Properties

Label 4400.2.b.r.4049.3
Level $4400$
Weight $2$
Character 4400.4049
Analytic conductor $35.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4400,2,Mod(4049,4400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4400.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1100)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.3
Root \(1.30278i\) of defining polynomial
Character \(\chi\) \(=\) 4400.4049
Dual form 4400.2.b.r.4049.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.302776i q^{3} +0.697224i q^{7} +2.90833 q^{9} -1.00000 q^{11} +1.60555i q^{13} -4.30278i q^{17} -1.00000 q^{19} -0.211103 q^{21} -3.90833i q^{23} +1.78890i q^{27} +1.69722 q^{29} -1.60555 q^{31} -0.302776i q^{33} -7.60555i q^{37} -0.486122 q^{39} +8.21110 q^{41} -7.21110i q^{43} +5.60555i q^{47} +6.51388 q^{49} +1.30278 q^{51} -6.51388i q^{53} -0.302776i q^{57} -5.60555 q^{59} +3.30278 q^{61} +2.02776i q^{63} +8.00000i q^{67} +1.18335 q^{69} -2.60555 q^{71} -1.90833i q^{73} -0.697224i q^{77} +6.30278 q^{79} +8.18335 q^{81} -6.90833i q^{83} +0.513878i q^{87} +5.09167 q^{89} -1.11943 q^{91} -0.486122i q^{93} +7.11943i q^{97} -2.90833 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9} - 4 q^{11} - 4 q^{19} + 28 q^{21} + 14 q^{29} + 8 q^{31} - 38 q^{39} + 4 q^{41} - 10 q^{49} - 2 q^{51} - 8 q^{59} + 6 q^{61} + 48 q^{69} + 4 q^{71} + 18 q^{79} + 76 q^{81} + 42 q^{89} + 46 q^{91}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4400\mathbb{Z}\right)^\times\).

\(n\) \(177\) \(1201\) \(2751\) \(3301\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.302776i 0.174808i 0.996173 + 0.0874038i \(0.0278570\pi\)
−0.996173 + 0.0874038i \(0.972143\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.697224i 0.263526i 0.991281 + 0.131763i \(0.0420638\pi\)
−0.991281 + 0.131763i \(0.957936\pi\)
\(8\) 0 0
\(9\) 2.90833 0.969442
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 1.60555i 0.445300i 0.974898 + 0.222650i \(0.0714707\pi\)
−0.974898 + 0.222650i \(0.928529\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 4.30278i − 1.04358i −0.853075 0.521788i \(-0.825265\pi\)
0.853075 0.521788i \(-0.174735\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) −0.211103 −0.0460664
\(22\) 0 0
\(23\) − 3.90833i − 0.814942i −0.913218 0.407471i \(-0.866411\pi\)
0.913218 0.407471i \(-0.133589\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.78890i 0.344273i
\(28\) 0 0
\(29\) 1.69722 0.315167 0.157583 0.987506i \(-0.449630\pi\)
0.157583 + 0.987506i \(0.449630\pi\)
\(30\) 0 0
\(31\) −1.60555 −0.288366 −0.144183 0.989551i \(-0.546055\pi\)
−0.144183 + 0.989551i \(0.546055\pi\)
\(32\) 0 0
\(33\) − 0.302776i − 0.0527065i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 7.60555i − 1.25034i −0.780487 0.625172i \(-0.785029\pi\)
0.780487 0.625172i \(-0.214971\pi\)
\(38\) 0 0
\(39\) −0.486122 −0.0778418
\(40\) 0 0
\(41\) 8.21110 1.28236 0.641179 0.767391i \(-0.278445\pi\)
0.641179 + 0.767391i \(0.278445\pi\)
\(42\) 0 0
\(43\) − 7.21110i − 1.09968i −0.835269 0.549841i \(-0.814688\pi\)
0.835269 0.549841i \(-0.185312\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.60555i 0.817654i 0.912612 + 0.408827i \(0.134062\pi\)
−0.912612 + 0.408827i \(0.865938\pi\)
\(48\) 0 0
\(49\) 6.51388 0.930554
\(50\) 0 0
\(51\) 1.30278 0.182425
\(52\) 0 0
\(53\) − 6.51388i − 0.894750i −0.894346 0.447375i \(-0.852359\pi\)
0.894346 0.447375i \(-0.147641\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 0.302776i − 0.0401036i
\(58\) 0 0
\(59\) −5.60555 −0.729781 −0.364890 0.931051i \(-0.618894\pi\)
−0.364890 + 0.931051i \(0.618894\pi\)
\(60\) 0 0
\(61\) 3.30278 0.422877 0.211439 0.977391i \(-0.432185\pi\)
0.211439 + 0.977391i \(0.432185\pi\)
\(62\) 0 0
\(63\) 2.02776i 0.255473i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 0 0
\(69\) 1.18335 0.142458
\(70\) 0 0
\(71\) −2.60555 −0.309222 −0.154611 0.987975i \(-0.549412\pi\)
−0.154611 + 0.987975i \(0.549412\pi\)
\(72\) 0 0
\(73\) − 1.90833i − 0.223353i −0.993745 0.111676i \(-0.964378\pi\)
0.993745 0.111676i \(-0.0356220\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.697224i − 0.0794561i
\(78\) 0 0
\(79\) 6.30278 0.709118 0.354559 0.935034i \(-0.384631\pi\)
0.354559 + 0.935034i \(0.384631\pi\)
\(80\) 0 0
\(81\) 8.18335 0.909261
\(82\) 0 0
\(83\) − 6.90833i − 0.758287i −0.925338 0.379144i \(-0.876219\pi\)
0.925338 0.379144i \(-0.123781\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.513878i 0.0550935i
\(88\) 0 0
\(89\) 5.09167 0.539716 0.269858 0.962900i \(-0.413023\pi\)
0.269858 + 0.962900i \(0.413023\pi\)
\(90\) 0 0
\(91\) −1.11943 −0.117348
\(92\) 0 0
\(93\) − 0.486122i − 0.0504085i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.11943i 0.722869i 0.932398 + 0.361434i \(0.117713\pi\)
−0.932398 + 0.361434i \(0.882287\pi\)
\(98\) 0 0
\(99\) −2.90833 −0.292298
\(100\) 0 0
\(101\) −6.51388 −0.648155 −0.324078 0.946031i \(-0.605054\pi\)
−0.324078 + 0.946031i \(0.605054\pi\)
\(102\) 0 0
\(103\) − 12.3028i − 1.21223i −0.795378 0.606114i \(-0.792727\pi\)
0.795378 0.606114i \(-0.207273\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.21110i 0.213755i 0.994272 + 0.106878i \(0.0340853\pi\)
−0.994272 + 0.106878i \(0.965915\pi\)
\(108\) 0 0
\(109\) −8.90833 −0.853263 −0.426631 0.904426i \(-0.640300\pi\)
−0.426631 + 0.904426i \(0.640300\pi\)
\(110\) 0 0
\(111\) 2.30278 0.218570
\(112\) 0 0
\(113\) − 5.60555i − 0.527326i −0.964615 0.263663i \(-0.915069\pi\)
0.964615 0.263663i \(-0.0849307\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.66947i 0.431692i
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 2.48612i 0.224166i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 14.9083i 1.32290i 0.749989 + 0.661450i \(0.230059\pi\)
−0.749989 + 0.661450i \(0.769941\pi\)
\(128\) 0 0
\(129\) 2.18335 0.192233
\(130\) 0 0
\(131\) 4.69722 0.410398 0.205199 0.978720i \(-0.434216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(132\) 0 0
\(133\) − 0.697224i − 0.0604570i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.908327i 0.0776036i 0.999247 + 0.0388018i \(0.0123541\pi\)
−0.999247 + 0.0388018i \(0.987646\pi\)
\(138\) 0 0
\(139\) 16.2111 1.37501 0.687504 0.726181i \(-0.258706\pi\)
0.687504 + 0.726181i \(0.258706\pi\)
\(140\) 0 0
\(141\) −1.69722 −0.142932
\(142\) 0 0
\(143\) − 1.60555i − 0.134263i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.97224i 0.162668i
\(148\) 0 0
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 0 0
\(151\) 14.8167 1.20576 0.602881 0.797831i \(-0.294019\pi\)
0.602881 + 0.797831i \(0.294019\pi\)
\(152\) 0 0
\(153\) − 12.5139i − 1.01169i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 15.2111i 1.21398i 0.794710 + 0.606989i \(0.207623\pi\)
−0.794710 + 0.606989i \(0.792377\pi\)
\(158\) 0 0
\(159\) 1.97224 0.156409
\(160\) 0 0
\(161\) 2.72498 0.214759
\(162\) 0 0
\(163\) − 3.30278i − 0.258693i −0.991599 0.129347i \(-0.958712\pi\)
0.991599 0.129347i \(-0.0412880\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 24.6333i − 1.90618i −0.302683 0.953091i \(-0.597882\pi\)
0.302683 0.953091i \(-0.402118\pi\)
\(168\) 0 0
\(169\) 10.4222 0.801708
\(170\) 0 0
\(171\) −2.90833 −0.222405
\(172\) 0 0
\(173\) − 9.78890i − 0.744236i −0.928185 0.372118i \(-0.878632\pi\)
0.928185 0.372118i \(-0.121368\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 1.69722i − 0.127571i
\(178\) 0 0
\(179\) 8.09167 0.604800 0.302400 0.953181i \(-0.402212\pi\)
0.302400 + 0.953181i \(0.402212\pi\)
\(180\) 0 0
\(181\) −7.90833 −0.587821 −0.293911 0.955833i \(-0.594957\pi\)
−0.293911 + 0.955833i \(0.594957\pi\)
\(182\) 0 0
\(183\) 1.00000i 0.0739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.30278i 0.314650i
\(188\) 0 0
\(189\) −1.24726 −0.0907250
\(190\) 0 0
\(191\) −12.9083 −0.934014 −0.467007 0.884254i \(-0.654668\pi\)
−0.467007 + 0.884254i \(0.654668\pi\)
\(192\) 0 0
\(193\) − 2.42221i − 0.174354i −0.996193 0.0871771i \(-0.972215\pi\)
0.996193 0.0871771i \(-0.0277846\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.9083i 1.56090i 0.625216 + 0.780452i \(0.285011\pi\)
−0.625216 + 0.780452i \(0.714989\pi\)
\(198\) 0 0
\(199\) 2.90833 0.206166 0.103083 0.994673i \(-0.467129\pi\)
0.103083 + 0.994673i \(0.467129\pi\)
\(200\) 0 0
\(201\) −2.42221 −0.170849
\(202\) 0 0
\(203\) 1.18335i 0.0830546i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 11.3667i − 0.790040i
\(208\) 0 0
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 21.6056 1.48739 0.743694 0.668520i \(-0.233072\pi\)
0.743694 + 0.668520i \(0.233072\pi\)
\(212\) 0 0
\(213\) − 0.788897i − 0.0540544i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1.11943i − 0.0759918i
\(218\) 0 0
\(219\) 0.577795 0.0390438
\(220\) 0 0
\(221\) 6.90833 0.464704
\(222\) 0 0
\(223\) − 13.6056i − 0.911095i −0.890211 0.455548i \(-0.849443\pi\)
0.890211 0.455548i \(-0.150557\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 25.9361i − 1.72144i −0.509080 0.860719i \(-0.670014\pi\)
0.509080 0.860719i \(-0.329986\pi\)
\(228\) 0 0
\(229\) −26.1194 −1.72602 −0.863010 0.505186i \(-0.831424\pi\)
−0.863010 + 0.505186i \(0.831424\pi\)
\(230\) 0 0
\(231\) 0.211103 0.0138895
\(232\) 0 0
\(233\) − 14.0917i − 0.923176i −0.887094 0.461588i \(-0.847280\pi\)
0.887094 0.461588i \(-0.152720\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.90833i 0.123959i
\(238\) 0 0
\(239\) 14.3305 0.926965 0.463483 0.886106i \(-0.346600\pi\)
0.463483 + 0.886106i \(0.346600\pi\)
\(240\) 0 0
\(241\) −8.30278 −0.534829 −0.267414 0.963582i \(-0.586169\pi\)
−0.267414 + 0.963582i \(0.586169\pi\)
\(242\) 0 0
\(243\) 7.84441i 0.503219i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.60555i − 0.102159i
\(248\) 0 0
\(249\) 2.09167 0.132554
\(250\) 0 0
\(251\) 23.3305 1.47261 0.736305 0.676650i \(-0.236569\pi\)
0.736305 + 0.676650i \(0.236569\pi\)
\(252\) 0 0
\(253\) 3.90833i 0.245714i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 28.4222i − 1.77293i −0.462797 0.886464i \(-0.653154\pi\)
0.462797 0.886464i \(-0.346846\pi\)
\(258\) 0 0
\(259\) 5.30278 0.329498
\(260\) 0 0
\(261\) 4.93608 0.305536
\(262\) 0 0
\(263\) 10.8167i 0.666983i 0.942753 + 0.333492i \(0.108227\pi\)
−0.942753 + 0.333492i \(0.891773\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.54163i 0.0943465i
\(268\) 0 0
\(269\) −3.51388 −0.214245 −0.107122 0.994246i \(-0.534164\pi\)
−0.107122 + 0.994246i \(0.534164\pi\)
\(270\) 0 0
\(271\) 29.4222 1.78727 0.893636 0.448793i \(-0.148146\pi\)
0.893636 + 0.448793i \(0.148146\pi\)
\(272\) 0 0
\(273\) − 0.338936i − 0.0205133i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 30.2111i 1.81521i 0.419826 + 0.907605i \(0.362091\pi\)
−0.419826 + 0.907605i \(0.637909\pi\)
\(278\) 0 0
\(279\) −4.66947 −0.279554
\(280\) 0 0
\(281\) 21.0000 1.25275 0.626377 0.779520i \(-0.284537\pi\)
0.626377 + 0.779520i \(0.284537\pi\)
\(282\) 0 0
\(283\) − 23.5139i − 1.39775i −0.715241 0.698877i \(-0.753683\pi\)
0.715241 0.698877i \(-0.246317\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.72498i 0.337935i
\(288\) 0 0
\(289\) −1.51388 −0.0890517
\(290\) 0 0
\(291\) −2.15559 −0.126363
\(292\) 0 0
\(293\) − 18.0000i − 1.05157i −0.850617 0.525786i \(-0.823771\pi\)
0.850617 0.525786i \(-0.176229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.78890i − 0.103802i
\(298\) 0 0
\(299\) 6.27502 0.362894
\(300\) 0 0
\(301\) 5.02776 0.289795
\(302\) 0 0
\(303\) − 1.97224i − 0.113302i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 15.3305i − 0.874960i −0.899228 0.437480i \(-0.855871\pi\)
0.899228 0.437480i \(-0.144129\pi\)
\(308\) 0 0
\(309\) 3.72498 0.211907
\(310\) 0 0
\(311\) 9.00000 0.510343 0.255172 0.966896i \(-0.417868\pi\)
0.255172 + 0.966896i \(0.417868\pi\)
\(312\) 0 0
\(313\) 22.6056i 1.27774i 0.769314 + 0.638871i \(0.220598\pi\)
−0.769314 + 0.638871i \(0.779402\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.6972i 1.10631i 0.833080 + 0.553153i \(0.186576\pi\)
−0.833080 + 0.553153i \(0.813424\pi\)
\(318\) 0 0
\(319\) −1.69722 −0.0950263
\(320\) 0 0
\(321\) −0.669468 −0.0373661
\(322\) 0 0
\(323\) 4.30278i 0.239413i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 2.69722i − 0.149157i
\(328\) 0 0
\(329\) −3.90833 −0.215473
\(330\) 0 0
\(331\) −14.6333 −0.804319 −0.402160 0.915570i \(-0.631740\pi\)
−0.402160 + 0.915570i \(0.631740\pi\)
\(332\) 0 0
\(333\) − 22.1194i − 1.21214i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.78890i 0.260868i 0.991457 + 0.130434i \(0.0416370\pi\)
−0.991457 + 0.130434i \(0.958363\pi\)
\(338\) 0 0
\(339\) 1.69722 0.0921806
\(340\) 0 0
\(341\) 1.60555 0.0869455
\(342\) 0 0
\(343\) 9.42221i 0.508751i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.9083i 1.17610i 0.808824 + 0.588050i \(0.200104\pi\)
−0.808824 + 0.588050i \(0.799896\pi\)
\(348\) 0 0
\(349\) −3.42221 −0.183186 −0.0915932 0.995797i \(-0.529196\pi\)
−0.0915932 + 0.995797i \(0.529196\pi\)
\(350\) 0 0
\(351\) −2.87217 −0.153305
\(352\) 0 0
\(353\) − 2.21110i − 0.117685i −0.998267 0.0588426i \(-0.981259\pi\)
0.998267 0.0588426i \(-0.0187410\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.908327i 0.0480738i
\(358\) 0 0
\(359\) 16.4222 0.866731 0.433365 0.901218i \(-0.357326\pi\)
0.433365 + 0.901218i \(0.357326\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0.302776i 0.0158916i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 33.3028i 1.73839i 0.494469 + 0.869195i \(0.335363\pi\)
−0.494469 + 0.869195i \(0.664637\pi\)
\(368\) 0 0
\(369\) 23.8806 1.24317
\(370\) 0 0
\(371\) 4.54163 0.235790
\(372\) 0 0
\(373\) − 14.0278i − 0.726330i −0.931725 0.363165i \(-0.881696\pi\)
0.931725 0.363165i \(-0.118304\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.72498i 0.140344i
\(378\) 0 0
\(379\) −0.211103 −0.0108436 −0.00542180 0.999985i \(-0.501726\pi\)
−0.00542180 + 0.999985i \(0.501726\pi\)
\(380\) 0 0
\(381\) −4.51388 −0.231253
\(382\) 0 0
\(383\) − 0.788897i − 0.0403108i −0.999797 0.0201554i \(-0.993584\pi\)
0.999797 0.0201554i \(-0.00641609\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 20.9722i − 1.06608i
\(388\) 0 0
\(389\) 27.6333 1.40106 0.700532 0.713621i \(-0.252946\pi\)
0.700532 + 0.713621i \(0.252946\pi\)
\(390\) 0 0
\(391\) −16.8167 −0.850455
\(392\) 0 0
\(393\) 1.42221i 0.0717408i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 4.48612i − 0.225152i −0.993643 0.112576i \(-0.964090\pi\)
0.993643 0.112576i \(-0.0359102\pi\)
\(398\) 0 0
\(399\) 0.211103 0.0105683
\(400\) 0 0
\(401\) 11.2111 0.559856 0.279928 0.960021i \(-0.409689\pi\)
0.279928 + 0.960021i \(0.409689\pi\)
\(402\) 0 0
\(403\) − 2.57779i − 0.128409i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.60555i 0.376993i
\(408\) 0 0
\(409\) −30.0278 −1.48478 −0.742388 0.669970i \(-0.766307\pi\)
−0.742388 + 0.669970i \(0.766307\pi\)
\(410\) 0 0
\(411\) −0.275019 −0.0135657
\(412\) 0 0
\(413\) − 3.90833i − 0.192316i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.90833i 0.240362i
\(418\) 0 0
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) −6.09167 −0.296890 −0.148445 0.988921i \(-0.547427\pi\)
−0.148445 + 0.988921i \(0.547427\pi\)
\(422\) 0 0
\(423\) 16.3028i 0.792668i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.30278i 0.111439i
\(428\) 0 0
\(429\) 0.486122 0.0234702
\(430\) 0 0
\(431\) −3.78890 −0.182505 −0.0912524 0.995828i \(-0.529087\pi\)
−0.0912524 + 0.995828i \(0.529087\pi\)
\(432\) 0 0
\(433\) 29.0000i 1.39365i 0.717241 + 0.696826i \(0.245405\pi\)
−0.717241 + 0.696826i \(0.754595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.90833i 0.186961i
\(438\) 0 0
\(439\) 7.09167 0.338467 0.169234 0.985576i \(-0.445871\pi\)
0.169234 + 0.985576i \(0.445871\pi\)
\(440\) 0 0
\(441\) 18.9445 0.902118
\(442\) 0 0
\(443\) − 8.60555i − 0.408862i −0.978881 0.204431i \(-0.934466\pi\)
0.978881 0.204431i \(-0.0655344\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.63331i 0.171850i
\(448\) 0 0
\(449\) 2.09167 0.0987122 0.0493561 0.998781i \(-0.484283\pi\)
0.0493561 + 0.998781i \(0.484283\pi\)
\(450\) 0 0
\(451\) −8.21110 −0.386646
\(452\) 0 0
\(453\) 4.48612i 0.210776i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 42.1472i − 1.97156i −0.168035 0.985781i \(-0.553742\pi\)
0.168035 0.985781i \(-0.446258\pi\)
\(458\) 0 0
\(459\) 7.69722 0.359276
\(460\) 0 0
\(461\) −22.8167 −1.06268 −0.531339 0.847159i \(-0.678311\pi\)
−0.531339 + 0.847159i \(0.678311\pi\)
\(462\) 0 0
\(463\) − 39.6611i − 1.84321i −0.388134 0.921603i \(-0.626880\pi\)
0.388134 0.921603i \(-0.373120\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.02776i 0.186382i 0.995648 + 0.0931912i \(0.0297068\pi\)
−0.995648 + 0.0931912i \(0.970293\pi\)
\(468\) 0 0
\(469\) −5.57779 −0.257559
\(470\) 0 0
\(471\) −4.60555 −0.212213
\(472\) 0 0
\(473\) 7.21110i 0.331567i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 18.9445i − 0.867408i
\(478\) 0 0
\(479\) −26.4500 −1.20853 −0.604265 0.796784i \(-0.706533\pi\)
−0.604265 + 0.796784i \(0.706533\pi\)
\(480\) 0 0
\(481\) 12.2111 0.556778
\(482\) 0 0
\(483\) 0.825058i 0.0375414i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 7.60555i 0.344640i 0.985041 + 0.172320i \(0.0551264\pi\)
−0.985041 + 0.172320i \(0.944874\pi\)
\(488\) 0 0
\(489\) 1.00000 0.0452216
\(490\) 0 0
\(491\) −12.6333 −0.570133 −0.285067 0.958508i \(-0.592016\pi\)
−0.285067 + 0.958508i \(0.592016\pi\)
\(492\) 0 0
\(493\) − 7.30278i − 0.328900i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1.81665i − 0.0814881i
\(498\) 0 0
\(499\) −31.9083 −1.42841 −0.714206 0.699935i \(-0.753212\pi\)
−0.714206 + 0.699935i \(0.753212\pi\)
\(500\) 0 0
\(501\) 7.45837 0.333215
\(502\) 0 0
\(503\) 7.81665i 0.348527i 0.984699 + 0.174264i \(0.0557545\pi\)
−0.984699 + 0.174264i \(0.944245\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3.15559i 0.140145i
\(508\) 0 0
\(509\) −13.3028 −0.589635 −0.294818 0.955554i \(-0.595259\pi\)
−0.294818 + 0.955554i \(0.595259\pi\)
\(510\) 0 0
\(511\) 1.33053 0.0588593
\(512\) 0 0
\(513\) − 1.78890i − 0.0789818i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 5.60555i − 0.246532i
\(518\) 0 0
\(519\) 2.96384 0.130098
\(520\) 0 0
\(521\) 32.6056 1.42848 0.714238 0.699903i \(-0.246774\pi\)
0.714238 + 0.699903i \(0.246774\pi\)
\(522\) 0 0
\(523\) − 41.6333i − 1.82050i −0.414062 0.910249i \(-0.635890\pi\)
0.414062 0.910249i \(-0.364110\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.90833i 0.300931i
\(528\) 0 0
\(529\) 7.72498 0.335869
\(530\) 0 0
\(531\) −16.3028 −0.707480
\(532\) 0 0
\(533\) 13.1833i 0.571034i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.44996i 0.105724i
\(538\) 0 0
\(539\) −6.51388 −0.280573
\(540\) 0 0
\(541\) −30.3305 −1.30401 −0.652006 0.758214i \(-0.726072\pi\)
−0.652006 + 0.758214i \(0.726072\pi\)
\(542\) 0 0
\(543\) − 2.39445i − 0.102756i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0917i 0.944572i 0.881445 + 0.472286i \(0.156571\pi\)
−0.881445 + 0.472286i \(0.843429\pi\)
\(548\) 0 0
\(549\) 9.60555 0.409955
\(550\) 0 0
\(551\) −1.69722 −0.0723042
\(552\) 0 0
\(553\) 4.39445i 0.186871i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.8167i 1.22100i 0.792016 + 0.610500i \(0.209032\pi\)
−0.792016 + 0.610500i \(0.790968\pi\)
\(558\) 0 0
\(559\) 11.5778 0.489689
\(560\) 0 0
\(561\) −1.30278 −0.0550032
\(562\) 0 0
\(563\) 39.9083i 1.68194i 0.541085 + 0.840968i \(0.318014\pi\)
−0.541085 + 0.840968i \(0.681986\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.70563i 0.239614i
\(568\) 0 0
\(569\) 45.3583 1.90152 0.950759 0.309931i \(-0.100306\pi\)
0.950759 + 0.309931i \(0.100306\pi\)
\(570\) 0 0
\(571\) 8.93608 0.373963 0.186982 0.982363i \(-0.440129\pi\)
0.186982 + 0.982363i \(0.440129\pi\)
\(572\) 0 0
\(573\) − 3.90833i − 0.163273i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 28.7250i − 1.19584i −0.801557 0.597918i \(-0.795995\pi\)
0.801557 0.597918i \(-0.204005\pi\)
\(578\) 0 0
\(579\) 0.733385 0.0304784
\(580\) 0 0
\(581\) 4.81665 0.199828
\(582\) 0 0
\(583\) 6.51388i 0.269777i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.7250i 1.35070i 0.737495 + 0.675352i \(0.236008\pi\)
−0.737495 + 0.675352i \(0.763992\pi\)
\(588\) 0 0
\(589\) 1.60555 0.0661556
\(590\) 0 0
\(591\) −6.63331 −0.272858
\(592\) 0 0
\(593\) 26.2111i 1.07636i 0.842830 + 0.538180i \(0.180888\pi\)
−0.842830 + 0.538180i \(0.819112\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.880571i 0.0360394i
\(598\) 0 0
\(599\) −44.7250 −1.82741 −0.913707 0.406375i \(-0.866793\pi\)
−0.913707 + 0.406375i \(0.866793\pi\)
\(600\) 0 0
\(601\) −9.48612 −0.386947 −0.193473 0.981106i \(-0.561975\pi\)
−0.193473 + 0.981106i \(0.561975\pi\)
\(602\) 0 0
\(603\) 23.2666i 0.947490i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 8.42221i − 0.341847i −0.985284 0.170923i \(-0.945325\pi\)
0.985284 0.170923i \(-0.0546751\pi\)
\(608\) 0 0
\(609\) −0.358288 −0.0145186
\(610\) 0 0
\(611\) −9.00000 −0.364101
\(612\) 0 0
\(613\) − 15.3305i − 0.619194i −0.950868 0.309597i \(-0.899806\pi\)
0.950868 0.309597i \(-0.100194\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 43.0278i − 1.73223i −0.499843 0.866116i \(-0.666609\pi\)
0.499843 0.866116i \(-0.333391\pi\)
\(618\) 0 0
\(619\) −14.8167 −0.595532 −0.297766 0.954639i \(-0.596241\pi\)
−0.297766 + 0.954639i \(0.596241\pi\)
\(620\) 0 0
\(621\) 6.99160 0.280563
\(622\) 0 0
\(623\) 3.55004i 0.142229i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.302776i 0.0120917i
\(628\) 0 0
\(629\) −32.7250 −1.30483
\(630\) 0 0
\(631\) −38.5139 −1.53321 −0.766607 0.642117i \(-0.778056\pi\)
−0.766607 + 0.642117i \(0.778056\pi\)
\(632\) 0 0
\(633\) 6.54163i 0.260007i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10.4584i 0.414376i
\(638\) 0 0
\(639\) −7.57779 −0.299773
\(640\) 0 0
\(641\) 21.0000 0.829450 0.414725 0.909947i \(-0.363878\pi\)
0.414725 + 0.909947i \(0.363878\pi\)
\(642\) 0 0
\(643\) 8.42221i 0.332139i 0.986114 + 0.166070i \(0.0531077\pi\)
−0.986114 + 0.166070i \(0.946892\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 33.0000i − 1.29736i −0.761060 0.648682i \(-0.775321\pi\)
0.761060 0.648682i \(-0.224679\pi\)
\(648\) 0 0
\(649\) 5.60555 0.220037
\(650\) 0 0
\(651\) 0.338936 0.0132839
\(652\) 0 0
\(653\) 18.1194i 0.709068i 0.935043 + 0.354534i \(0.115360\pi\)
−0.935043 + 0.354534i \(0.884640\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 5.55004i − 0.216528i
\(658\) 0 0
\(659\) 36.3583 1.41632 0.708159 0.706053i \(-0.249526\pi\)
0.708159 + 0.706053i \(0.249526\pi\)
\(660\) 0 0
\(661\) −20.8167 −0.809674 −0.404837 0.914389i \(-0.632672\pi\)
−0.404837 + 0.914389i \(0.632672\pi\)
\(662\) 0 0
\(663\) 2.09167i 0.0812339i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 6.63331i − 0.256843i
\(668\) 0 0
\(669\) 4.11943 0.159266
\(670\) 0 0
\(671\) −3.30278 −0.127502
\(672\) 0 0
\(673\) 35.0000i 1.34915i 0.738206 + 0.674575i \(0.235673\pi\)
−0.738206 + 0.674575i \(0.764327\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 24.2389i − 0.931575i −0.884897 0.465788i \(-0.845771\pi\)
0.884897 0.465788i \(-0.154229\pi\)
\(678\) 0 0
\(679\) −4.96384 −0.190495
\(680\) 0 0
\(681\) 7.85281 0.300920
\(682\) 0 0
\(683\) 5.60555i 0.214490i 0.994233 + 0.107245i \(0.0342030\pi\)
−0.994233 + 0.107245i \(0.965797\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 7.90833i − 0.301721i
\(688\) 0 0
\(689\) 10.4584 0.398432
\(690\) 0 0
\(691\) −7.48612 −0.284785 −0.142393 0.989810i \(-0.545480\pi\)
−0.142393 + 0.989810i \(0.545480\pi\)
\(692\) 0 0
\(693\) − 2.02776i − 0.0770281i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 35.3305i − 1.33824i
\(698\) 0 0
\(699\) 4.26662 0.161378
\(700\) 0 0
\(701\) −5.21110 −0.196821 −0.0984103 0.995146i \(-0.531376\pi\)
−0.0984103 + 0.995146i \(0.531376\pi\)
\(702\) 0 0
\(703\) 7.60555i 0.286849i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 4.54163i − 0.170806i
\(708\) 0 0
\(709\) −35.6333 −1.33824 −0.669118 0.743156i \(-0.733328\pi\)
−0.669118 + 0.743156i \(0.733328\pi\)
\(710\) 0 0
\(711\) 18.3305 0.687449
\(712\) 0 0
\(713\) 6.27502i 0.235001i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.33894i 0.162041i
\(718\) 0 0
\(719\) −16.5778 −0.618247 −0.309124 0.951022i \(-0.600036\pi\)
−0.309124 + 0.951022i \(0.600036\pi\)
\(720\) 0 0
\(721\) 8.57779 0.319454
\(722\) 0 0
\(723\) − 2.51388i − 0.0934921i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 26.9083i 0.997975i 0.866609 + 0.498987i \(0.166295\pi\)
−0.866609 + 0.498987i \(0.833705\pi\)
\(728\) 0 0
\(729\) 22.1749 0.821294
\(730\) 0 0
\(731\) −31.0278 −1.14760
\(732\) 0 0
\(733\) 9.42221i 0.348017i 0.984744 + 0.174009i \(0.0556720\pi\)
−0.984744 + 0.174009i \(0.944328\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.00000i − 0.294684i
\(738\) 0 0
\(739\) −0.880571 −0.0323923 −0.0161962 0.999869i \(-0.505156\pi\)
−0.0161962 + 0.999869i \(0.505156\pi\)
\(740\) 0 0
\(741\) 0.486122 0.0178581
\(742\) 0 0
\(743\) − 9.90833i − 0.363501i −0.983345 0.181751i \(-0.941824\pi\)
0.983345 0.181751i \(-0.0581764\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 20.0917i − 0.735116i
\(748\) 0 0
\(749\) −1.54163 −0.0563301
\(750\) 0 0
\(751\) 22.3583 0.815866 0.407933 0.913012i \(-0.366250\pi\)
0.407933 + 0.913012i \(0.366250\pi\)
\(752\) 0 0
\(753\) 7.06392i 0.257423i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 25.0000i 0.908640i 0.890838 + 0.454320i \(0.150118\pi\)
−0.890838 + 0.454320i \(0.849882\pi\)
\(758\) 0 0
\(759\) −1.18335 −0.0429527
\(760\) 0 0
\(761\) −43.2666 −1.56841 −0.784207 0.620500i \(-0.786930\pi\)
−0.784207 + 0.620500i \(0.786930\pi\)
\(762\) 0 0
\(763\) − 6.21110i − 0.224857i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 9.00000i − 0.324971i
\(768\) 0 0
\(769\) −1.36669 −0.0492842 −0.0246421 0.999696i \(-0.507845\pi\)
−0.0246421 + 0.999696i \(0.507845\pi\)
\(770\) 0 0
\(771\) 8.60555 0.309921
\(772\) 0 0
\(773\) 8.33053i 0.299628i 0.988714 + 0.149814i \(0.0478676\pi\)
−0.988714 + 0.149814i \(0.952132\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.60555i 0.0575988i
\(778\) 0 0
\(779\) −8.21110 −0.294193
\(780\) 0 0
\(781\) 2.60555 0.0932340
\(782\) 0 0
\(783\) 3.03616i 0.108504i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 25.8444i 0.921254i 0.887594 + 0.460627i \(0.152375\pi\)
−0.887594 + 0.460627i \(0.847625\pi\)
\(788\) 0 0
\(789\) −3.27502 −0.116594
\(790\) 0 0
\(791\) 3.90833 0.138964
\(792\) 0 0
\(793\) 5.30278i 0.188307i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 5.09167i − 0.180356i −0.995926 0.0901782i \(-0.971256\pi\)
0.995926 0.0901782i \(-0.0287436\pi\)
\(798\) 0 0
\(799\) 24.1194 0.853284
\(800\) 0 0
\(801\) 14.8082 0.523224
\(802\) 0 0
\(803\) 1.90833i 0.0673434i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1.06392i − 0.0374516i
\(808\) 0 0
\(809\) 3.63331 0.127740 0.0638701 0.997958i \(-0.479656\pi\)
0.0638701 + 0.997958i \(0.479656\pi\)
\(810\) 0 0
\(811\) 9.60555 0.337297 0.168648 0.985676i \(-0.446060\pi\)
0.168648 + 0.985676i \(0.446060\pi\)
\(812\) 0 0
\(813\) 8.90833i 0.312429i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7.21110i 0.252285i
\(818\) 0 0
\(819\) −3.25567 −0.113762
\(820\) 0 0
\(821\) −3.63331 −0.126803 −0.0634017 0.997988i \(-0.520195\pi\)
−0.0634017 + 0.997988i \(0.520195\pi\)
\(822\) 0 0
\(823\) 31.6333i 1.10267i 0.834285 + 0.551334i \(0.185881\pi\)
−0.834285 + 0.551334i \(0.814119\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 44.6056i − 1.55109i −0.631294 0.775543i \(-0.717476\pi\)
0.631294 0.775543i \(-0.282524\pi\)
\(828\) 0 0
\(829\) −26.1194 −0.907165 −0.453583 0.891214i \(-0.649854\pi\)
−0.453583 + 0.891214i \(0.649854\pi\)
\(830\) 0 0
\(831\) −9.14719 −0.317312
\(832\) 0 0
\(833\) − 28.0278i − 0.971104i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.87217i − 0.0992766i
\(838\) 0 0
\(839\) 26.0917 0.900785 0.450392 0.892831i \(-0.351284\pi\)
0.450392 + 0.892831i \(0.351284\pi\)
\(840\) 0 0
\(841\) −26.1194 −0.900670
\(842\) 0 0
\(843\) 6.35829i 0.218991i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0.697224i 0.0239569i
\(848\) 0 0
\(849\) 7.11943 0.244338
\(850\) 0 0
\(851\) −29.7250 −1.01896
\(852\) 0 0
\(853\) 0.302776i 0.0103668i 0.999987 + 0.00518342i \(0.00164994\pi\)
−0.999987 + 0.00518342i \(0.998350\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 4.02776i − 0.137586i −0.997631 0.0687928i \(-0.978085\pi\)
0.997631 0.0687928i \(-0.0219147\pi\)
\(858\) 0 0
\(859\) 10.6056 0.361857 0.180928 0.983496i \(-0.442090\pi\)
0.180928 + 0.983496i \(0.442090\pi\)
\(860\) 0 0
\(861\) −1.73338 −0.0590736
\(862\) 0 0
\(863\) 52.2666i 1.77918i 0.456764 + 0.889588i \(0.349009\pi\)
−0.456764 + 0.889588i \(0.650991\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 0.458365i − 0.0155669i
\(868\) 0 0
\(869\) −6.30278 −0.213807
\(870\) 0 0
\(871\) −12.8444 −0.435216
\(872\) 0 0
\(873\) 20.7056i 0.700779i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31.6333i 1.06818i 0.845427 + 0.534090i \(0.179346\pi\)
−0.845427 + 0.534090i \(0.820654\pi\)
\(878\) 0 0
\(879\) 5.44996 0.183823
\(880\) 0 0
\(881\) 12.7527 0.429651 0.214825 0.976652i \(-0.431082\pi\)
0.214825 + 0.976652i \(0.431082\pi\)
\(882\) 0 0
\(883\) 18.2111i 0.612852i 0.951894 + 0.306426i \(0.0991333\pi\)
−0.951894 + 0.306426i \(0.900867\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 11.6056i − 0.389676i −0.980835 0.194838i \(-0.937582\pi\)
0.980835 0.194838i \(-0.0624182\pi\)
\(888\) 0 0
\(889\) −10.3944 −0.348619
\(890\) 0 0
\(891\) −8.18335 −0.274152
\(892\) 0 0
\(893\) − 5.60555i − 0.187583i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.89992i 0.0634366i
\(898\) 0 0
\(899\) −2.72498 −0.0908832
\(900\) 0 0
\(901\) −28.0278 −0.933740
\(902\) 0 0
\(903\) 1.52228i 0.0506584i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 5.57779i − 0.185208i −0.995703 0.0926038i \(-0.970481\pi\)
0.995703 0.0926038i \(-0.0295190\pi\)
\(908\) 0 0
\(909\) −18.9445 −0.628349
\(910\) 0 0
\(911\) 33.6333 1.11432 0.557161 0.830405i \(-0.311891\pi\)
0.557161 + 0.830405i \(0.311891\pi\)
\(912\) 0 0
\(913\) 6.90833i 0.228632i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.27502i 0.108151i
\(918\) 0 0
\(919\) −42.0555 −1.38728 −0.693642 0.720320i \(-0.743995\pi\)
−0.693642 + 0.720320i \(0.743995\pi\)
\(920\) 0 0
\(921\) 4.64171 0.152950
\(922\) 0 0
\(923\) − 4.18335i − 0.137697i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 35.7805i − 1.17519i
\(928\) 0 0
\(929\) −31.6611 −1.03877 −0.519383 0.854542i \(-0.673838\pi\)
−0.519383 + 0.854542i \(0.673838\pi\)
\(930\) 0 0
\(931\) −6.51388 −0.213484
\(932\) 0 0
\(933\) 2.72498i 0.0892119i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.0000i 0.522697i 0.965244 + 0.261349i \(0.0841672\pi\)
−0.965244 + 0.261349i \(0.915833\pi\)
\(938\) 0 0
\(939\) −6.84441 −0.223359
\(940\) 0 0
\(941\) 4.57779 0.149232 0.0746159 0.997212i \(-0.476227\pi\)
0.0746159 + 0.997212i \(0.476227\pi\)
\(942\) 0 0
\(943\) − 32.0917i − 1.04505i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 38.4500i − 1.24946i −0.780843 0.624728i \(-0.785210\pi\)
0.780843 0.624728i \(-0.214790\pi\)
\(948\) 0 0
\(949\) 3.06392 0.0994589
\(950\) 0 0
\(951\) −5.96384 −0.193391
\(952\) 0 0
\(953\) − 33.6333i − 1.08949i −0.838602 0.544745i \(-0.816627\pi\)
0.838602 0.544745i \(-0.183373\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 0.513878i − 0.0166113i
\(958\) 0 0
\(959\) −0.633308 −0.0204506
\(960\) 0 0
\(961\) −28.4222 −0.916845
\(962\) 0 0
\(963\) 6.43061i 0.207223i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 17.9361i − 0.576786i −0.957512 0.288393i \(-0.906879\pi\)
0.957512 0.288393i \(-0.0931209\pi\)
\(968\) 0 0
\(969\) −1.30278 −0.0418512
\(970\) 0 0
\(971\) 51.9083 1.66582 0.832909 0.553410i \(-0.186674\pi\)
0.832909 + 0.553410i \(0.186674\pi\)
\(972\) 0 0
\(973\) 11.3028i 0.362350i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 16.8167i − 0.538012i −0.963138 0.269006i \(-0.913305\pi\)
0.963138 0.269006i \(-0.0866952\pi\)
\(978\) 0 0
\(979\) −5.09167 −0.162731
\(980\) 0 0
\(981\) −25.9083 −0.827189
\(982\) 0 0
\(983\) 39.6333i 1.26411i 0.774925 + 0.632053i \(0.217788\pi\)
−0.774925 + 0.632053i \(0.782212\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1.18335i − 0.0376663i
\(988\) 0 0
\(989\) −28.1833 −0.896178
\(990\) 0 0
\(991\) −35.7527 −1.13572 −0.567862 0.823124i \(-0.692229\pi\)
−0.567862 + 0.823124i \(0.692229\pi\)
\(992\) 0 0
\(993\) − 4.43061i − 0.140601i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 50.7805i 1.60823i 0.594471 + 0.804117i \(0.297362\pi\)
−0.594471 + 0.804117i \(0.702638\pi\)
\(998\) 0 0
\(999\) 13.6056 0.430461
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.b.r.4049.3 4
4.3 odd 2 1100.2.b.e.749.2 4
5.2 odd 4 4400.2.a.bf.1.2 2
5.3 odd 4 4400.2.a.bw.1.1 2
5.4 even 2 inner 4400.2.b.r.4049.2 4
12.11 even 2 9900.2.c.r.5149.2 4
20.3 even 4 1100.2.a.f.1.2 2
20.7 even 4 1100.2.a.i.1.1 yes 2
20.19 odd 2 1100.2.b.e.749.3 4
60.23 odd 4 9900.2.a.bg.1.2 2
60.47 odd 4 9900.2.a.by.1.1 2
60.59 even 2 9900.2.c.r.5149.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.a.f.1.2 2 20.3 even 4
1100.2.a.i.1.1 yes 2 20.7 even 4
1100.2.b.e.749.2 4 4.3 odd 2
1100.2.b.e.749.3 4 20.19 odd 2
4400.2.a.bf.1.2 2 5.2 odd 4
4400.2.a.bw.1.1 2 5.3 odd 4
4400.2.b.r.4049.2 4 5.4 even 2 inner
4400.2.b.r.4049.3 4 1.1 even 1 trivial
9900.2.a.bg.1.2 2 60.23 odd 4
9900.2.a.by.1.1 2 60.47 odd 4
9900.2.c.r.5149.2 4 12.11 even 2
9900.2.c.r.5149.3 4 60.59 even 2