Properties

Label 440.6.a.a
Level 440440
Weight 66
Character orbit 440.a
Self dual yes
Analytic conductor 70.56970.569
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,6,Mod(1,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 440=23511 440 = 2^{3} \cdot 5 \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 70.568880717770.5688807177
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+23q3+25q5+211q7+286q9+121q11+26q13+575q15407q17+1789q19+4853q216q23+625q25+989q272387q29+9453q31+2783q33++34606q99+O(q100) q + 23 q^{3} + 25 q^{5} + 211 q^{7} + 286 q^{9} + 121 q^{11} + 26 q^{13} + 575 q^{15} - 407 q^{17} + 1789 q^{19} + 4853 q^{21} - 6 q^{23} + 625 q^{25} + 989 q^{27} - 2387 q^{29} + 9453 q^{31} + 2783 q^{33}+ \cdots + 34606 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 23.0000 0 25.0000 0 211.000 0 286.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.6.a.a 1
4.b odd 2 1 880.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.6.a.a 1 1.a even 1 1 trivial
880.6.a.a 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T323 T_{3} - 23 acting on S6new(Γ0(440))S_{6}^{\mathrm{new}}(\Gamma_0(440)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T23 T - 23 Copy content Toggle raw display
55 T25 T - 25 Copy content Toggle raw display
77 T211 T - 211 Copy content Toggle raw display
1111 T121 T - 121 Copy content Toggle raw display
1313 T26 T - 26 Copy content Toggle raw display
1717 T+407 T + 407 Copy content Toggle raw display
1919 T1789 T - 1789 Copy content Toggle raw display
2323 T+6 T + 6 Copy content Toggle raw display
2929 T+2387 T + 2387 Copy content Toggle raw display
3131 T9453 T - 9453 Copy content Toggle raw display
3737 T+6917 T + 6917 Copy content Toggle raw display
4141 T+9774 T + 9774 Copy content Toggle raw display
4343 T3108 T - 3108 Copy content Toggle raw display
4747 T+14290 T + 14290 Copy content Toggle raw display
5353 T+18665 T + 18665 Copy content Toggle raw display
5959 T36646 T - 36646 Copy content Toggle raw display
6161 T+22945 T + 22945 Copy content Toggle raw display
6767 T35848 T - 35848 Copy content Toggle raw display
7171 T16647 T - 16647 Copy content Toggle raw display
7373 T+34642 T + 34642 Copy content Toggle raw display
7979 T20554 T - 20554 Copy content Toggle raw display
8383 T7674 T - 7674 Copy content Toggle raw display
8989 T+98879 T + 98879 Copy content Toggle raw display
9797 T55764 T - 55764 Copy content Toggle raw display
show more
show less