Properties

Label 440.6.a.a
Level $440$
Weight $6$
Character orbit 440.a
Self dual yes
Analytic conductor $70.569$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [440,6,Mod(1,440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("440.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.5688807177\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 23 q^{3} + 25 q^{5} + 211 q^{7} + 286 q^{9} + 121 q^{11} + 26 q^{13} + 575 q^{15} - 407 q^{17} + 1789 q^{19} + 4853 q^{21} - 6 q^{23} + 625 q^{25} + 989 q^{27} - 2387 q^{29} + 9453 q^{31} + 2783 q^{33}+ \cdots + 34606 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 23.0000 0 25.0000 0 211.000 0 286.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 440.6.a.a 1
4.b odd 2 1 880.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
440.6.a.a 1 1.a even 1 1 trivial
880.6.a.a 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 23 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(440))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 23 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T - 211 \) Copy content Toggle raw display
$11$ \( T - 121 \) Copy content Toggle raw display
$13$ \( T - 26 \) Copy content Toggle raw display
$17$ \( T + 407 \) Copy content Toggle raw display
$19$ \( T - 1789 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 2387 \) Copy content Toggle raw display
$31$ \( T - 9453 \) Copy content Toggle raw display
$37$ \( T + 6917 \) Copy content Toggle raw display
$41$ \( T + 9774 \) Copy content Toggle raw display
$43$ \( T - 3108 \) Copy content Toggle raw display
$47$ \( T + 14290 \) Copy content Toggle raw display
$53$ \( T + 18665 \) Copy content Toggle raw display
$59$ \( T - 36646 \) Copy content Toggle raw display
$61$ \( T + 22945 \) Copy content Toggle raw display
$67$ \( T - 35848 \) Copy content Toggle raw display
$71$ \( T - 16647 \) Copy content Toggle raw display
$73$ \( T + 34642 \) Copy content Toggle raw display
$79$ \( T - 20554 \) Copy content Toggle raw display
$83$ \( T - 7674 \) Copy content Toggle raw display
$89$ \( T + 98879 \) Copy content Toggle raw display
$97$ \( T - 55764 \) Copy content Toggle raw display
show more
show less