Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [44,2,Mod(7,44)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("44.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 44.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−1.40958 | − | 0.114404i | 0.704424 | + | 0.228881i | 1.97382 | + | 0.322523i | 1.09089 | − | 0.792578i | −0.966756 | − | 0.403215i | 0.503194 | + | 1.54867i | −2.74536 | − | 0.680436i | −1.98322 | − | 1.44090i | −1.62837 | + | 0.992398i | ||||||||||||||||||||||||||||||||||||||||||||||||
7.2 | −0.0737040 | − | 1.41229i | 1.70537 | + | 0.554109i | −1.98914 | + | 0.208183i | −2.39991 | + | 1.74363i | 0.656871 | − | 2.44932i | −0.815620 | − | 2.51022i | 0.440622 | + | 2.79390i | 0.174207 | + | 0.126569i | 2.63940 | + | 3.26086i | |||||||||||||||||||||||||||||||||||||||||||||||||
7.3 | 0.544389 | + | 1.30524i | −0.704424 | − | 0.228881i | −1.40728 | + | 1.42111i | 1.09089 | − | 0.792578i | −0.0847364 | − | 1.04404i | −0.503194 | − | 1.54867i | −2.62099 | − | 1.06320i | −1.98322 | − | 1.44090i | 1.62837 | + | 0.992398i | |||||||||||||||||||||||||||||||||||||||||||||||||
7.4 | 1.36594 | − | 0.366325i | −1.70537 | − | 0.554109i | 1.73161 | − | 1.00076i | −2.39991 | + | 1.74363i | −2.53243 | − | 0.132161i | 0.815620 | + | 2.51022i | 1.99868 | − | 2.00132i | 0.174207 | + | 0.126569i | −2.63940 | + | 3.26086i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.1 | −1.40958 | + | 0.114404i | 0.704424 | − | 0.228881i | 1.97382 | − | 0.322523i | 1.09089 | + | 0.792578i | −0.966756 | + | 0.403215i | 0.503194 | − | 1.54867i | −2.74536 | + | 0.680436i | −1.98322 | + | 1.44090i | −1.62837 | − | 0.992398i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.2 | −0.0737040 | + | 1.41229i | 1.70537 | − | 0.554109i | −1.98914 | − | 0.208183i | −2.39991 | − | 1.74363i | 0.656871 | + | 2.44932i | −0.815620 | + | 2.51022i | 0.440622 | − | 2.79390i | 0.174207 | − | 0.126569i | 2.63940 | − | 3.26086i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.3 | 0.544389 | − | 1.30524i | −0.704424 | + | 0.228881i | −1.40728 | − | 1.42111i | 1.09089 | + | 0.792578i | −0.0847364 | + | 1.04404i | −0.503194 | + | 1.54867i | −2.62099 | + | 1.06320i | −1.98322 | + | 1.44090i | 1.62837 | − | 0.992398i | |||||||||||||||||||||||||||||||||||||||||||||||||
19.4 | 1.36594 | + | 0.366325i | −1.70537 | + | 0.554109i | 1.73161 | + | 1.00076i | −2.39991 | − | 1.74363i | −2.53243 | + | 0.132161i | 0.815620 | − | 2.51022i | 1.99868 | + | 2.00132i | 0.174207 | − | 0.126569i | −2.63940 | − | 3.26086i | |||||||||||||||||||||||||||||||||||||||||||||||||
35.1 | −1.40874 | + | 0.124276i | −1.59814 | − | 2.19965i | 1.96911 | − | 0.350146i | −0.720859 | − | 2.21858i | 2.52473 | + | 2.90013i | 1.04462 | + | 0.758960i | −2.73046 | + | 0.737979i | −1.35736 | + | 4.17752i | 1.29122 | + | 3.03582i | |||||||||||||||||||||||||||||||||||||||||||||||||
35.2 | −1.06665 | − | 0.928579i | 1.59814 | + | 2.19965i | 0.275480 | + | 1.98094i | −0.720859 | − | 2.21858i | 0.337896 | − | 3.83025i | −1.04462 | − | 0.758960i | 1.54562 | − | 2.36877i | −1.35736 | + | 4.17752i | −1.29122 | + | 3.03582i | |||||||||||||||||||||||||||||||||||||||||||||||||
35.3 | −0.656642 | + | 1.25253i | 0.539857 | + | 0.743049i | −1.13764 | − | 1.64492i | 0.529876 | + | 1.63079i | −1.28518 | + | 0.188268i | −1.93399 | − | 1.40513i | 2.80733 | − | 0.344804i | 0.666375 | − | 2.05089i | −2.39055 | − | 0.407162i | |||||||||||||||||||||||||||||||||||||||||||||||||
35.4 | 0.204982 | − | 1.39928i | −0.539857 | − | 0.743049i | −1.91596 | − | 0.573655i | 0.529876 | + | 1.63079i | −1.15039 | + | 0.603098i | 1.93399 | + | 1.40513i | −1.19544 | + | 2.56338i | 0.666375 | − | 2.05089i | 2.39055 | − | 0.407162i | |||||||||||||||||||||||||||||||||||||||||||||||||
39.1 | −1.40874 | − | 0.124276i | −1.59814 | + | 2.19965i | 1.96911 | + | 0.350146i | −0.720859 | + | 2.21858i | 2.52473 | − | 2.90013i | 1.04462 | − | 0.758960i | −2.73046 | − | 0.737979i | −1.35736 | − | 4.17752i | 1.29122 | − | 3.03582i | |||||||||||||||||||||||||||||||||||||||||||||||||
39.2 | −1.06665 | + | 0.928579i | 1.59814 | − | 2.19965i | 0.275480 | − | 1.98094i | −0.720859 | + | 2.21858i | 0.337896 | + | 3.83025i | −1.04462 | + | 0.758960i | 1.54562 | + | 2.36877i | −1.35736 | − | 4.17752i | −1.29122 | − | 3.03582i | |||||||||||||||||||||||||||||||||||||||||||||||||
39.3 | −0.656642 | − | 1.25253i | 0.539857 | − | 0.743049i | −1.13764 | + | 1.64492i | 0.529876 | − | 1.63079i | −1.28518 | − | 0.188268i | −1.93399 | + | 1.40513i | 2.80733 | + | 0.344804i | 0.666375 | + | 2.05089i | −2.39055 | + | 0.407162i | |||||||||||||||||||||||||||||||||||||||||||||||||
39.4 | 0.204982 | + | 1.39928i | −0.539857 | + | 0.743049i | −1.91596 | + | 0.573655i | 0.529876 | − | 1.63079i | −1.15039 | − | 0.603098i | 1.93399 | − | 1.40513i | −1.19544 | − | 2.56338i | 0.666375 | + | 2.05089i | 2.39055 | + | 0.407162i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
44.g | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 44.2.g.a | ✓ | 16 |
3.b | odd | 2 | 1 | 396.2.r.a | 16 | ||
4.b | odd | 2 | 1 | inner | 44.2.g.a | ✓ | 16 |
8.b | even | 2 | 1 | 704.2.u.c | 16 | ||
8.d | odd | 2 | 1 | 704.2.u.c | 16 | ||
11.b | odd | 2 | 1 | 484.2.g.i | 16 | ||
11.c | even | 5 | 1 | 484.2.c.d | 16 | ||
11.c | even | 5 | 1 | 484.2.g.f | 16 | ||
11.c | even | 5 | 1 | 484.2.g.i | 16 | ||
11.c | even | 5 | 1 | 484.2.g.j | 16 | ||
11.d | odd | 10 | 1 | inner | 44.2.g.a | ✓ | 16 |
11.d | odd | 10 | 1 | 484.2.c.d | 16 | ||
11.d | odd | 10 | 1 | 484.2.g.f | 16 | ||
11.d | odd | 10 | 1 | 484.2.g.j | 16 | ||
12.b | even | 2 | 1 | 396.2.r.a | 16 | ||
33.f | even | 10 | 1 | 396.2.r.a | 16 | ||
44.c | even | 2 | 1 | 484.2.g.i | 16 | ||
44.g | even | 10 | 1 | inner | 44.2.g.a | ✓ | 16 |
44.g | even | 10 | 1 | 484.2.c.d | 16 | ||
44.g | even | 10 | 1 | 484.2.g.f | 16 | ||
44.g | even | 10 | 1 | 484.2.g.j | 16 | ||
44.h | odd | 10 | 1 | 484.2.c.d | 16 | ||
44.h | odd | 10 | 1 | 484.2.g.f | 16 | ||
44.h | odd | 10 | 1 | 484.2.g.i | 16 | ||
44.h | odd | 10 | 1 | 484.2.g.j | 16 | ||
88.k | even | 10 | 1 | 704.2.u.c | 16 | ||
88.p | odd | 10 | 1 | 704.2.u.c | 16 | ||
132.n | odd | 10 | 1 | 396.2.r.a | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
44.2.g.a | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
44.2.g.a | ✓ | 16 | 4.b | odd | 2 | 1 | inner |
44.2.g.a | ✓ | 16 | 11.d | odd | 10 | 1 | inner |
44.2.g.a | ✓ | 16 | 44.g | even | 10 | 1 | inner |
396.2.r.a | 16 | 3.b | odd | 2 | 1 | ||
396.2.r.a | 16 | 12.b | even | 2 | 1 | ||
396.2.r.a | 16 | 33.f | even | 10 | 1 | ||
396.2.r.a | 16 | 132.n | odd | 10 | 1 | ||
484.2.c.d | 16 | 11.c | even | 5 | 1 | ||
484.2.c.d | 16 | 11.d | odd | 10 | 1 | ||
484.2.c.d | 16 | 44.g | even | 10 | 1 | ||
484.2.c.d | 16 | 44.h | odd | 10 | 1 | ||
484.2.g.f | 16 | 11.c | even | 5 | 1 | ||
484.2.g.f | 16 | 11.d | odd | 10 | 1 | ||
484.2.g.f | 16 | 44.g | even | 10 | 1 | ||
484.2.g.f | 16 | 44.h | odd | 10 | 1 | ||
484.2.g.i | 16 | 11.b | odd | 2 | 1 | ||
484.2.g.i | 16 | 11.c | even | 5 | 1 | ||
484.2.g.i | 16 | 44.c | even | 2 | 1 | ||
484.2.g.i | 16 | 44.h | odd | 10 | 1 | ||
484.2.g.j | 16 | 11.c | even | 5 | 1 | ||
484.2.g.j | 16 | 11.d | odd | 10 | 1 | ||
484.2.g.j | 16 | 44.g | even | 10 | 1 | ||
484.2.g.j | 16 | 44.h | odd | 10 | 1 | ||
704.2.u.c | 16 | 8.b | even | 2 | 1 | ||
704.2.u.c | 16 | 8.d | odd | 2 | 1 | ||
704.2.u.c | 16 | 88.k | even | 10 | 1 | ||
704.2.u.c | 16 | 88.p | odd | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace .