Properties

Label 4368.2.a.n.1.1
Level $4368$
Weight $2$
Character 4368.1
Self dual yes
Analytic conductor $34.879$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4368,2,Mod(1,4368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4368 = 2^{4} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.8786556029\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2184)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -3.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +5.00000 q^{11} -1.00000 q^{13} -3.00000 q^{15} +3.00000 q^{17} +1.00000 q^{19} -1.00000 q^{21} -1.00000 q^{23} +4.00000 q^{25} +1.00000 q^{27} -5.00000 q^{29} +8.00000 q^{31} +5.00000 q^{33} +3.00000 q^{35} +1.00000 q^{37} -1.00000 q^{39} -12.0000 q^{41} -11.0000 q^{43} -3.00000 q^{45} -8.00000 q^{47} +1.00000 q^{49} +3.00000 q^{51} +10.0000 q^{53} -15.0000 q^{55} +1.00000 q^{57} +8.00000 q^{59} +13.0000 q^{61} -1.00000 q^{63} +3.00000 q^{65} -2.00000 q^{67} -1.00000 q^{69} -8.00000 q^{71} +11.0000 q^{73} +4.00000 q^{75} -5.00000 q^{77} -2.00000 q^{79} +1.00000 q^{81} +18.0000 q^{83} -9.00000 q^{85} -5.00000 q^{87} +18.0000 q^{89} +1.00000 q^{91} +8.00000 q^{93} -3.00000 q^{95} +10.0000 q^{97} +5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 5.00000 0.870388
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) 1.00000 0.164399 0.0821995 0.996616i \(-0.473806\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) −3.00000 −0.447214
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) −15.0000 −2.02260
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 0 0
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) −5.00000 −0.569803
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 18.0000 1.97576 0.987878 0.155230i \(-0.0496119\pi\)
0.987878 + 0.155230i \(0.0496119\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) 0 0
\(87\) −5.00000 −0.536056
\(88\) 0 0
\(89\) 18.0000 1.90800 0.953998 0.299813i \(-0.0969242\pi\)
0.953998 + 0.299813i \(0.0969242\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) −3.00000 −0.307794
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 5.00000 0.502519
\(100\) 0 0
\(101\) −16.0000 −1.59206 −0.796030 0.605257i \(-0.793070\pi\)
−0.796030 + 0.605257i \(0.793070\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) 3.00000 0.287348 0.143674 0.989625i \(-0.454108\pi\)
0.143674 + 0.989625i \(0.454108\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 3.00000 0.279751
\(116\) 0 0
\(117\) −1.00000 −0.0924500
\(118\) 0 0
\(119\) −3.00000 −0.275010
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) −11.0000 −0.968496
\(130\) 0 0
\(131\) −11.0000 −0.961074 −0.480537 0.876974i \(-0.659558\pi\)
−0.480537 + 0.876974i \(0.659558\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) −3.00000 −0.258199
\(136\) 0 0
\(137\) −3.00000 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) −5.00000 −0.418121
\(144\) 0 0
\(145\) 15.0000 1.24568
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 3.00000 0.244137 0.122068 0.992522i \(-0.461047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) −24.0000 −1.92773
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 1.00000 0.0788110
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) −15.0000 −1.16775
\(166\) 0 0
\(167\) 15.0000 1.16073 0.580367 0.814355i \(-0.302909\pi\)
0.580367 + 0.814355i \(0.302909\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 8.00000 0.601317
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 13.0000 0.960988
\(184\) 0 0
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) 15.0000 1.09691
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −25.0000 −1.80894 −0.904468 0.426541i \(-0.859732\pi\)
−0.904468 + 0.426541i \(0.859732\pi\)
\(192\) 0 0
\(193\) 8.00000 0.575853 0.287926 0.957653i \(-0.407034\pi\)
0.287926 + 0.957653i \(0.407034\pi\)
\(194\) 0 0
\(195\) 3.00000 0.214834
\(196\) 0 0
\(197\) 16.0000 1.13995 0.569976 0.821661i \(-0.306952\pi\)
0.569976 + 0.821661i \(0.306952\pi\)
\(198\) 0 0
\(199\) 17.0000 1.20510 0.602549 0.798082i \(-0.294152\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) 5.00000 0.350931
\(204\) 0 0
\(205\) 36.0000 2.51435
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) 5.00000 0.345857
\(210\) 0 0
\(211\) 15.0000 1.03264 0.516321 0.856395i \(-0.327301\pi\)
0.516321 + 0.856395i \(0.327301\pi\)
\(212\) 0 0
\(213\) −8.00000 −0.548151
\(214\) 0 0
\(215\) 33.0000 2.25058
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) 11.0000 0.743311
\(220\) 0 0
\(221\) −3.00000 −0.201802
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) 10.0000 0.663723 0.331862 0.943328i \(-0.392323\pi\)
0.331862 + 0.943328i \(0.392323\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) −5.00000 −0.328976
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 0 0
\(237\) −2.00000 −0.129914
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −1.00000 −0.0636285
\(248\) 0 0
\(249\) 18.0000 1.14070
\(250\) 0 0
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 0 0
\(255\) −9.00000 −0.563602
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) −30.0000 −1.84289
\(266\) 0 0
\(267\) 18.0000 1.10158
\(268\) 0 0
\(269\) −26.0000 −1.58525 −0.792624 0.609711i \(-0.791286\pi\)
−0.792624 + 0.609711i \(0.791286\pi\)
\(270\) 0 0
\(271\) 22.0000 1.33640 0.668202 0.743980i \(-0.267064\pi\)
0.668202 + 0.743980i \(0.267064\pi\)
\(272\) 0 0
\(273\) 1.00000 0.0605228
\(274\) 0 0
\(275\) 20.0000 1.20605
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) −3.00000 −0.177705
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) 1.00000 0.0578315
\(300\) 0 0
\(301\) 11.0000 0.634029
\(302\) 0 0
\(303\) −16.0000 −0.919176
\(304\) 0 0
\(305\) −39.0000 −2.23313
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) −5.00000 −0.284440
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) −12.0000 −0.678280 −0.339140 0.940736i \(-0.610136\pi\)
−0.339140 + 0.940736i \(0.610136\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −28.0000 −1.57264 −0.786318 0.617822i \(-0.788015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) −25.0000 −1.39973
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) 0 0
\(323\) 3.00000 0.166924
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 3.00000 0.165900
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 0 0
\(333\) 1.00000 0.0547997
\(334\) 0 0
\(335\) 6.00000 0.327815
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 40.0000 2.16612
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 3.00000 0.161515
\(346\) 0 0
\(347\) 16.0000 0.858925 0.429463 0.903085i \(-0.358703\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −10.0000 −0.532246 −0.266123 0.963939i \(-0.585743\pi\)
−0.266123 + 0.963939i \(0.585743\pi\)
\(354\) 0 0
\(355\) 24.0000 1.27379
\(356\) 0 0
\(357\) −3.00000 −0.158777
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 14.0000 0.734809
\(364\) 0 0
\(365\) −33.0000 −1.72730
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) −10.0000 −0.519174
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) 15.0000 0.766464 0.383232 0.923652i \(-0.374811\pi\)
0.383232 + 0.923652i \(0.374811\pi\)
\(384\) 0 0
\(385\) 15.0000 0.764471
\(386\) 0 0
\(387\) −11.0000 −0.559161
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −3.00000 −0.151717
\(392\) 0 0
\(393\) −11.0000 −0.554877
\(394\) 0 0
\(395\) 6.00000 0.301893
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 0 0
\(399\) −1.00000 −0.0500626
\(400\) 0 0
\(401\) 34.0000 1.69788 0.848939 0.528490i \(-0.177242\pi\)
0.848939 + 0.528490i \(0.177242\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 0 0
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) −7.00000 −0.346128 −0.173064 0.984911i \(-0.555367\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) −3.00000 −0.147979
\(412\) 0 0
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) −54.0000 −2.65076
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 15.0000 0.732798 0.366399 0.930458i \(-0.380591\pi\)
0.366399 + 0.930458i \(0.380591\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) −13.0000 −0.629114
\(428\) 0 0
\(429\) −5.00000 −0.241402
\(430\) 0 0
\(431\) −2.00000 −0.0963366 −0.0481683 0.998839i \(-0.515338\pi\)
−0.0481683 + 0.998839i \(0.515338\pi\)
\(432\) 0 0
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 0 0
\(435\) 15.0000 0.719195
\(436\) 0 0
\(437\) −1.00000 −0.0478365
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −18.0000 −0.855206 −0.427603 0.903967i \(-0.640642\pi\)
−0.427603 + 0.903967i \(0.640642\pi\)
\(444\) 0 0
\(445\) −54.0000 −2.55985
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) 9.00000 0.424736 0.212368 0.977190i \(-0.431882\pi\)
0.212368 + 0.977190i \(0.431882\pi\)
\(450\) 0 0
\(451\) −60.0000 −2.82529
\(452\) 0 0
\(453\) 3.00000 0.140952
\(454\) 0 0
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 3.00000 0.140028
\(460\) 0 0
\(461\) −17.0000 −0.791769 −0.395884 0.918300i \(-0.629562\pi\)
−0.395884 + 0.918300i \(0.629562\pi\)
\(462\) 0 0
\(463\) −5.00000 −0.232370 −0.116185 0.993228i \(-0.537067\pi\)
−0.116185 + 0.993228i \(0.537067\pi\)
\(464\) 0 0
\(465\) −24.0000 −1.11297
\(466\) 0 0
\(467\) −31.0000 −1.43451 −0.717254 0.696811i \(-0.754601\pi\)
−0.717254 + 0.696811i \(0.754601\pi\)
\(468\) 0 0
\(469\) 2.00000 0.0923514
\(470\) 0 0
\(471\) 17.0000 0.783319
\(472\) 0 0
\(473\) −55.0000 −2.52890
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 10.0000 0.457869
\(478\) 0 0
\(479\) −27.0000 −1.23366 −0.616831 0.787096i \(-0.711584\pi\)
−0.616831 + 0.787096i \(0.711584\pi\)
\(480\) 0 0
\(481\) −1.00000 −0.0455961
\(482\) 0 0
\(483\) 1.00000 0.0455016
\(484\) 0 0
\(485\) −30.0000 −1.36223
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) −10.0000 −0.452216
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) −15.0000 −0.674200
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) 15.0000 0.670151
\(502\) 0 0
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) 0 0
\(505\) 48.0000 2.13597
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) 7.00000 0.310270 0.155135 0.987893i \(-0.450419\pi\)
0.155135 + 0.987893i \(0.450419\pi\)
\(510\) 0 0
\(511\) −11.0000 −0.486611
\(512\) 0 0
\(513\) 1.00000 0.0441511
\(514\) 0 0
\(515\) 15.0000 0.660979
\(516\) 0 0
\(517\) −40.0000 −1.75920
\(518\) 0 0
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) −39.0000 −1.70862 −0.854311 0.519763i \(-0.826020\pi\)
−0.854311 + 0.519763i \(0.826020\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −30.0000 −1.29701
\(536\) 0 0
\(537\) −4.00000 −0.172613
\(538\) 0 0
\(539\) 5.00000 0.215365
\(540\) 0 0
\(541\) 3.00000 0.128980 0.0644900 0.997918i \(-0.479458\pi\)
0.0644900 + 0.997918i \(0.479458\pi\)
\(542\) 0 0
\(543\) 14.0000 0.600798
\(544\) 0 0
\(545\) −9.00000 −0.385518
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) 13.0000 0.554826
\(550\) 0 0
\(551\) −5.00000 −0.213007
\(552\) 0 0
\(553\) 2.00000 0.0850487
\(554\) 0 0
\(555\) −3.00000 −0.127343
\(556\) 0 0
\(557\) 8.00000 0.338971 0.169485 0.985533i \(-0.445789\pi\)
0.169485 + 0.985533i \(0.445789\pi\)
\(558\) 0 0
\(559\) 11.0000 0.465250
\(560\) 0 0
\(561\) 15.0000 0.633300
\(562\) 0 0
\(563\) 21.0000 0.885044 0.442522 0.896758i \(-0.354084\pi\)
0.442522 + 0.896758i \(0.354084\pi\)
\(564\) 0 0
\(565\) −54.0000 −2.27180
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) −25.0000 −1.04439
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 8.00000 0.332469
\(580\) 0 0
\(581\) −18.0000 −0.746766
\(582\) 0 0
\(583\) 50.0000 2.07079
\(584\) 0 0
\(585\) 3.00000 0.124035
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 16.0000 0.658152
\(592\) 0 0
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 9.00000 0.368964
\(596\) 0 0
\(597\) 17.0000 0.695764
\(598\) 0 0
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) −40.0000 −1.63163 −0.815817 0.578310i \(-0.803712\pi\)
−0.815817 + 0.578310i \(0.803712\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) −42.0000 −1.70754
\(606\) 0 0
\(607\) −1.00000 −0.0405887 −0.0202944 0.999794i \(-0.506460\pi\)
−0.0202944 + 0.999794i \(0.506460\pi\)
\(608\) 0 0
\(609\) 5.00000 0.202610
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 19.0000 0.767403 0.383701 0.923457i \(-0.374649\pi\)
0.383701 + 0.923457i \(0.374649\pi\)
\(614\) 0 0
\(615\) 36.0000 1.45166
\(616\) 0 0
\(617\) 15.0000 0.603877 0.301939 0.953327i \(-0.402366\pi\)
0.301939 + 0.953327i \(0.402366\pi\)
\(618\) 0 0
\(619\) 17.0000 0.683288 0.341644 0.939829i \(-0.389016\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) −18.0000 −0.721155
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 5.00000 0.199681
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −9.00000 −0.358284 −0.179142 0.983823i \(-0.557332\pi\)
−0.179142 + 0.983823i \(0.557332\pi\)
\(632\) 0 0
\(633\) 15.0000 0.596196
\(634\) 0 0
\(635\) −6.00000 −0.238103
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) −10.0000 −0.394976 −0.197488 0.980305i \(-0.563278\pi\)
−0.197488 + 0.980305i \(0.563278\pi\)
\(642\) 0 0
\(643\) −49.0000 −1.93237 −0.966186 0.257847i \(-0.916987\pi\)
−0.966186 + 0.257847i \(0.916987\pi\)
\(644\) 0 0
\(645\) 33.0000 1.29937
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 0 0
\(653\) 45.0000 1.76099 0.880493 0.474059i \(-0.157212\pi\)
0.880493 + 0.474059i \(0.157212\pi\)
\(654\) 0 0
\(655\) 33.0000 1.28942
\(656\) 0 0
\(657\) 11.0000 0.429151
\(658\) 0 0
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) −3.00000 −0.116510
\(664\) 0 0
\(665\) 3.00000 0.116335
\(666\) 0 0
\(667\) 5.00000 0.193601
\(668\) 0 0
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) 65.0000 2.50930
\(672\) 0 0
\(673\) 31.0000 1.19496 0.597481 0.801883i \(-0.296168\pi\)
0.597481 + 0.801883i \(0.296168\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 14.0000 0.538064 0.269032 0.963131i \(-0.413296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) 10.0000 0.383201
\(682\) 0 0
\(683\) 39.0000 1.49229 0.746147 0.665782i \(-0.231902\pi\)
0.746147 + 0.665782i \(0.231902\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) 0 0
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) 0 0
\(693\) −5.00000 −0.189934
\(694\) 0 0
\(695\) −36.0000 −1.36556
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) 1.00000 0.0377157
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 0 0
\(707\) 16.0000 0.601742
\(708\) 0 0
\(709\) −18.0000 −0.676004 −0.338002 0.941145i \(-0.609751\pi\)
−0.338002 + 0.941145i \(0.609751\pi\)
\(710\) 0 0
\(711\) −2.00000 −0.0750059
\(712\) 0 0
\(713\) −8.00000 −0.299602
\(714\) 0 0
\(715\) 15.0000 0.560968
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −10.0000 −0.372937 −0.186469 0.982461i \(-0.559704\pi\)
−0.186469 + 0.982461i \(0.559704\pi\)
\(720\) 0 0
\(721\) 5.00000 0.186210
\(722\) 0 0
\(723\) 10.0000 0.371904
\(724\) 0 0
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) −49.0000 −1.81731 −0.908655 0.417548i \(-0.862889\pi\)
−0.908655 + 0.417548i \(0.862889\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −33.0000 −1.22055
\(732\) 0 0
\(733\) 44.0000 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(734\) 0 0
\(735\) −3.00000 −0.110657
\(736\) 0 0
\(737\) −10.0000 −0.368355
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) −1.00000 −0.0367359
\(742\) 0 0
\(743\) 10.0000 0.366864 0.183432 0.983032i \(-0.441279\pi\)
0.183432 + 0.983032i \(0.441279\pi\)
\(744\) 0 0
\(745\) −36.0000 −1.31894
\(746\) 0 0
\(747\) 18.0000 0.658586
\(748\) 0 0
\(749\) −10.0000 −0.365392
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) −15.0000 −0.546630
\(754\) 0 0
\(755\) −9.00000 −0.327544
\(756\) 0 0
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) 0 0
\(759\) −5.00000 −0.181489
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) −3.00000 −0.108607
\(764\) 0 0
\(765\) −9.00000 −0.325396
\(766\) 0 0
\(767\) −8.00000 −0.288863
\(768\) 0 0
\(769\) 49.0000 1.76699 0.883493 0.468445i \(-0.155186\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 0 0
\(773\) −25.0000 −0.899188 −0.449594 0.893233i \(-0.648431\pi\)
−0.449594 + 0.893233i \(0.648431\pi\)
\(774\) 0 0
\(775\) 32.0000 1.14947
\(776\) 0 0
\(777\) −1.00000 −0.0358748
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −40.0000 −1.43131
\(782\) 0 0
\(783\) −5.00000 −0.178685
\(784\) 0 0
\(785\) −51.0000 −1.82027
\(786\) 0 0
\(787\) 17.0000 0.605985 0.302992 0.952993i \(-0.402014\pi\)
0.302992 + 0.952993i \(0.402014\pi\)
\(788\) 0 0
\(789\) −12.0000 −0.427211
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) −13.0000 −0.461644
\(794\) 0 0
\(795\) −30.0000 −1.06399
\(796\) 0 0
\(797\) 48.0000 1.70025 0.850124 0.526583i \(-0.176527\pi\)
0.850124 + 0.526583i \(0.176527\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 0 0
\(803\) 55.0000 1.94091
\(804\) 0 0
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) −26.0000 −0.915243
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −51.0000 −1.79085 −0.895426 0.445210i \(-0.853129\pi\)
−0.895426 + 0.445210i \(0.853129\pi\)
\(812\) 0 0
\(813\) 22.0000 0.771574
\(814\) 0 0
\(815\) 30.0000 1.05085
\(816\) 0 0
\(817\) −11.0000 −0.384841
\(818\) 0 0
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) 0 0
\(825\) 20.0000 0.696311
\(826\) 0 0
\(827\) 45.0000 1.56480 0.782402 0.622774i \(-0.213994\pi\)
0.782402 + 0.622774i \(0.213994\pi\)
\(828\) 0 0
\(829\) 53.0000 1.84077 0.920383 0.391018i \(-0.127877\pi\)
0.920383 + 0.391018i \(0.127877\pi\)
\(830\) 0 0
\(831\) 22.0000 0.763172
\(832\) 0 0
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) −45.0000 −1.55729
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) −20.0000 −0.690477 −0.345238 0.938515i \(-0.612202\pi\)
−0.345238 + 0.938515i \(0.612202\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) −22.0000 −0.757720
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −14.0000 −0.481046
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) −1.00000 −0.0342796
\(852\) 0 0
\(853\) 4.00000 0.136957 0.0684787 0.997653i \(-0.478185\pi\)
0.0684787 + 0.997653i \(0.478185\pi\)
\(854\) 0 0
\(855\) −3.00000 −0.102598
\(856\) 0 0
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) 12.0000 0.408959
\(862\) 0 0
\(863\) 10.0000 0.340404 0.170202 0.985409i \(-0.445558\pi\)
0.170202 + 0.985409i \(0.445558\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) −10.0000 −0.339227
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) 0 0
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) 3.00000 0.101073 0.0505363 0.998722i \(-0.483907\pi\)
0.0505363 + 0.998722i \(0.483907\pi\)
\(882\) 0 0
\(883\) −19.0000 −0.639401 −0.319700 0.947519i \(-0.603582\pi\)
−0.319700 + 0.947519i \(0.603582\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) −52.0000 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(888\) 0 0
\(889\) −2.00000 −0.0670778
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 0 0
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 1.00000 0.0333890
\(898\) 0 0
\(899\) −40.0000 −1.33407
\(900\) 0 0
\(901\) 30.0000 0.999445
\(902\) 0 0
\(903\) 11.0000 0.366057
\(904\) 0 0
\(905\) −42.0000 −1.39613
\(906\) 0 0
\(907\) −4.00000 −0.132818 −0.0664089 0.997792i \(-0.521154\pi\)
−0.0664089 + 0.997792i \(0.521154\pi\)
\(908\) 0 0
\(909\) −16.0000 −0.530687
\(910\) 0 0
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) 90.0000 2.97857
\(914\) 0 0
\(915\) −39.0000 −1.28930
\(916\) 0 0
\(917\) 11.0000 0.363252
\(918\) 0 0
\(919\) 18.0000 0.593765 0.296883 0.954914i \(-0.404053\pi\)
0.296883 + 0.954914i \(0.404053\pi\)
\(920\) 0 0
\(921\) 16.0000 0.527218
\(922\) 0 0
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) 4.00000 0.131519
\(926\) 0 0
\(927\) −5.00000 −0.164222
\(928\) 0 0
\(929\) 44.0000 1.44359 0.721797 0.692105i \(-0.243317\pi\)
0.721797 + 0.692105i \(0.243317\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) −30.0000 −0.982156
\(934\) 0 0
\(935\) −45.0000 −1.47166
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) −12.0000 −0.391605
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 12.0000 0.390774
\(944\) 0 0
\(945\) 3.00000 0.0975900
\(946\) 0 0
\(947\) −39.0000 −1.26733 −0.633665 0.773608i \(-0.718450\pi\)
−0.633665 + 0.773608i \(0.718450\pi\)
\(948\) 0 0
\(949\) −11.0000 −0.357075
\(950\) 0 0
\(951\) −28.0000 −0.907962
\(952\) 0 0
\(953\) 48.0000 1.55487 0.777436 0.628962i \(-0.216520\pi\)
0.777436 + 0.628962i \(0.216520\pi\)
\(954\) 0 0
\(955\) 75.0000 2.42694
\(956\) 0 0
\(957\) −25.0000 −0.808135
\(958\) 0 0
\(959\) 3.00000 0.0968751
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) −24.0000 −0.772587
\(966\) 0 0
\(967\) 33.0000 1.06121 0.530604 0.847620i \(-0.321965\pi\)
0.530604 + 0.847620i \(0.321965\pi\)
\(968\) 0 0
\(969\) 3.00000 0.0963739
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) −12.0000 −0.384702
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) 19.0000 0.607864 0.303932 0.952694i \(-0.401700\pi\)
0.303932 + 0.952694i \(0.401700\pi\)
\(978\) 0 0
\(979\) 90.0000 2.87641
\(980\) 0 0
\(981\) 3.00000 0.0957826
\(982\) 0 0
\(983\) −51.0000 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(984\) 0 0
\(985\) −48.0000 −1.52941
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) 11.0000 0.349780
\(990\) 0 0
\(991\) −30.0000 −0.952981 −0.476491 0.879180i \(-0.658091\pi\)
−0.476491 + 0.879180i \(0.658091\pi\)
\(992\) 0 0
\(993\) −26.0000 −0.825085
\(994\) 0 0
\(995\) −51.0000 −1.61681
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 0 0
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4368.2.a.n.1.1 1
4.3 odd 2 2184.2.a.a.1.1 1
12.11 even 2 6552.2.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2184.2.a.a.1.1 1 4.3 odd 2
4368.2.a.n.1.1 1 1.1 even 1 trivial
6552.2.a.z.1.1 1 12.11 even 2