453i \(-0.489469\pi\)
0.0330795 + 0.999453i \(0.489469\pi\)
\(128\) 0 0
\(129\) 4.91638 0.432863
\(130\) 0 0
\(131\) 14.5089 1.26764 0.633822 0.773479i \(-0.281485\pi\)
0.633822 + 0.773479i \(0.281485\pi\)
\(132\) 0 0
\(133\) 6.33804 0.549578
\(134\) 0 0
\(135\) −1.28917 −0.110954
\(136\) 0 0
\(137\) 4.41110 0.376866 0.188433 0.982086i \(-0.439659\pi\)
0.188433 + 0.982086i \(0.439659\pi\)
\(138\) 0 0
\(139\) −18.9894 −1.61066 −0.805332 0.592825i \(-0.798013\pi\)
−0.805332 + 0.592825i \(0.798013\pi\)
\(140\) 0 0
\(141\) 1.08362 0.0912571
\(142\) 0 0
\(143\) 4.20555 0.351686
\(144\) 0 0
\(145\) 5.59247 0.464429
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) −9.42166 −0.771853 −0.385926 0.922530i \(-0.626118\pi\)
−0.385926 + 0.922530i \(0.626118\pi\)
\(150\) 0 0
\(151\) 16.4111 1.33552 0.667758 0.744378i \(-0.267254\pi\)
0.667758 + 0.744378i \(0.267254\pi\)
\(152\) 0 0
\(153\) 1.62721 0.131552
\(154\) 0 0
\(155\) −9.66196 −0.776067
\(156\) 0 0
\(157\) −9.51941 −0.759732 −0.379866 0.925042i \(-0.624030\pi\)
−0.379866 + 0.925042i \(0.624030\pi\)
\(158\) 0 0
\(159\) 1.75971 0.139554
\(160\) 0 0
\(161\) 2.71083 0.213643
\(162\) 0 0
\(163\) 0.745574 0.0583979 0.0291989 0.999574i \(-0.490704\pi\)
0.0291989 + 0.999574i \(0.490704\pi\)
\(164\) 0 0
\(165\) 5.42166 0.422076
\(166\) 0 0
\(167\) −3.59247 −0.277994 −0.138997 0.990293i \(-0.544388\pi\)
−0.138997 + 0.990293i \(0.544388\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 6.33804 0.484682
\(172\) 0 0
\(173\) −15.7250 −1.19555 −0.597773 0.801665i \(-0.703948\pi\)
−0.597773 + 0.801665i \(0.703948\pi\)
\(174\) 0 0
\(175\) −3.33804 −0.252332
\(176\) 0 0
\(177\) 4.57834 0.344129
\(178\) 0 0
\(179\) −24.9547 −1.86520 −0.932601 0.360910i \(-0.882466\pi\)
−0.932601 + 0.360910i \(0.882466\pi\)
\(180\) 0 0
\(181\) 10.9411 0.813244 0.406622 0.913597i \(-0.366707\pi\)
0.406622 + 0.913597i \(0.366707\pi\)
\(182\) 0 0
\(183\) −5.25443 −0.388418
\(184\) 0 0
\(185\) −4.41110 −0.324311
\(186\) 0 0
\(187\) −6.84333 −0.500434
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −5.04888 −0.365324 −0.182662 0.983176i \(-0.558471\pi\)
−0.182662 + 0.983176i \(0.558471\pi\)
\(192\) 0 0
\(193\) 2.74557 0.197631 0.0988154 0.995106i \(-0.468495\pi\)
0.0988154 + 0.995106i \(0.468495\pi\)
\(194\) 0 0
\(195\) 1.28917 0.0923193
\(196\) 0 0
\(197\) 5.42166 0.386277 0.193139 0.981171i \(-0.438133\pi\)
0.193139 + 0.981171i \(0.438133\pi\)
\(198\) 0 0
\(199\) 20.4111 1.44690 0.723452 0.690374i \(-0.242554\pi\)
0.723452 + 0.690374i \(0.242554\pi\)
\(200\) 0 0
\(201\) −8.67609 −0.611964
\(202\) 0 0
\(203\) −4.33804 −0.304471
\(204\) 0 0
\(205\) 9.83276 0.686750
\(206\) 0 0
\(207\) 2.71083 0.188416
\(208\) 0 0
\(209\) −26.6550 −1.84376
\(210\) 0 0
\(211\) 14.4842 0.997130 0.498565 0.866852i \(-0.333860\pi\)
0.498565 + 0.866852i \(0.333860\pi\)
\(212\) 0 0
\(213\) 6.78389 0.464824
\(214\) 0 0
\(215\) −6.33804 −0.432251
\(216\) 0 0
\(217\) 7.49472 0.508775
\(218\) 0 0
\(219\) 4.07306 0.275232
\(220\) 0 0
\(221\) −1.62721 −0.109458
\(222\) 0 0
\(223\) −16.8469 −1.12815 −0.564076 0.825723i \(-0.690767\pi\)
−0.564076 + 0.825723i \(0.690767\pi\)
\(224\) 0 0
\(225\) −3.33804 −0.222536
\(226\) 0 0
\(227\) 21.9305 1.45558 0.727790 0.685800i \(-0.240548\pi\)
0.727790 + 0.685800i \(0.240548\pi\)
\(228\) 0 0
\(229\) −5.25443 −0.347222 −0.173611 0.984814i \(-0.555544\pi\)
−0.173611 + 0.984814i \(0.555544\pi\)
\(230\) 0 0
\(231\) −4.20555 −0.276705
\(232\) 0 0
\(233\) 4.07306 0.266835 0.133417 0.991060i \(-0.457405\pi\)
0.133417 + 0.991060i \(0.457405\pi\)
\(234\) 0 0
\(235\) −1.39697 −0.0911281
\(236\) 0 0
\(237\) 8.91638 0.579181
\(238\) 0 0
\(239\) 2.37279 0.153483 0.0767414 0.997051i \(-0.475548\pi\)
0.0767414 + 0.997051i \(0.475548\pi\)
\(240\) 0 0
\(241\) 14.9164 0.960849 0.480424 0.877036i \(-0.340483\pi\)
0.480424 + 0.877036i \(0.340483\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −1.28917 −0.0823620
\(246\) 0 0
\(247\) −6.33804 −0.403280
\(248\) 0 0
\(249\) 4.33804 0.274912
\(250\) 0 0
\(251\) 1.08719 0.0686228 0.0343114 0.999411i \(-0.489076\pi\)
0.0343114 + 0.999411i \(0.489076\pi\)
\(252\) 0 0
\(253\) −11.4005 −0.716746
\(254\) 0 0
\(255\) −2.09775 −0.131366
\(256\) 0 0
\(257\) −16.6167 −1.03652 −0.518259 0.855224i \(-0.673420\pi\)
−0.518259 + 0.855224i \(0.673420\pi\)
\(258\) 0 0
\(259\) 3.42166 0.212612
\(260\) 0 0
\(261\) −4.33804 −0.268518
\(262\) 0 0
\(263\) 27.0524 1.66813 0.834063 0.551670i \(-0.186009\pi\)
0.834063 + 0.551670i \(0.186009\pi\)
\(264\) 0 0
\(265\) −2.26856 −0.139356
\(266\) 0 0
\(267\) 4.54359 0.278063
\(268\) 0 0
\(269\) 7.52946 0.459079 0.229540 0.973299i \(-0.426278\pi\)
0.229540 + 0.973299i \(0.426278\pi\)
\(270\) 0 0
\(271\) −16.8222 −1.02188 −0.510938 0.859618i \(-0.670702\pi\)
−0.510938 + 0.859618i \(0.670702\pi\)
\(272\) 0 0
\(273\) −1.00000 −0.0605228
\(274\) 0 0
\(275\) 14.0383 0.846542
\(276\) 0 0
\(277\) 17.4947 1.05116 0.525578 0.850745i \(-0.323849\pi\)
0.525578 + 0.850745i \(0.323849\pi\)
\(278\) 0 0
\(279\) 7.49472 0.448697
\(280\) 0 0
\(281\) 27.4005 1.63458 0.817290 0.576227i \(-0.195476\pi\)
0.817290 + 0.576227i \(0.195476\pi\)
\(282\) 0 0
\(283\) −20.0766 −1.19343 −0.596716 0.802453i \(-0.703528\pi\)
−0.596716 + 0.802453i \(0.703528\pi\)
\(284\) 0 0
\(285\) −8.17081 −0.483997
\(286\) 0 0
\(287\) −7.62721 −0.450220
\(288\) 0 0
\(289\) −14.3522 −0.844246
\(290\) 0 0
\(291\) 11.3275 0.664029
\(292\) 0 0
\(293\) −27.0524 −1.58042 −0.790210 0.612836i \(-0.790029\pi\)
−0.790210 + 0.612836i \(0.790029\pi\)
\(294\) 0 0
\(295\) −5.90225 −0.343642
\(296\) 0 0
\(297\) −4.20555 −0.244031
\(298\) 0 0
\(299\) −2.71083 −0.156771
\(300\) 0 0
\(301\) 4.91638 0.283376
\(302\) 0 0
\(303\) 14.3033 0.821703
\(304\) 0 0
\(305\) 6.77384 0.387869
\(306\) 0 0
\(307\) 20.1708 1.15121 0.575604 0.817728i \(-0.304767\pi\)
0.575604 + 0.817728i \(0.304767\pi\)
\(308\) 0 0
\(309\) 19.6655 1.11873
\(310\) 0 0
\(311\) 6.57834 0.373023 0.186512 0.982453i \(-0.440282\pi\)
0.186512 + 0.982453i \(0.440282\pi\)
\(312\) 0 0
\(313\) −10.7456 −0.607376 −0.303688 0.952772i \(-0.598218\pi\)
−0.303688 + 0.952772i \(0.598218\pi\)
\(314\) 0 0
\(315\) −1.28917 −0.0726364
\(316\) 0 0
\(317\) 24.6066 1.38204 0.691022 0.722833i \(-0.257161\pi\)
0.691022 + 0.722833i \(0.257161\pi\)
\(318\) 0 0
\(319\) 18.2439 1.02146
\(320\) 0 0
\(321\) −2.20555 −0.123102
\(322\) 0 0
\(323\) 10.3133 0.573850
\(324\) 0 0
\(325\) 3.33804 0.185161
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 1.08362 0.0597418
\(330\) 0 0
\(331\) −30.6550 −1.68495 −0.842475 0.538736i \(-0.818902\pi\)
−0.842475 + 0.538736i \(0.818902\pi\)
\(332\) 0 0
\(333\) 3.42166 0.187506
\(334\) 0 0
\(335\) 11.1849 0.611099
\(336\) 0 0
\(337\) −6.50528 −0.354365 −0.177183 0.984178i \(-0.556698\pi\)
−0.177183 + 0.984178i \(0.556698\pi\)
\(338\) 0 0
\(339\) −2.17081 −0.117902
\(340\) 0 0
\(341\) −31.5194 −1.70687
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −3.49472 −0.188149
\(346\) 0 0
\(347\) −24.3033 −1.30467 −0.652335 0.757931i \(-0.726210\pi\)
−0.652335 + 0.757931i \(0.726210\pi\)
\(348\) 0 0
\(349\) 17.7597 0.950655 0.475328 0.879809i \(-0.342330\pi\)
0.475328 + 0.879809i \(0.342330\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 1.94056 0.103286 0.0516428 0.998666i \(-0.483554\pi\)
0.0516428 + 0.998666i \(0.483554\pi\)
\(354\) 0 0
\(355\) −8.74557 −0.464167
\(356\) 0 0
\(357\) 1.62721 0.0861212
\(358\) 0 0
\(359\) 33.6272 1.77478 0.887388 0.461023i \(-0.152517\pi\)
0.887388 + 0.461023i \(0.152517\pi\)
\(360\) 0 0
\(361\) 21.1708 1.11425
\(362\) 0 0
\(363\) 6.68665 0.350958
\(364\) 0 0
\(365\) −5.25086 −0.274842
\(366\) 0 0
\(367\) 10.5783 0.552185 0.276092 0.961131i \(-0.410960\pi\)
0.276092 + 0.961131i \(0.410960\pi\)
\(368\) 0 0
\(369\) −7.62721 −0.397057
\(370\) 0 0
\(371\) 1.75971 0.0913595
\(372\) 0 0
\(373\) −5.47002 −0.283227 −0.141614 0.989922i \(-0.545229\pi\)
−0.141614 + 0.989922i \(0.545229\pi\)
\(374\) 0 0
\(375\) 10.7491 0.555083
\(376\) 0 0
\(377\) 4.33804 0.223421
\(378\) 0 0
\(379\) 5.42166 0.278492 0.139246 0.990258i \(-0.455532\pi\)
0.139246 + 0.990258i \(0.455532\pi\)
\(380\) 0 0
\(381\) 0.745574 0.0381969
\(382\) 0 0
\(383\) −14.1461 −0.722833 −0.361416 0.932405i \(-0.617707\pi\)
−0.361416 + 0.932405i \(0.617707\pi\)
\(384\) 0 0
\(385\) 5.42166 0.276314
\(386\) 0 0
\(387\) 4.91638 0.249914
\(388\) 0 0
\(389\) 0.313348 0.0158874 0.00794370 0.999968i \(-0.497471\pi\)
0.00794370 + 0.999968i \(0.497471\pi\)
\(390\) 0 0
\(391\) 4.41110 0.223079
\(392\) 0 0
\(393\) 14.5089 0.731875
\(394\) 0 0
\(395\) −11.4947 −0.578362
\(396\) 0 0
\(397\) 20.6797 1.03788 0.518941 0.854810i \(-0.326326\pi\)
0.518941 + 0.854810i \(0.326326\pi\)
\(398\) 0 0
\(399\) 6.33804 0.317299
\(400\) 0 0
\(401\) −12.7456 −0.636484 −0.318242 0.948010i \(-0.603092\pi\)
−0.318242 + 0.948010i \(0.603092\pi\)
\(402\) 0 0
\(403\) −7.49472 −0.373339
\(404\) 0 0
\(405\) −1.28917 −0.0640593
\(406\) 0 0
\(407\) −14.3900 −0.713285
\(408\) 0 0
\(409\) −18.6514 −0.922252 −0.461126 0.887335i \(-0.652554\pi\)
−0.461126 + 0.887335i \(0.652554\pi\)
\(410\) 0 0
\(411\) 4.41110 0.217584
\(412\) 0 0
\(413\) 4.57834 0.225285
\(414\) 0 0
\(415\) −5.59247 −0.274524
\(416\) 0 0
\(417\) −18.9894 −0.929917
\(418\) 0 0
\(419\) −3.10831 −0.151851 −0.0759256 0.997113i \(-0.524191\pi\)
−0.0759256 + 0.997113i \(0.524191\pi\)
\(420\) 0 0
\(421\) 13.4005 0.653102 0.326551 0.945180i \(-0.394113\pi\)
0.326551 + 0.945180i \(0.394113\pi\)
\(422\) 0 0
\(423\) 1.08362 0.0526873
\(424\) 0 0
\(425\) −5.43171 −0.263477
\(426\) 0 0
\(427\) −5.25443 −0.254279
\(428\) 0 0
\(429\) 4.20555 0.203046
\(430\) 0 0
\(431\) −9.89220 −0.476491 −0.238245 0.971205i \(-0.576572\pi\)
−0.238245 + 0.971205i \(0.576572\pi\)
\(432\) 0 0
\(433\) 0.578337 0.0277931 0.0138966 0.999903i \(-0.495576\pi\)
0.0138966 + 0.999903i \(0.495576\pi\)
\(434\) 0 0
\(435\) 5.59247 0.268138
\(436\) 0 0
\(437\) 17.1814 0.821896
\(438\) 0 0
\(439\) −23.7350 −1.13281 −0.566405 0.824127i \(-0.691666\pi\)
−0.566405 + 0.824127i \(0.691666\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 3.86751 0.183751 0.0918754 0.995771i \(-0.470714\pi\)
0.0918754 + 0.995771i \(0.470714\pi\)
\(444\) 0 0
\(445\) −5.85746 −0.277670
\(446\) 0 0
\(447\) −9.42166 −0.445629
\(448\) 0 0
\(449\) 1.68665 0.0795980 0.0397990 0.999208i \(-0.487328\pi\)
0.0397990 + 0.999208i \(0.487328\pi\)
\(450\) 0 0
\(451\) 32.0766 1.51043
\(452\) 0 0
\(453\) 16.4111 0.771061
\(454\) 0 0
\(455\) 1.28917 0.0604372
\(456\) 0 0
\(457\) −3.83276 −0.179289 −0.0896445 0.995974i \(-0.528573\pi\)
−0.0896445 + 0.995974i \(0.528573\pi\)
\(458\) 0 0
\(459\) 1.62721 0.0759518
\(460\) 0 0
\(461\) −11.2161 −0.522386 −0.261193 0.965287i \(-0.584116\pi\)
−0.261193 + 0.965287i \(0.584116\pi\)
\(462\) 0 0
\(463\) 25.8328 1.20055 0.600275 0.799794i \(-0.295058\pi\)
0.600275 + 0.799794i \(0.295058\pi\)
\(464\) 0 0
\(465\) −9.66196 −0.448062
\(466\) 0 0
\(467\) −41.0872 −1.90129 −0.950644 0.310283i \(-0.899576\pi\)
−0.950644 + 0.310283i \(0.899576\pi\)
\(468\) 0 0
\(469\) −8.67609 −0.400625
\(470\) 0 0
\(471\) −9.51941 −0.438631
\(472\) 0 0
\(473\) −20.6761 −0.950688
\(474\) 0 0
\(475\) −21.1567 −0.970735
\(476\) 0 0
\(477\) 1.75971 0.0805715
\(478\) 0 0
\(479\) −2.43580 −0.111294 −0.0556472 0.998450i \(-0.517722\pi\)
−0.0556472 + 0.998450i \(0.517722\pi\)
\(480\) 0 0
\(481\) −3.42166 −0.156014
\(482\) 0 0
\(483\) 2.71083 0.123347
\(484\) 0 0
\(485\) −14.6030 −0.663090
\(486\) 0 0
\(487\) 6.57834 0.298093 0.149046 0.988830i \(-0.452380\pi\)
0.149046 + 0.988830i \(0.452380\pi\)
\(488\) 0 0
\(489\) 0.745574 0.0337160
\(490\) 0 0
\(491\) −28.3033 −1.27731 −0.638655 0.769493i \(-0.720509\pi\)
−0.638655 + 0.769493i \(0.720509\pi\)
\(492\) 0 0
\(493\) −7.05892 −0.317918
\(494\) 0 0
\(495\) 5.42166 0.243686
\(496\) 0 0
\(497\) 6.78389 0.304299
\(498\) 0 0
\(499\) −28.8222 −1.29026 −0.645129 0.764073i \(-0.723197\pi\)
−0.645129 + 0.764073i \(0.723197\pi\)
\(500\) 0 0
\(501\) −3.59247 −0.160500
\(502\) 0 0
\(503\) −8.67609 −0.386848 −0.193424 0.981115i \(-0.561959\pi\)
−0.193424 + 0.981115i \(0.561959\pi\)
\(504\) 0 0
\(505\) −18.4394 −0.820541
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −9.28917 −0.411735 −0.205868 0.978580i \(-0.566002\pi\)
−0.205868 + 0.978580i \(0.566002\pi\)
\(510\) 0 0
\(511\) 4.07306 0.180181
\(512\) 0 0
\(513\) 6.33804 0.279831
\(514\) 0 0
\(515\) −25.3522 −1.11715
\(516\) 0 0
\(517\) −4.55721 −0.200426
\(518\) 0 0
\(519\) −15.7250 −0.690249
\(520\) 0 0
\(521\) −11.7250 −0.513680 −0.256840 0.966454i \(-0.582681\pi\)
−0.256840 + 0.966454i \(0.582681\pi\)
\(522\) 0 0
\(523\) −0.676089 −0.0295633 −0.0147817 0.999891i \(-0.504705\pi\)
−0.0147817 + 0.999891i \(0.504705\pi\)
\(524\) 0 0
\(525\) −3.33804 −0.145684
\(526\) 0 0
\(527\) 12.1955 0.531244
\(528\) 0 0
\(529\) −15.6514 −0.680495
\(530\) 0 0
\(531\) 4.57834 0.198683
\(532\) 0 0
\(533\) 7.62721 0.330371
\(534\) 0 0
\(535\) 2.84333 0.122928
\(536\) 0 0
\(537\) −24.9547 −1.07687
\(538\) 0 0
\(539\) −4.20555 −0.181146
\(540\) 0 0
\(541\) −0.578337 −0.0248647 −0.0124323 0.999923i \(-0.503957\pi\)
−0.0124323 + 0.999923i \(0.503957\pi\)
\(542\) 0 0
\(543\) 10.9411 0.469527
\(544\) 0 0
\(545\) −12.8917 −0.552219
\(546\) 0 0
\(547\) 0.985867 0.0421526 0.0210763 0.999778i \(-0.493291\pi\)
0.0210763 + 0.999778i \(0.493291\pi\)
\(548\) 0 0
\(549\) −5.25443 −0.224253
\(550\) 0 0
\(551\) −27.4947 −1.17131
\(552\) 0 0
\(553\) 8.91638 0.379163
\(554\) 0 0
\(555\) −4.41110 −0.187241
\(556\) 0 0
\(557\) 41.2333 1.74711 0.873556 0.486725i \(-0.161808\pi\)
0.873556 + 0.486725i \(0.161808\pi\)
\(558\) 0 0
\(559\) −4.91638 −0.207941
\(560\) 0 0
\(561\) −6.84333 −0.288925
\(562\) 0 0
\(563\) −6.91995 −0.291641 −0.145821 0.989311i \(-0.546582\pi\)
−0.145821 + 0.989311i \(0.546582\pi\)
\(564\) 0 0
\(565\) 2.79854 0.117735
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) −29.5713 −1.23970 −0.619848 0.784722i \(-0.712806\pi\)
−0.619848 + 0.784722i \(0.712806\pi\)
\(570\) 0 0
\(571\) 19.4252 0.812921 0.406460 0.913668i \(-0.366763\pi\)
0.406460 + 0.913668i \(0.366763\pi\)
\(572\) 0 0
\(573\) −5.04888 −0.210920
\(574\) 0 0
\(575\) −9.04888 −0.377364
\(576\) 0 0
\(577\) −38.8222 −1.61619 −0.808095 0.589053i \(-0.799501\pi\)
−0.808095 + 0.589053i \(0.799501\pi\)
\(578\) 0 0
\(579\) 2.74557 0.114102
\(580\) 0 0
\(581\) 4.33804 0.179972
\(582\) 0 0
\(583\) −7.40054 −0.306499
\(584\) 0 0
\(585\) 1.28917 0.0533006
\(586\) 0 0
\(587\) −24.0731 −0.993601 −0.496801 0.867865i \(-0.665492\pi\)
−0.496801 + 0.867865i \(0.665492\pi\)
\(588\) 0 0
\(589\) 47.5019 1.95728
\(590\) 0 0
\(591\) 5.42166 0.223017
\(592\) 0 0
\(593\) 40.4741 1.66207 0.831036 0.556218i \(-0.187748\pi\)
0.831036 + 0.556218i \(0.187748\pi\)
\(594\) 0 0
\(595\) −2.09775 −0.0859994
\(596\) 0 0
\(597\) 20.4111 0.835371
\(598\) 0 0
\(599\) 2.49523 0.101953 0.0509763 0.998700i \(-0.483767\pi\)
0.0509763 + 0.998700i \(0.483767\pi\)
\(600\) 0 0
\(601\) 35.2333 1.43720 0.718598 0.695426i \(-0.244784\pi\)
0.718598 + 0.695426i \(0.244784\pi\)
\(602\) 0 0
\(603\) −8.67609 −0.353318
\(604\) 0 0
\(605\) −8.62022 −0.350462
\(606\) 0 0
\(607\) −4.89169 −0.198547 −0.0992737 0.995060i \(-0.531652\pi\)
−0.0992737 + 0.995060i \(0.531652\pi\)
\(608\) 0 0
\(609\) −4.33804 −0.175786
\(610\) 0 0
\(611\) −1.08362 −0.0438385
\(612\) 0 0
\(613\) 7.83276 0.316362 0.158181 0.987410i \(-0.449437\pi\)
0.158181 + 0.987410i \(0.449437\pi\)
\(614\) 0 0
\(615\) 9.83276 0.396495
\(616\) 0 0
\(617\) 15.7350 0.633468 0.316734 0.948514i \(-0.397414\pi\)
0.316734 + 0.948514i \(0.397414\pi\)
\(618\) 0 0
\(619\) 41.0177 1.64864 0.824320 0.566124i \(-0.191558\pi\)
0.824320 + 0.566124i \(0.191558\pi\)
\(620\) 0 0
\(621\) 2.71083 0.108782
\(622\) 0 0
\(623\) 4.54359 0.182035
\(624\) 0 0
\(625\) 2.83276 0.113311
\(626\) 0 0
\(627\) −26.6550 −1.06450
\(628\) 0 0
\(629\) 5.56777 0.222002
\(630\) 0 0
\(631\) 19.5960 0.780106 0.390053 0.920792i \(-0.372457\pi\)
0.390053 + 0.920792i \(0.372457\pi\)
\(632\) 0 0
\(633\) 14.4842 0.575694
\(634\) 0 0
\(635\) −0.961171 −0.0381429
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 6.78389 0.268366
\(640\) 0 0
\(641\) −20.8953 −0.825313 −0.412656 0.910887i \(-0.635399\pi\)
−0.412656 + 0.910887i \(0.635399\pi\)
\(642\) 0 0
\(643\) 9.15667 0.361104 0.180552 0.983565i \(-0.442212\pi\)
0.180552 + 0.983565i \(0.442212\pi\)
\(644\) 0 0
\(645\) −6.33804 −0.249560
\(646\) 0 0
\(647\) 6.24386 0.245472 0.122736 0.992439i \(-0.460833\pi\)
0.122736 + 0.992439i \(0.460833\pi\)
\(648\) 0 0
\(649\) −19.2544 −0.755802
\(650\) 0 0
\(651\) 7.49472 0.293741
\(652\) 0 0
\(653\) −38.8222 −1.51923 −0.759615 0.650373i \(-0.774613\pi\)
−0.759615 + 0.650373i \(0.774613\pi\)
\(654\) 0 0
\(655\) −18.7044 −0.730840
\(656\) 0 0
\(657\) 4.07306 0.158905
\(658\) 0 0
\(659\) 0.954695 0.0371896 0.0185948 0.999827i \(-0.494081\pi\)
0.0185948 + 0.999827i \(0.494081\pi\)
\(660\) 0 0
\(661\) 2.28968 0.0890584 0.0445292 0.999008i \(-0.485821\pi\)
0.0445292 + 0.999008i \(0.485821\pi\)
\(662\) 0 0
\(663\) −1.62721 −0.0631957
\(664\) 0 0
\(665\) −8.17081 −0.316850
\(666\) 0 0
\(667\) −11.7597 −0.455338
\(668\) 0 0
\(669\) −16.8469 −0.651339
\(670\) 0 0
\(671\) 22.0978 0.853074
\(672\) 0 0
\(673\) −44.6797 −1.72227 −0.861137 0.508373i \(-0.830247\pi\)
−0.861137 + 0.508373i \(0.830247\pi\)
\(674\) 0 0
\(675\) −3.33804 −0.128481
\(676\) 0 0
\(677\) −37.0278 −1.42309 −0.711546 0.702639i \(-0.752005\pi\)
−0.711546 + 0.702639i \(0.752005\pi\)
\(678\) 0 0
\(679\) 11.3275 0.434709
\(680\) 0 0
\(681\) 21.9305 0.840379
\(682\) 0 0
\(683\) 26.8605 1.02779 0.513894 0.857853i \(-0.328202\pi\)
0.513894 + 0.857853i \(0.328202\pi\)
\(684\) 0 0
\(685\) −5.68665 −0.217276
\(686\) 0 0
\(687\) −5.25443 −0.200469
\(688\) 0 0
\(689\) −1.75971 −0.0670395
\(690\) 0 0
\(691\) −2.86802 −0.109105 −0.0545523 0.998511i \(-0.517373\pi\)
−0.0545523 + 0.998511i \(0.517373\pi\)
\(692\) 0 0
\(693\) −4.20555 −0.159756
\(694\) 0 0
\(695\) 24.4806 0.928602
\(696\) 0 0
\(697\) −12.4111 −0.470104
\(698\) 0 0
\(699\) 4.07306 0.154057
\(700\) 0 0
\(701\) −42.9930 −1.62382 −0.811912 0.583780i \(-0.801573\pi\)
−0.811912 + 0.583780i \(0.801573\pi\)
\(702\) 0 0
\(703\) 21.6867 0.817928
\(704\) 0 0
\(705\) −1.39697 −0.0526128
\(706\) 0 0
\(707\) 14.3033 0.537931
\(708\) 0 0
\(709\) 3.49115 0.131113 0.0655564 0.997849i \(-0.479118\pi\)
0.0655564 + 0.997849i \(0.479118\pi\)
\(710\) 0 0
\(711\) 8.91638 0.334390
\(712\) 0 0
\(713\) 20.3169 0.760875
\(714\) 0 0
\(715\) −5.42166 −0.202759
\(716\) 0 0
\(717\) 2.37279 0.0886134
\(718\) 0 0
\(719\) −27.5194 −1.02630 −0.513150 0.858299i \(-0.671522\pi\)
−0.513150 + 0.858299i \(0.671522\pi\)
\(720\) 0 0
\(721\) 19.6655 0.732382
\(722\) 0 0
\(723\) 14.9164 0.554746
\(724\) 0 0
\(725\) 14.4806 0.537795
\(726\) 0 0
\(727\) −13.4983 −0.500624 −0.250312 0.968165i \(-0.580533\pi\)
−0.250312 + 0.968165i \(0.580533\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −5.08362 −0.187768 −0.0938839 0.995583i \(-0.529928\pi\)
−0.0938839 + 0.995583i \(0.529928\pi\)
\(734\) 0 0
\(735\) −1.28917 −0.0475517
\(736\) 0 0
\(737\) 36.4877 1.34404
\(738\) 0 0
\(739\) 53.1638 1.95566 0.977831 0.209394i \(-0.0671492\pi\)
0.977831 + 0.209394i \(0.0671492\pi\)
\(740\) 0 0
\(741\) −6.33804 −0.232834
\(742\) 0 0
\(743\) 46.1149 1.69179 0.845897 0.533347i \(-0.179066\pi\)
0.845897 + 0.533347i \(0.179066\pi\)
\(744\) 0 0
\(745\) 12.1461 0.444999
\(746\) 0 0
\(747\) 4.33804 0.158721
\(748\) 0 0
\(749\) −2.20555 −0.0805890
\(750\) 0 0
\(751\) 32.7774 1.19606 0.598032 0.801472i \(-0.295949\pi\)
0.598032 + 0.801472i \(0.295949\pi\)
\(752\) 0 0
\(753\) 1.08719 0.0396194
\(754\) 0 0
\(755\) −21.1567 −0.769970
\(756\) 0 0
\(757\) −30.1708 −1.09658 −0.548288 0.836289i \(-0.684720\pi\)
−0.548288 + 0.836289i \(0.684720\pi\)
\(758\) 0 0
\(759\) −11.4005 −0.413813
\(760\) 0 0
\(761\) −1.81915 −0.0659440 −0.0329720 0.999456i \(-0.510497\pi\)
−0.0329720 + 0.999456i \(0.510497\pi\)
\(762\) 0 0
\(763\) 10.0000 0.362024
\(764\) 0 0
\(765\) −2.09775 −0.0758444
\(766\) 0 0
\(767\) −4.57834 −0.165314
\(768\) 0 0
\(769\) −0.937507 −0.0338074 −0.0169037 0.999857i \(-0.505381\pi\)
−0.0169037 + 0.999857i \(0.505381\pi\)
\(770\) 0 0
\(771\) −16.6167 −0.598434
\(772\) 0 0
\(773\) −8.03831 −0.289118 −0.144559 0.989496i \(-0.546176\pi\)
−0.144559 + 0.989496i \(0.546176\pi\)
\(774\) 0 0
\(775\) −25.0177 −0.898662
\(776\) 0 0
\(777\) 3.42166 0.122751
\(778\) 0 0
\(779\) −48.3416 −1.73202
\(780\) 0 0
\(781\) −28.5300 −1.02088
\(782\) 0 0
\(783\) −4.33804 −0.155029
\(784\) 0 0
\(785\) 12.2721 0.438011
\(786\) 0 0
\(787\) −25.3275 −0.902827 −0.451414 0.892315i \(-0.649080\pi\)
−0.451414 + 0.892315i \(0.649080\pi\)
\(788\) 0 0
\(789\) 27.0524 0.963093
\(790\) 0 0
\(791\) −2.17081 −0.0771850
\(792\) 0 0
\(793\) 5.25443 0.186590
\(794\) 0 0
\(795\) −2.26856 −0.0804575
\(796\) 0 0
\(797\) 40.8122 1.44564 0.722820 0.691036i \(-0.242845\pi\)
0.722820 + 0.691036i \(0.242845\pi\)
\(798\) 0 0
\(799\) 1.76328 0.0623803
\(800\) 0 0
\(801\) 4.54359 0.160540
\(802\) 0 0
\(803\) −17.1294 −0.604485
\(804\) 0 0
\(805\) −3.49472 −0.123173
\(806\) 0 0
\(807\) 7.52946 0.265050
\(808\) 0 0
\(809\) 25.4947 0.896347 0.448173 0.893947i \(-0.352075\pi\)
0.448173 + 0.893947i \(0.352075\pi\)
\(810\) 0 0
\(811\) 13.1567 0.461993 0.230997 0.972955i \(-0.425801\pi\)
0.230997 + 0.972955i \(0.425801\pi\)
\(812\) 0 0
\(813\) −16.8222 −0.589980
\(814\) 0 0
\(815\) −0.961171 −0.0336683
\(816\) 0 0
\(817\) 31.1602 1.09016
\(818\) 0 0
\(819\) −1.00000 −0.0349428
\(820\) 0 0
\(821\) −23.1083 −0.806486 −0.403243 0.915093i \(-0.632117\pi\)
−0.403243 + 0.915093i \(0.632117\pi\)
\(822\) 0 0
\(823\) 17.4911 0.609703 0.304852 0.952400i \(-0.401393\pi\)
0.304852 + 0.952400i \(0.401393\pi\)
\(824\) 0 0
\(825\) 14.0383 0.488751
\(826\) 0 0
\(827\) −39.3905 −1.36974 −0.684871 0.728665i \(-0.740141\pi\)
−0.684871 + 0.728665i \(0.740141\pi\)
\(828\) 0 0
\(829\) 10.8222 0.375871 0.187935 0.982181i \(-0.439820\pi\)
0.187935 + 0.982181i \(0.439820\pi\)
\(830\) 0 0
\(831\) 17.4947 0.606885
\(832\) 0 0
\(833\) 1.62721 0.0563796
\(834\) 0 0
\(835\) 4.63130 0.160273
\(836\) 0 0
\(837\) 7.49472 0.259055
\(838\) 0 0
\(839\) −4.57834 −0.158062 −0.0790309 0.996872i \(-0.525183\pi\)
−0.0790309 + 0.996872i \(0.525183\pi\)
\(840\) 0 0
\(841\) −10.1814 −0.351082
\(842\) 0 0
\(843\) 27.4005 0.943725
\(844\) 0 0
\(845\) −1.28917 −0.0443487
\(846\) 0 0
\(847\) 6.68665 0.229756
\(848\) 0 0
\(849\) −20.0766 −0.689028
\(850\) 0 0
\(851\) 9.27555 0.317962
\(852\) 0 0
\(853\) −54.6585 −1.87147 −0.935736 0.352700i \(-0.885263\pi\)
−0.935736 + 0.352700i \(0.885263\pi\)
\(854\) 0 0
\(855\) −8.17081 −0.279436
\(856\) 0 0
\(857\) 8.20555 0.280296 0.140148 0.990131i \(-0.455242\pi\)
0.140148 + 0.990131i \(0.455242\pi\)
\(858\) 0 0
\(859\) 3.20503 0.109354 0.0546772 0.998504i \(-0.482587\pi\)
0.0546772 + 0.998504i \(0.482587\pi\)
\(860\) 0 0
\(861\) −7.62721 −0.259935
\(862\) 0 0
\(863\) 21.7038 0.738807 0.369404 0.929269i \(-0.379562\pi\)
0.369404 + 0.929269i \(0.379562\pi\)
\(864\) 0 0
\(865\) 20.2721 0.689273
\(866\) 0 0
\(867\) −14.3522 −0.487426
\(868\) 0 0
\(869\) −37.4983 −1.27204
\(870\) 0 0
\(871\) 8.67609 0.293978
\(872\) 0 0
\(873\) 11.3275 0.383377
\(874\) 0 0
\(875\) 10.7491 0.363387
\(876\) 0 0
\(877\) −38.5371 −1.30131 −0.650653 0.759375i \(-0.725505\pi\)
−0.650653 + 0.759375i \(0.725505\pi\)
\(878\) 0 0
\(879\) −27.0524 −0.912456
\(880\) 0 0
\(881\) −20.2056 −0.680742 −0.340371 0.940291i \(-0.610553\pi\)
−0.340371 + 0.940291i \(0.610553\pi\)
\(882\) 0 0
\(883\) −5.49115 −0.184792 −0.0923959 0.995722i \(-0.529453\pi\)
−0.0923959 + 0.995722i \(0.529453\pi\)
\(884\) 0 0
\(885\) −5.90225 −0.198402
\(886\) 0 0
\(887\) −45.7633 −1.53658 −0.768290 0.640102i \(-0.778892\pi\)
−0.768290 + 0.640102i \(0.778892\pi\)
\(888\) 0 0
\(889\) 0.745574 0.0250057
\(890\) 0 0
\(891\) −4.20555 −0.140891
\(892\) 0 0
\(893\) 6.86802 0.229830
\(894\) 0 0
\(895\) 32.1708 1.07535
\(896\) 0 0
\(897\) −2.71083 −0.0905120
\(898\) 0 0
\(899\) −32.5124 −1.08435
\(900\) 0 0
\(901\) 2.86342 0.0953943
\(902\) 0 0
\(903\) 4.91638 0.163607
\(904\) 0 0
\(905\) −14.1049 −0.468863
\(906\) 0 0
\(907\) −6.67252 −0.221557 −0.110779 0.993845i \(-0.535334\pi\)
−0.110779 + 0.993845i \(0.535334\pi\)
\(908\) 0 0
\(909\) 14.3033 0.474411
\(910\) 0 0
\(911\) −23.5330 −0.779684 −0.389842 0.920882i \(-0.627470\pi\)
−0.389842 + 0.920882i \(0.627470\pi\)
\(912\) 0 0
\(913\) −18.2439 −0.603784
\(914\) 0 0
\(915\) 6.77384 0.223936
\(916\) 0 0
\(917\) 14.5089 0.479125
\(918\) 0 0
\(919\) 28.1955 0.930084 0.465042 0.885289i \(-0.346039\pi\)
0.465042 + 0.885289i \(0.346039\pi\)
\(920\) 0 0
\(921\) 20.1708 0.664651
\(922\) 0 0
\(923\) −6.78389 −0.223294
\(924\) 0 0
\(925\) −11.4217 −0.375542
\(926\) 0 0
\(927\) 19.6655 0.645901
\(928\) 0 0
\(929\) −6.97582 −0.228869 −0.114435 0.993431i \(-0.536506\pi\)
−0.114435 + 0.993431i \(0.536506\pi\)
\(930\) 0 0
\(931\) 6.33804 0.207721
\(932\) 0 0
\(933\) 6.57834 0.215365
\(934\) 0 0
\(935\) 8.82220 0.288517
\(936\) 0 0
\(937\) 45.5960 1.48956 0.744779 0.667311i \(-0.232555\pi\)
0.744779 + 0.667311i \(0.232555\pi\)
\(938\) 0 0
\(939\) −10.7456 −0.350669
\(940\) 0 0
\(941\) −52.8086 −1.72151 −0.860755 0.509019i \(-0.830008\pi\)
−0.860755 + 0.509019i \(0.830008\pi\)
\(942\) 0 0
\(943\) −20.6761 −0.673306
\(944\) 0 0
\(945\) −1.28917 −0.0419367
\(946\) 0 0
\(947\) −8.73553 −0.283867 −0.141933 0.989876i \(-0.545332\pi\)
−0.141933 + 0.989876i \(0.545332\pi\)
\(948\) 0 0
\(949\) −4.07306 −0.132217
\(950\) 0 0
\(951\) 24.6066 0.797924
\(952\) 0 0
\(953\) 56.0036 1.81413 0.907067 0.420987i \(-0.138316\pi\)
0.907067 + 0.420987i \(0.138316\pi\)
\(954\) 0 0
\(955\) 6.50885 0.210622
\(956\) 0 0
\(957\) 18.2439 0.589740
\(958\) 0 0
\(959\) 4.41110 0.142442
\(960\) 0 0
\(961\) 25.1708 0.811962
\(962\) 0 0
\(963\) −2.20555 −0.0710729
\(964\) 0 0
\(965\) −3.53951 −0.113941
\(966\) 0 0
\(967\) −29.9094 −0.961821 −0.480911 0.876770i \(-0.659694\pi\)
−0.480911 + 0.876770i \(0.659694\pi\)
\(968\) 0 0
\(969\) 10.3133 0.331312
\(970\) 0 0
\(971\) −11.5194 −0.369676 −0.184838 0.982769i \(-0.559176\pi\)
−0.184838 + 0.982769i \(0.559176\pi\)
\(972\) 0 0
\(973\) −18.9894 −0.608773
\(974\) 0 0
\(975\) 3.33804 0.106903
\(976\) 0 0
\(977\) −36.4182 −1.16512 −0.582561 0.812787i \(-0.697949\pi\)
−0.582561 + 0.812787i \(0.697949\pi\)
\(978\) 0 0
\(979\) −19.1083 −0.610704
\(980\) 0 0
\(981\) 10.0000 0.319275
\(982\) 0 0
\(983\) −17.6902 −0.564230 −0.282115 0.959381i \(-0.591036\pi\)
−0.282115 + 0.959381i \(0.591036\pi\)
\(984\) 0 0
\(985\) −6.98944 −0.222702
\(986\) 0 0
\(987\) 1.08362 0.0344920
\(988\) 0 0
\(989\) 13.3275 0.423789
\(990\) 0 0
\(991\) 11.0589 0.351298 0.175649 0.984453i \(-0.443798\pi\)
0.175649 + 0.984453i \(0.443798\pi\)
\(992\) 0 0
\(993\) −30.6550 −0.972806
\(994\) 0 0
\(995\) −26.3133 −0.834189
\(996\) 0 0
\(997\) −49.6727 −1.57315 −0.786575 0.617495i \(-0.788147\pi\)
−0.786575 + 0.617495i \(0.788147\pi\)
\(998\) 0 0
\(999\) 3.42166 0.108257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4368.2.a.bq.1.2 3
4.3 odd 2 273.2.a.d.1.1 3
12.11 even 2 819.2.a.j.1.3 3
20.19 odd 2 6825.2.a.bd.1.3 3
28.27 even 2 1911.2.a.n.1.1 3
52.51 odd 2 3549.2.a.t.1.3 3
84.83 odd 2 5733.2.a.bc.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.a.d.1.1 3 4.3 odd 2
819.2.a.j.1.3 3 12.11 even 2
1911.2.a.n.1.1 3 28.27 even 2
3549.2.a.t.1.3 3 52.51 odd 2
4368.2.a.bq.1.2 3 1.1 even 1 trivial
5733.2.a.bc.1.3 3 84.83 odd 2
6825.2.a.bd.1.3 3 20.19 odd 2