Properties

Label 441.2.a.i.1.1
Level $441$
Weight $2$
Character 441.1
Self dual yes
Analytic conductor $3.521$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(1,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 147)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 441.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{2} -1.82843 q^{4} -3.41421 q^{5} +1.58579 q^{8} +1.41421 q^{10} +2.00000 q^{11} +2.58579 q^{13} +3.00000 q^{16} +2.24264 q^{17} -2.82843 q^{19} +6.24264 q^{20} -0.828427 q^{22} +7.65685 q^{23} +6.65685 q^{25} -1.07107 q^{26} +6.82843 q^{29} -1.17157 q^{31} -4.41421 q^{32} -0.928932 q^{34} -4.00000 q^{37} +1.17157 q^{38} -5.41421 q^{40} -6.24264 q^{41} +5.65685 q^{43} -3.65685 q^{44} -3.17157 q^{46} +2.82843 q^{47} -2.75736 q^{50} -4.72792 q^{52} +2.00000 q^{53} -6.82843 q^{55} -2.82843 q^{58} +1.17157 q^{59} +12.2426 q^{61} +0.485281 q^{62} -4.17157 q^{64} -8.82843 q^{65} -5.65685 q^{67} -4.10051 q^{68} -9.31371 q^{71} +13.8995 q^{73} +1.65685 q^{74} +5.17157 q^{76} +13.6569 q^{79} -10.2426 q^{80} +2.58579 q^{82} -7.31371 q^{83} -7.65685 q^{85} -2.34315 q^{86} +3.17157 q^{88} +14.2426 q^{89} -14.0000 q^{92} -1.17157 q^{94} +9.65685 q^{95} +2.58579 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 4 q^{5} + 6 q^{8} + 4 q^{11} + 8 q^{13} + 6 q^{16} - 4 q^{17} + 4 q^{20} + 4 q^{22} + 4 q^{23} + 2 q^{25} + 12 q^{26} + 8 q^{29} - 8 q^{31} - 6 q^{32} - 16 q^{34} - 8 q^{37} + 8 q^{38}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.414214 −0.292893 −0.146447 0.989219i \(-0.546784\pi\)
−0.146447 + 0.989219i \(0.546784\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) −3.41421 −1.52688 −0.763441 0.645877i \(-0.776492\pi\)
−0.763441 + 0.645877i \(0.776492\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.58579 0.560660
\(9\) 0 0
\(10\) 1.41421 0.447214
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 2.58579 0.717168 0.358584 0.933497i \(-0.383260\pi\)
0.358584 + 0.933497i \(0.383260\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 2.24264 0.543920 0.271960 0.962309i \(-0.412328\pi\)
0.271960 + 0.962309i \(0.412328\pi\)
\(18\) 0 0
\(19\) −2.82843 −0.648886 −0.324443 0.945905i \(-0.605177\pi\)
−0.324443 + 0.945905i \(0.605177\pi\)
\(20\) 6.24264 1.39590
\(21\) 0 0
\(22\) −0.828427 −0.176621
\(23\) 7.65685 1.59656 0.798282 0.602284i \(-0.205742\pi\)
0.798282 + 0.602284i \(0.205742\pi\)
\(24\) 0 0
\(25\) 6.65685 1.33137
\(26\) −1.07107 −0.210054
\(27\) 0 0
\(28\) 0 0
\(29\) 6.82843 1.26801 0.634004 0.773330i \(-0.281410\pi\)
0.634004 + 0.773330i \(0.281410\pi\)
\(30\) 0 0
\(31\) −1.17157 −0.210421 −0.105210 0.994450i \(-0.533552\pi\)
−0.105210 + 0.994450i \(0.533552\pi\)
\(32\) −4.41421 −0.780330
\(33\) 0 0
\(34\) −0.928932 −0.159311
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 1.17157 0.190054
\(39\) 0 0
\(40\) −5.41421 −0.856062
\(41\) −6.24264 −0.974937 −0.487468 0.873141i \(-0.662080\pi\)
−0.487468 + 0.873141i \(0.662080\pi\)
\(42\) 0 0
\(43\) 5.65685 0.862662 0.431331 0.902194i \(-0.358044\pi\)
0.431331 + 0.902194i \(0.358044\pi\)
\(44\) −3.65685 −0.551292
\(45\) 0 0
\(46\) −3.17157 −0.467623
\(47\) 2.82843 0.412568 0.206284 0.978492i \(-0.433863\pi\)
0.206284 + 0.978492i \(0.433863\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.75736 −0.389949
\(51\) 0 0
\(52\) −4.72792 −0.655645
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −6.82843 −0.920745
\(56\) 0 0
\(57\) 0 0
\(58\) −2.82843 −0.371391
\(59\) 1.17157 0.152526 0.0762629 0.997088i \(-0.475701\pi\)
0.0762629 + 0.997088i \(0.475701\pi\)
\(60\) 0 0
\(61\) 12.2426 1.56751 0.783755 0.621070i \(-0.213302\pi\)
0.783755 + 0.621070i \(0.213302\pi\)
\(62\) 0.485281 0.0616308
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) −8.82843 −1.09503
\(66\) 0 0
\(67\) −5.65685 −0.691095 −0.345547 0.938401i \(-0.612307\pi\)
−0.345547 + 0.938401i \(0.612307\pi\)
\(68\) −4.10051 −0.497259
\(69\) 0 0
\(70\) 0 0
\(71\) −9.31371 −1.10533 −0.552667 0.833402i \(-0.686390\pi\)
−0.552667 + 0.833402i \(0.686390\pi\)
\(72\) 0 0
\(73\) 13.8995 1.62681 0.813406 0.581696i \(-0.197611\pi\)
0.813406 + 0.581696i \(0.197611\pi\)
\(74\) 1.65685 0.192605
\(75\) 0 0
\(76\) 5.17157 0.593220
\(77\) 0 0
\(78\) 0 0
\(79\) 13.6569 1.53652 0.768258 0.640140i \(-0.221124\pi\)
0.768258 + 0.640140i \(0.221124\pi\)
\(80\) −10.2426 −1.14516
\(81\) 0 0
\(82\) 2.58579 0.285552
\(83\) −7.31371 −0.802784 −0.401392 0.915906i \(-0.631473\pi\)
−0.401392 + 0.915906i \(0.631473\pi\)
\(84\) 0 0
\(85\) −7.65685 −0.830502
\(86\) −2.34315 −0.252668
\(87\) 0 0
\(88\) 3.17157 0.338091
\(89\) 14.2426 1.50972 0.754858 0.655888i \(-0.227706\pi\)
0.754858 + 0.655888i \(0.227706\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −14.0000 −1.45960
\(93\) 0 0
\(94\) −1.17157 −0.120839
\(95\) 9.65685 0.990772
\(96\) 0 0
\(97\) 2.58579 0.262547 0.131273 0.991346i \(-0.458093\pi\)
0.131273 + 0.991346i \(0.458093\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −12.1716 −1.21716
\(101\) −2.92893 −0.291440 −0.145720 0.989326i \(-0.546550\pi\)
−0.145720 + 0.989326i \(0.546550\pi\)
\(102\) 0 0
\(103\) 4.48528 0.441948 0.220974 0.975280i \(-0.429076\pi\)
0.220974 + 0.975280i \(0.429076\pi\)
\(104\) 4.10051 0.402088
\(105\) 0 0
\(106\) −0.828427 −0.0804640
\(107\) 0.343146 0.0331732 0.0165866 0.999862i \(-0.494720\pi\)
0.0165866 + 0.999862i \(0.494720\pi\)
\(108\) 0 0
\(109\) −5.65685 −0.541828 −0.270914 0.962604i \(-0.587326\pi\)
−0.270914 + 0.962604i \(0.587326\pi\)
\(110\) 2.82843 0.269680
\(111\) 0 0
\(112\) 0 0
\(113\) 5.31371 0.499872 0.249936 0.968262i \(-0.419590\pi\)
0.249936 + 0.968262i \(0.419590\pi\)
\(114\) 0 0
\(115\) −26.1421 −2.43777
\(116\) −12.4853 −1.15923
\(117\) 0 0
\(118\) −0.485281 −0.0446738
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −5.07107 −0.459113
\(123\) 0 0
\(124\) 2.14214 0.192369
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −1.65685 −0.147022 −0.0735110 0.997294i \(-0.523420\pi\)
−0.0735110 + 0.997294i \(0.523420\pi\)
\(128\) 10.5563 0.933058
\(129\) 0 0
\(130\) 3.65685 0.320727
\(131\) 15.3137 1.33796 0.668982 0.743278i \(-0.266730\pi\)
0.668982 + 0.743278i \(0.266730\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.34315 0.202417
\(135\) 0 0
\(136\) 3.55635 0.304954
\(137\) −14.1421 −1.20824 −0.604122 0.796892i \(-0.706476\pi\)
−0.604122 + 0.796892i \(0.706476\pi\)
\(138\) 0 0
\(139\) −17.6569 −1.49763 −0.748817 0.662776i \(-0.769378\pi\)
−0.748817 + 0.662776i \(0.769378\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.85786 0.323745
\(143\) 5.17157 0.432469
\(144\) 0 0
\(145\) −23.3137 −1.93610
\(146\) −5.75736 −0.476482
\(147\) 0 0
\(148\) 7.31371 0.601183
\(149\) −17.3137 −1.41839 −0.709197 0.705010i \(-0.750942\pi\)
−0.709197 + 0.705010i \(0.750942\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) −4.48528 −0.363804
\(153\) 0 0
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 11.7574 0.938339 0.469170 0.883108i \(-0.344553\pi\)
0.469170 + 0.883108i \(0.344553\pi\)
\(158\) −5.65685 −0.450035
\(159\) 0 0
\(160\) 15.0711 1.19147
\(161\) 0 0
\(162\) 0 0
\(163\) −11.3137 −0.886158 −0.443079 0.896483i \(-0.646114\pi\)
−0.443079 + 0.896483i \(0.646114\pi\)
\(164\) 11.4142 0.891300
\(165\) 0 0
\(166\) 3.02944 0.235130
\(167\) 19.7990 1.53209 0.766046 0.642786i \(-0.222221\pi\)
0.766046 + 0.642786i \(0.222221\pi\)
\(168\) 0 0
\(169\) −6.31371 −0.485670
\(170\) 3.17157 0.243249
\(171\) 0 0
\(172\) −10.3431 −0.788657
\(173\) −21.0711 −1.60200 −0.801002 0.598662i \(-0.795699\pi\)
−0.801002 + 0.598662i \(0.795699\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 0 0
\(178\) −5.89949 −0.442186
\(179\) 19.6569 1.46922 0.734611 0.678488i \(-0.237365\pi\)
0.734611 + 0.678488i \(0.237365\pi\)
\(180\) 0 0
\(181\) −2.58579 −0.192200 −0.0961000 0.995372i \(-0.530637\pi\)
−0.0961000 + 0.995372i \(0.530637\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 12.1421 0.895130
\(185\) 13.6569 1.00407
\(186\) 0 0
\(187\) 4.48528 0.327996
\(188\) −5.17157 −0.377176
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 5.31371 0.382489 0.191245 0.981542i \(-0.438748\pi\)
0.191245 + 0.981542i \(0.438748\pi\)
\(194\) −1.07107 −0.0768982
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 21.6569 1.53521 0.767607 0.640921i \(-0.221447\pi\)
0.767607 + 0.640921i \(0.221447\pi\)
\(200\) 10.5563 0.746447
\(201\) 0 0
\(202\) 1.21320 0.0853607
\(203\) 0 0
\(204\) 0 0
\(205\) 21.3137 1.48861
\(206\) −1.85786 −0.129444
\(207\) 0 0
\(208\) 7.75736 0.537876
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 12.9706 0.892930 0.446465 0.894801i \(-0.352683\pi\)
0.446465 + 0.894801i \(0.352683\pi\)
\(212\) −3.65685 −0.251154
\(213\) 0 0
\(214\) −0.142136 −0.00971619
\(215\) −19.3137 −1.31718
\(216\) 0 0
\(217\) 0 0
\(218\) 2.34315 0.158698
\(219\) 0 0
\(220\) 12.4853 0.841757
\(221\) 5.79899 0.390082
\(222\) 0 0
\(223\) 24.9706 1.67215 0.836076 0.548613i \(-0.184844\pi\)
0.836076 + 0.548613i \(0.184844\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.20101 −0.146409
\(227\) −23.7990 −1.57959 −0.789797 0.613368i \(-0.789814\pi\)
−0.789797 + 0.613368i \(0.789814\pi\)
\(228\) 0 0
\(229\) −0.242641 −0.0160341 −0.00801707 0.999968i \(-0.502552\pi\)
−0.00801707 + 0.999968i \(0.502552\pi\)
\(230\) 10.8284 0.714005
\(231\) 0 0
\(232\) 10.8284 0.710921
\(233\) 6.14214 0.402385 0.201192 0.979552i \(-0.435518\pi\)
0.201192 + 0.979552i \(0.435518\pi\)
\(234\) 0 0
\(235\) −9.65685 −0.629944
\(236\) −2.14214 −0.139441
\(237\) 0 0
\(238\) 0 0
\(239\) 15.6569 1.01276 0.506379 0.862311i \(-0.330984\pi\)
0.506379 + 0.862311i \(0.330984\pi\)
\(240\) 0 0
\(241\) −16.2426 −1.04628 −0.523140 0.852247i \(-0.675240\pi\)
−0.523140 + 0.852247i \(0.675240\pi\)
\(242\) 2.89949 0.186387
\(243\) 0 0
\(244\) −22.3848 −1.43304
\(245\) 0 0
\(246\) 0 0
\(247\) −7.31371 −0.465360
\(248\) −1.85786 −0.117975
\(249\) 0 0
\(250\) 2.34315 0.148194
\(251\) 12.4853 0.788064 0.394032 0.919097i \(-0.371080\pi\)
0.394032 + 0.919097i \(0.371080\pi\)
\(252\) 0 0
\(253\) 15.3137 0.962765
\(254\) 0.686292 0.0430618
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) −23.2132 −1.44800 −0.724000 0.689800i \(-0.757698\pi\)
−0.724000 + 0.689800i \(0.757698\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 16.1421 1.00109
\(261\) 0 0
\(262\) −6.34315 −0.391881
\(263\) −5.31371 −0.327657 −0.163829 0.986489i \(-0.552384\pi\)
−0.163829 + 0.986489i \(0.552384\pi\)
\(264\) 0 0
\(265\) −6.82843 −0.419467
\(266\) 0 0
\(267\) 0 0
\(268\) 10.3431 0.631808
\(269\) 14.7279 0.897977 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(270\) 0 0
\(271\) −10.1421 −0.616091 −0.308045 0.951372i \(-0.599675\pi\)
−0.308045 + 0.951372i \(0.599675\pi\)
\(272\) 6.72792 0.407940
\(273\) 0 0
\(274\) 5.85786 0.353887
\(275\) 13.3137 0.802847
\(276\) 0 0
\(277\) −9.31371 −0.559607 −0.279803 0.960057i \(-0.590269\pi\)
−0.279803 + 0.960057i \(0.590269\pi\)
\(278\) 7.31371 0.438647
\(279\) 0 0
\(280\) 0 0
\(281\) −0.485281 −0.0289495 −0.0144747 0.999895i \(-0.504608\pi\)
−0.0144747 + 0.999895i \(0.504608\pi\)
\(282\) 0 0
\(283\) −8.48528 −0.504398 −0.252199 0.967675i \(-0.581154\pi\)
−0.252199 + 0.967675i \(0.581154\pi\)
\(284\) 17.0294 1.01051
\(285\) 0 0
\(286\) −2.14214 −0.126667
\(287\) 0 0
\(288\) 0 0
\(289\) −11.9706 −0.704151
\(290\) 9.65685 0.567070
\(291\) 0 0
\(292\) −25.4142 −1.48725
\(293\) −16.5858 −0.968952 −0.484476 0.874805i \(-0.660990\pi\)
−0.484476 + 0.874805i \(0.660990\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) −6.34315 −0.368688
\(297\) 0 0
\(298\) 7.17157 0.415438
\(299\) 19.7990 1.14501
\(300\) 0 0
\(301\) 0 0
\(302\) −4.97056 −0.286024
\(303\) 0 0
\(304\) −8.48528 −0.486664
\(305\) −41.7990 −2.39340
\(306\) 0 0
\(307\) 30.1421 1.72030 0.860151 0.510039i \(-0.170369\pi\)
0.860151 + 0.510039i \(0.170369\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −1.65685 −0.0941030
\(311\) −6.14214 −0.348289 −0.174144 0.984720i \(-0.555716\pi\)
−0.174144 + 0.984720i \(0.555716\pi\)
\(312\) 0 0
\(313\) 1.89949 0.107366 0.0536829 0.998558i \(-0.482904\pi\)
0.0536829 + 0.998558i \(0.482904\pi\)
\(314\) −4.87006 −0.274833
\(315\) 0 0
\(316\) −24.9706 −1.40470
\(317\) −10.0000 −0.561656 −0.280828 0.959758i \(-0.590609\pi\)
−0.280828 + 0.959758i \(0.590609\pi\)
\(318\) 0 0
\(319\) 13.6569 0.764637
\(320\) 14.2426 0.796188
\(321\) 0 0
\(322\) 0 0
\(323\) −6.34315 −0.352942
\(324\) 0 0
\(325\) 17.2132 0.954817
\(326\) 4.68629 0.259550
\(327\) 0 0
\(328\) −9.89949 −0.546608
\(329\) 0 0
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 13.3726 0.733916
\(333\) 0 0
\(334\) −8.20101 −0.448739
\(335\) 19.3137 1.05522
\(336\) 0 0
\(337\) −29.6569 −1.61551 −0.807756 0.589517i \(-0.799318\pi\)
−0.807756 + 0.589517i \(0.799318\pi\)
\(338\) 2.61522 0.142249
\(339\) 0 0
\(340\) 14.0000 0.759257
\(341\) −2.34315 −0.126888
\(342\) 0 0
\(343\) 0 0
\(344\) 8.97056 0.483660
\(345\) 0 0
\(346\) 8.72792 0.469216
\(347\) −33.3137 −1.78837 −0.894187 0.447694i \(-0.852245\pi\)
−0.894187 + 0.447694i \(0.852245\pi\)
\(348\) 0 0
\(349\) −9.89949 −0.529908 −0.264954 0.964261i \(-0.585357\pi\)
−0.264954 + 0.964261i \(0.585357\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −8.82843 −0.470557
\(353\) 14.7279 0.783888 0.391944 0.919989i \(-0.371803\pi\)
0.391944 + 0.919989i \(0.371803\pi\)
\(354\) 0 0
\(355\) 31.7990 1.68772
\(356\) −26.0416 −1.38020
\(357\) 0 0
\(358\) −8.14214 −0.430325
\(359\) 0.343146 0.0181105 0.00905527 0.999959i \(-0.497118\pi\)
0.00905527 + 0.999959i \(0.497118\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 1.07107 0.0562941
\(363\) 0 0
\(364\) 0 0
\(365\) −47.4558 −2.48395
\(366\) 0 0
\(367\) −3.31371 −0.172974 −0.0864871 0.996253i \(-0.527564\pi\)
−0.0864871 + 0.996253i \(0.527564\pi\)
\(368\) 22.9706 1.19742
\(369\) 0 0
\(370\) −5.65685 −0.294086
\(371\) 0 0
\(372\) 0 0
\(373\) −10.6863 −0.553315 −0.276658 0.960969i \(-0.589227\pi\)
−0.276658 + 0.960969i \(0.589227\pi\)
\(374\) −1.85786 −0.0960679
\(375\) 0 0
\(376\) 4.48528 0.231311
\(377\) 17.6569 0.909374
\(378\) 0 0
\(379\) 8.68629 0.446185 0.223092 0.974797i \(-0.428385\pi\)
0.223092 + 0.974797i \(0.428385\pi\)
\(380\) −17.6569 −0.905778
\(381\) 0 0
\(382\) −7.45584 −0.381474
\(383\) 18.3431 0.937291 0.468645 0.883386i \(-0.344742\pi\)
0.468645 + 0.883386i \(0.344742\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.20101 −0.112028
\(387\) 0 0
\(388\) −4.72792 −0.240024
\(389\) 18.1421 0.919843 0.459921 0.887960i \(-0.347878\pi\)
0.459921 + 0.887960i \(0.347878\pi\)
\(390\) 0 0
\(391\) 17.1716 0.868404
\(392\) 0 0
\(393\) 0 0
\(394\) 0.828427 0.0417356
\(395\) −46.6274 −2.34608
\(396\) 0 0
\(397\) −2.38478 −0.119688 −0.0598442 0.998208i \(-0.519060\pi\)
−0.0598442 + 0.998208i \(0.519060\pi\)
\(398\) −8.97056 −0.449654
\(399\) 0 0
\(400\) 19.9706 0.998528
\(401\) 6.14214 0.306724 0.153362 0.988170i \(-0.450990\pi\)
0.153362 + 0.988170i \(0.450990\pi\)
\(402\) 0 0
\(403\) −3.02944 −0.150907
\(404\) 5.35534 0.266438
\(405\) 0 0
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) −21.4142 −1.05886 −0.529432 0.848352i \(-0.677595\pi\)
−0.529432 + 0.848352i \(0.677595\pi\)
\(410\) −8.82843 −0.436005
\(411\) 0 0
\(412\) −8.20101 −0.404035
\(413\) 0 0
\(414\) 0 0
\(415\) 24.9706 1.22576
\(416\) −11.4142 −0.559628
\(417\) 0 0
\(418\) 2.34315 0.114607
\(419\) −33.1716 −1.62054 −0.810269 0.586059i \(-0.800679\pi\)
−0.810269 + 0.586059i \(0.800679\pi\)
\(420\) 0 0
\(421\) 16.6274 0.810371 0.405185 0.914235i \(-0.367207\pi\)
0.405185 + 0.914235i \(0.367207\pi\)
\(422\) −5.37258 −0.261533
\(423\) 0 0
\(424\) 3.17157 0.154025
\(425\) 14.9289 0.724160
\(426\) 0 0
\(427\) 0 0
\(428\) −0.627417 −0.0303273
\(429\) 0 0
\(430\) 8.00000 0.385794
\(431\) 26.9706 1.29913 0.649563 0.760308i \(-0.274952\pi\)
0.649563 + 0.760308i \(0.274952\pi\)
\(432\) 0 0
\(433\) −20.2426 −0.972799 −0.486400 0.873736i \(-0.661690\pi\)
−0.486400 + 0.873736i \(0.661690\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.3431 0.495347
\(437\) −21.6569 −1.03599
\(438\) 0 0
\(439\) 12.6863 0.605484 0.302742 0.953073i \(-0.402098\pi\)
0.302742 + 0.953073i \(0.402098\pi\)
\(440\) −10.8284 −0.516225
\(441\) 0 0
\(442\) −2.40202 −0.114252
\(443\) −34.9706 −1.66150 −0.830751 0.556645i \(-0.812089\pi\)
−0.830751 + 0.556645i \(0.812089\pi\)
\(444\) 0 0
\(445\) −48.6274 −2.30516
\(446\) −10.3431 −0.489762
\(447\) 0 0
\(448\) 0 0
\(449\) 5.31371 0.250769 0.125385 0.992108i \(-0.459983\pi\)
0.125385 + 0.992108i \(0.459983\pi\)
\(450\) 0 0
\(451\) −12.4853 −0.587909
\(452\) −9.71573 −0.456989
\(453\) 0 0
\(454\) 9.85786 0.462652
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) 0.100505 0.00469629
\(459\) 0 0
\(460\) 47.7990 2.22864
\(461\) 16.5858 0.772477 0.386239 0.922399i \(-0.373774\pi\)
0.386239 + 0.922399i \(0.373774\pi\)
\(462\) 0 0
\(463\) −26.6274 −1.23748 −0.618741 0.785595i \(-0.712357\pi\)
−0.618741 + 0.785595i \(0.712357\pi\)
\(464\) 20.4853 0.951005
\(465\) 0 0
\(466\) −2.54416 −0.117856
\(467\) −0.201010 −0.00930164 −0.00465082 0.999989i \(-0.501480\pi\)
−0.00465082 + 0.999989i \(0.501480\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.00000 0.184506
\(471\) 0 0
\(472\) 1.85786 0.0855151
\(473\) 11.3137 0.520205
\(474\) 0 0
\(475\) −18.8284 −0.863907
\(476\) 0 0
\(477\) 0 0
\(478\) −6.48528 −0.296630
\(479\) −1.85786 −0.0848880 −0.0424440 0.999099i \(-0.513514\pi\)
−0.0424440 + 0.999099i \(0.513514\pi\)
\(480\) 0 0
\(481\) −10.3431 −0.471607
\(482\) 6.72792 0.306448
\(483\) 0 0
\(484\) 12.7990 0.581772
\(485\) −8.82843 −0.400878
\(486\) 0 0
\(487\) 26.6274 1.20660 0.603302 0.797513i \(-0.293851\pi\)
0.603302 + 0.797513i \(0.293851\pi\)
\(488\) 19.4142 0.878840
\(489\) 0 0
\(490\) 0 0
\(491\) −5.02944 −0.226975 −0.113488 0.993539i \(-0.536202\pi\)
−0.113488 + 0.993539i \(0.536202\pi\)
\(492\) 0 0
\(493\) 15.3137 0.689695
\(494\) 3.02944 0.136301
\(495\) 0 0
\(496\) −3.51472 −0.157816
\(497\) 0 0
\(498\) 0 0
\(499\) 3.31371 0.148342 0.0741710 0.997246i \(-0.476369\pi\)
0.0741710 + 0.997246i \(0.476369\pi\)
\(500\) 10.3431 0.462560
\(501\) 0 0
\(502\) −5.17157 −0.230819
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) −6.34315 −0.281987
\(507\) 0 0
\(508\) 3.02944 0.134410
\(509\) −5.55635 −0.246281 −0.123140 0.992389i \(-0.539297\pi\)
−0.123140 + 0.992389i \(0.539297\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.7574 −1.00574
\(513\) 0 0
\(514\) 9.61522 0.424109
\(515\) −15.3137 −0.674803
\(516\) 0 0
\(517\) 5.65685 0.248788
\(518\) 0 0
\(519\) 0 0
\(520\) −14.0000 −0.613941
\(521\) 35.4142 1.55152 0.775762 0.631025i \(-0.217366\pi\)
0.775762 + 0.631025i \(0.217366\pi\)
\(522\) 0 0
\(523\) −25.6569 −1.12190 −0.560948 0.827851i \(-0.689563\pi\)
−0.560948 + 0.827851i \(0.689563\pi\)
\(524\) −28.0000 −1.22319
\(525\) 0 0
\(526\) 2.20101 0.0959686
\(527\) −2.62742 −0.114452
\(528\) 0 0
\(529\) 35.6274 1.54902
\(530\) 2.82843 0.122859
\(531\) 0 0
\(532\) 0 0
\(533\) −16.1421 −0.699194
\(534\) 0 0
\(535\) −1.17157 −0.0506515
\(536\) −8.97056 −0.387469
\(537\) 0 0
\(538\) −6.10051 −0.263011
\(539\) 0 0
\(540\) 0 0
\(541\) 17.3137 0.744374 0.372187 0.928158i \(-0.378608\pi\)
0.372187 + 0.928158i \(0.378608\pi\)
\(542\) 4.20101 0.180449
\(543\) 0 0
\(544\) −9.89949 −0.424437
\(545\) 19.3137 0.827308
\(546\) 0 0
\(547\) −36.9706 −1.58075 −0.790374 0.612625i \(-0.790114\pi\)
−0.790374 + 0.612625i \(0.790114\pi\)
\(548\) 25.8579 1.10459
\(549\) 0 0
\(550\) −5.51472 −0.235148
\(551\) −19.3137 −0.822792
\(552\) 0 0
\(553\) 0 0
\(554\) 3.85786 0.163905
\(555\) 0 0
\(556\) 32.2843 1.36916
\(557\) −26.0000 −1.10166 −0.550828 0.834619i \(-0.685688\pi\)
−0.550828 + 0.834619i \(0.685688\pi\)
\(558\) 0 0
\(559\) 14.6274 0.618674
\(560\) 0 0
\(561\) 0 0
\(562\) 0.201010 0.00847910
\(563\) 1.17157 0.0493759 0.0246880 0.999695i \(-0.492141\pi\)
0.0246880 + 0.999695i \(0.492141\pi\)
\(564\) 0 0
\(565\) −18.1421 −0.763245
\(566\) 3.51472 0.147735
\(567\) 0 0
\(568\) −14.7696 −0.619717
\(569\) 16.4853 0.691099 0.345549 0.938401i \(-0.387693\pi\)
0.345549 + 0.938401i \(0.387693\pi\)
\(570\) 0 0
\(571\) 22.3431 0.935032 0.467516 0.883985i \(-0.345149\pi\)
0.467516 + 0.883985i \(0.345149\pi\)
\(572\) −9.45584 −0.395369
\(573\) 0 0
\(574\) 0 0
\(575\) 50.9706 2.12562
\(576\) 0 0
\(577\) −33.8995 −1.41125 −0.705627 0.708583i \(-0.749335\pi\)
−0.705627 + 0.708583i \(0.749335\pi\)
\(578\) 4.95837 0.206241
\(579\) 0 0
\(580\) 42.6274 1.77001
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) 22.0416 0.912089
\(585\) 0 0
\(586\) 6.87006 0.283799
\(587\) 22.8284 0.942230 0.471115 0.882072i \(-0.343852\pi\)
0.471115 + 0.882072i \(0.343852\pi\)
\(588\) 0 0
\(589\) 3.31371 0.136539
\(590\) 1.65685 0.0682116
\(591\) 0 0
\(592\) −12.0000 −0.493197
\(593\) 6.92893 0.284537 0.142269 0.989828i \(-0.454560\pi\)
0.142269 + 0.989828i \(0.454560\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 31.6569 1.29672
\(597\) 0 0
\(598\) −8.20101 −0.335364
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) −15.0711 −0.614762 −0.307381 0.951587i \(-0.599453\pi\)
−0.307381 + 0.951587i \(0.599453\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −21.9411 −0.892772
\(605\) 23.8995 0.971653
\(606\) 0 0
\(607\) −18.3431 −0.744525 −0.372263 0.928127i \(-0.621418\pi\)
−0.372263 + 0.928127i \(0.621418\pi\)
\(608\) 12.4853 0.506345
\(609\) 0 0
\(610\) 17.3137 0.701012
\(611\) 7.31371 0.295881
\(612\) 0 0
\(613\) 4.68629 0.189278 0.0946388 0.995512i \(-0.469830\pi\)
0.0946388 + 0.995512i \(0.469830\pi\)
\(614\) −12.4853 −0.503865
\(615\) 0 0
\(616\) 0 0
\(617\) 24.4853 0.985740 0.492870 0.870103i \(-0.335948\pi\)
0.492870 + 0.870103i \(0.335948\pi\)
\(618\) 0 0
\(619\) 28.9706 1.16443 0.582213 0.813037i \(-0.302187\pi\)
0.582213 + 0.813037i \(0.302187\pi\)
\(620\) −7.31371 −0.293726
\(621\) 0 0
\(622\) 2.54416 0.102011
\(623\) 0 0
\(624\) 0 0
\(625\) −13.9706 −0.558823
\(626\) −0.786797 −0.0314467
\(627\) 0 0
\(628\) −21.4975 −0.857843
\(629\) −8.97056 −0.357680
\(630\) 0 0
\(631\) 23.3137 0.928104 0.464052 0.885808i \(-0.346395\pi\)
0.464052 + 0.885808i \(0.346395\pi\)
\(632\) 21.6569 0.861463
\(633\) 0 0
\(634\) 4.14214 0.164505
\(635\) 5.65685 0.224485
\(636\) 0 0
\(637\) 0 0
\(638\) −5.65685 −0.223957
\(639\) 0 0
\(640\) −36.0416 −1.42467
\(641\) 10.8284 0.427697 0.213849 0.976867i \(-0.431400\pi\)
0.213849 + 0.976867i \(0.431400\pi\)
\(642\) 0 0
\(643\) −34.4264 −1.35764 −0.678822 0.734302i \(-0.737509\pi\)
−0.678822 + 0.734302i \(0.737509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.62742 0.103374
\(647\) −26.8284 −1.05473 −0.527367 0.849638i \(-0.676821\pi\)
−0.527367 + 0.849638i \(0.676821\pi\)
\(648\) 0 0
\(649\) 2.34315 0.0919765
\(650\) −7.12994 −0.279659
\(651\) 0 0
\(652\) 20.6863 0.810138
\(653\) −36.4853 −1.42778 −0.713890 0.700258i \(-0.753068\pi\)
−0.713890 + 0.700258i \(0.753068\pi\)
\(654\) 0 0
\(655\) −52.2843 −2.04292
\(656\) −18.7279 −0.731203
\(657\) 0 0
\(658\) 0 0
\(659\) −9.31371 −0.362811 −0.181405 0.983408i \(-0.558065\pi\)
−0.181405 + 0.983408i \(0.558065\pi\)
\(660\) 0 0
\(661\) −23.5563 −0.916236 −0.458118 0.888891i \(-0.651476\pi\)
−0.458118 + 0.888891i \(0.651476\pi\)
\(662\) 1.65685 0.0643955
\(663\) 0 0
\(664\) −11.5980 −0.450089
\(665\) 0 0
\(666\) 0 0
\(667\) 52.2843 2.02446
\(668\) −36.2010 −1.40066
\(669\) 0 0
\(670\) −8.00000 −0.309067
\(671\) 24.4853 0.945244
\(672\) 0 0
\(673\) 23.3137 0.898677 0.449339 0.893361i \(-0.351660\pi\)
0.449339 + 0.893361i \(0.351660\pi\)
\(674\) 12.2843 0.473172
\(675\) 0 0
\(676\) 11.5442 0.444006
\(677\) −31.4142 −1.20735 −0.603673 0.797232i \(-0.706297\pi\)
−0.603673 + 0.797232i \(0.706297\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −12.1421 −0.465630
\(681\) 0 0
\(682\) 0.970563 0.0371648
\(683\) 19.6569 0.752149 0.376074 0.926590i \(-0.377274\pi\)
0.376074 + 0.926590i \(0.377274\pi\)
\(684\) 0 0
\(685\) 48.2843 1.84485
\(686\) 0 0
\(687\) 0 0
\(688\) 16.9706 0.646997
\(689\) 5.17157 0.197021
\(690\) 0 0
\(691\) −0.686292 −0.0261078 −0.0130539 0.999915i \(-0.504155\pi\)
−0.0130539 + 0.999915i \(0.504155\pi\)
\(692\) 38.5269 1.46457
\(693\) 0 0
\(694\) 13.7990 0.523802
\(695\) 60.2843 2.28671
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) 4.10051 0.155206
\(699\) 0 0
\(700\) 0 0
\(701\) 17.1716 0.648561 0.324281 0.945961i \(-0.394878\pi\)
0.324281 + 0.945961i \(0.394878\pi\)
\(702\) 0 0
\(703\) 11.3137 0.426705
\(704\) −8.34315 −0.314444
\(705\) 0 0
\(706\) −6.10051 −0.229596
\(707\) 0 0
\(708\) 0 0
\(709\) −36.2843 −1.36268 −0.681342 0.731965i \(-0.738603\pi\)
−0.681342 + 0.731965i \(0.738603\pi\)
\(710\) −13.1716 −0.494320
\(711\) 0 0
\(712\) 22.5858 0.846438
\(713\) −8.97056 −0.335950
\(714\) 0 0
\(715\) −17.6569 −0.660329
\(716\) −35.9411 −1.34318
\(717\) 0 0
\(718\) −0.142136 −0.00530445
\(719\) −41.9411 −1.56414 −0.782070 0.623191i \(-0.785836\pi\)
−0.782070 + 0.623191i \(0.785836\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.55635 0.169570
\(723\) 0 0
\(724\) 4.72792 0.175712
\(725\) 45.4558 1.68819
\(726\) 0 0
\(727\) 12.4853 0.463053 0.231527 0.972829i \(-0.425628\pi\)
0.231527 + 0.972829i \(0.425628\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 19.6569 0.727533
\(731\) 12.6863 0.469219
\(732\) 0 0
\(733\) 49.6985 1.83566 0.917828 0.396979i \(-0.129941\pi\)
0.917828 + 0.396979i \(0.129941\pi\)
\(734\) 1.37258 0.0506630
\(735\) 0 0
\(736\) −33.7990 −1.24585
\(737\) −11.3137 −0.416746
\(738\) 0 0
\(739\) 4.68629 0.172388 0.0861940 0.996278i \(-0.472530\pi\)
0.0861940 + 0.996278i \(0.472530\pi\)
\(740\) −24.9706 −0.917936
\(741\) 0 0
\(742\) 0 0
\(743\) 50.9706 1.86993 0.934964 0.354742i \(-0.115431\pi\)
0.934964 + 0.354742i \(0.115431\pi\)
\(744\) 0 0
\(745\) 59.1127 2.16572
\(746\) 4.42641 0.162062
\(747\) 0 0
\(748\) −8.20101 −0.299859
\(749\) 0 0
\(750\) 0 0
\(751\) 13.6569 0.498346 0.249173 0.968459i \(-0.419841\pi\)
0.249173 + 0.968459i \(0.419841\pi\)
\(752\) 8.48528 0.309426
\(753\) 0 0
\(754\) −7.31371 −0.266350
\(755\) −40.9706 −1.49107
\(756\) 0 0
\(757\) 26.3431 0.957458 0.478729 0.877963i \(-0.341098\pi\)
0.478729 + 0.877963i \(0.341098\pi\)
\(758\) −3.59798 −0.130685
\(759\) 0 0
\(760\) 15.3137 0.555487
\(761\) 18.5269 0.671600 0.335800 0.941933i \(-0.390993\pi\)
0.335800 + 0.941933i \(0.390993\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −32.9117 −1.19070
\(765\) 0 0
\(766\) −7.59798 −0.274526
\(767\) 3.02944 0.109387
\(768\) 0 0
\(769\) 29.6985 1.07095 0.535477 0.844550i \(-0.320132\pi\)
0.535477 + 0.844550i \(0.320132\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.71573 −0.349677
\(773\) 9.55635 0.343718 0.171859 0.985122i \(-0.445023\pi\)
0.171859 + 0.985122i \(0.445023\pi\)
\(774\) 0 0
\(775\) −7.79899 −0.280148
\(776\) 4.10051 0.147200
\(777\) 0 0
\(778\) −7.51472 −0.269416
\(779\) 17.6569 0.632622
\(780\) 0 0
\(781\) −18.6274 −0.666541
\(782\) −7.11270 −0.254350
\(783\) 0 0
\(784\) 0 0
\(785\) −40.1421 −1.43273
\(786\) 0 0
\(787\) 24.6863 0.879971 0.439986 0.898005i \(-0.354984\pi\)
0.439986 + 0.898005i \(0.354984\pi\)
\(788\) 3.65685 0.130270
\(789\) 0 0
\(790\) 19.3137 0.687151
\(791\) 0 0
\(792\) 0 0
\(793\) 31.6569 1.12417
\(794\) 0.987807 0.0350559
\(795\) 0 0
\(796\) −39.5980 −1.40351
\(797\) 8.38478 0.297004 0.148502 0.988912i \(-0.452555\pi\)
0.148502 + 0.988912i \(0.452555\pi\)
\(798\) 0 0
\(799\) 6.34315 0.224404
\(800\) −29.3848 −1.03891
\(801\) 0 0
\(802\) −2.54416 −0.0898373
\(803\) 27.7990 0.981005
\(804\) 0 0
\(805\) 0 0
\(806\) 1.25483 0.0441996
\(807\) 0 0
\(808\) −4.64466 −0.163399
\(809\) −19.9411 −0.701093 −0.350546 0.936545i \(-0.614004\pi\)
−0.350546 + 0.936545i \(0.614004\pi\)
\(810\) 0 0
\(811\) −17.6569 −0.620016 −0.310008 0.950734i \(-0.600332\pi\)
−0.310008 + 0.950734i \(0.600332\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 3.31371 0.116145
\(815\) 38.6274 1.35306
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) 8.87006 0.310134
\(819\) 0 0
\(820\) −38.9706 −1.36091
\(821\) 10.6863 0.372954 0.186477 0.982459i \(-0.440293\pi\)
0.186477 + 0.982459i \(0.440293\pi\)
\(822\) 0 0
\(823\) 8.97056 0.312694 0.156347 0.987702i \(-0.450028\pi\)
0.156347 + 0.987702i \(0.450028\pi\)
\(824\) 7.11270 0.247783
\(825\) 0 0
\(826\) 0 0
\(827\) −47.6569 −1.65719 −0.828596 0.559848i \(-0.810860\pi\)
−0.828596 + 0.559848i \(0.810860\pi\)
\(828\) 0 0
\(829\) −0.727922 −0.0252818 −0.0126409 0.999920i \(-0.504024\pi\)
−0.0126409 + 0.999920i \(0.504024\pi\)
\(830\) −10.3431 −0.359016
\(831\) 0 0
\(832\) −10.7868 −0.373965
\(833\) 0 0
\(834\) 0 0
\(835\) −67.5980 −2.33932
\(836\) 10.3431 0.357725
\(837\) 0 0
\(838\) 13.7401 0.474644
\(839\) −50.8284 −1.75479 −0.877396 0.479767i \(-0.840721\pi\)
−0.877396 + 0.479767i \(0.840721\pi\)
\(840\) 0 0
\(841\) 17.6274 0.607842
\(842\) −6.88730 −0.237352
\(843\) 0 0
\(844\) −23.7157 −0.816329
\(845\) 21.5563 0.741561
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −6.18377 −0.212101
\(851\) −30.6274 −1.04989
\(852\) 0 0
\(853\) −49.4975 −1.69476 −0.847381 0.530986i \(-0.821822\pi\)
−0.847381 + 0.530986i \(0.821822\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.544156 0.0185989
\(857\) −15.4142 −0.526540 −0.263270 0.964722i \(-0.584801\pi\)
−0.263270 + 0.964722i \(0.584801\pi\)
\(858\) 0 0
\(859\) 57.4558 1.96037 0.980184 0.198089i \(-0.0634735\pi\)
0.980184 + 0.198089i \(0.0634735\pi\)
\(860\) 35.3137 1.20419
\(861\) 0 0
\(862\) −11.1716 −0.380505
\(863\) −17.3137 −0.589365 −0.294683 0.955595i \(-0.595214\pi\)
−0.294683 + 0.955595i \(0.595214\pi\)
\(864\) 0 0
\(865\) 71.9411 2.44607
\(866\) 8.38478 0.284926
\(867\) 0 0
\(868\) 0 0
\(869\) 27.3137 0.926554
\(870\) 0 0
\(871\) −14.6274 −0.495631
\(872\) −8.97056 −0.303782
\(873\) 0 0
\(874\) 8.97056 0.303434
\(875\) 0 0
\(876\) 0 0
\(877\) −11.3137 −0.382037 −0.191018 0.981586i \(-0.561179\pi\)
−0.191018 + 0.981586i \(0.561179\pi\)
\(878\) −5.25483 −0.177342
\(879\) 0 0
\(880\) −20.4853 −0.690559
\(881\) −21.7574 −0.733024 −0.366512 0.930413i \(-0.619448\pi\)
−0.366512 + 0.930413i \(0.619448\pi\)
\(882\) 0 0
\(883\) −4.68629 −0.157706 −0.0788531 0.996886i \(-0.525126\pi\)
−0.0788531 + 0.996886i \(0.525126\pi\)
\(884\) −10.6030 −0.356619
\(885\) 0 0
\(886\) 14.4853 0.486643
\(887\) 2.82843 0.0949693 0.0474846 0.998872i \(-0.484879\pi\)
0.0474846 + 0.998872i \(0.484879\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 20.1421 0.675166
\(891\) 0 0
\(892\) −45.6569 −1.52870
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) −67.1127 −2.24333
\(896\) 0 0
\(897\) 0 0
\(898\) −2.20101 −0.0734487
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 4.48528 0.149426
\(902\) 5.17157 0.172195
\(903\) 0 0
\(904\) 8.42641 0.280258
\(905\) 8.82843 0.293467
\(906\) 0 0
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) 43.5147 1.44409
\(909\) 0 0
\(910\) 0 0
\(911\) 1.02944 0.0341068 0.0170534 0.999855i \(-0.494571\pi\)
0.0170534 + 0.999855i \(0.494571\pi\)
\(912\) 0 0
\(913\) −14.6274 −0.484097
\(914\) 7.45584 0.246617
\(915\) 0 0
\(916\) 0.443651 0.0146586
\(917\) 0 0
\(918\) 0 0
\(919\) −8.28427 −0.273273 −0.136636 0.990621i \(-0.543629\pi\)
−0.136636 + 0.990621i \(0.543629\pi\)
\(920\) −41.4558 −1.36676
\(921\) 0 0
\(922\) −6.87006 −0.226253
\(923\) −24.0833 −0.792710
\(924\) 0 0
\(925\) −26.6274 −0.875504
\(926\) 11.0294 0.362450
\(927\) 0 0
\(928\) −30.1421 −0.989464
\(929\) 39.2132 1.28654 0.643272 0.765638i \(-0.277577\pi\)
0.643272 + 0.765638i \(0.277577\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −11.2304 −0.367866
\(933\) 0 0
\(934\) 0.0832611 0.00272439
\(935\) −15.3137 −0.500812
\(936\) 0 0
\(937\) 30.5858 0.999194 0.499597 0.866258i \(-0.333481\pi\)
0.499597 + 0.866258i \(0.333481\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 17.6569 0.575903
\(941\) −35.2132 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(942\) 0 0
\(943\) −47.7990 −1.55655
\(944\) 3.51472 0.114394
\(945\) 0 0
\(946\) −4.68629 −0.152364
\(947\) −30.6863 −0.997170 −0.498585 0.866841i \(-0.666147\pi\)
−0.498585 + 0.866841i \(0.666147\pi\)
\(948\) 0 0
\(949\) 35.9411 1.16670
\(950\) 7.79899 0.253033
\(951\) 0 0
\(952\) 0 0
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) 0 0
\(955\) −61.4558 −1.98866
\(956\) −28.6274 −0.925877
\(957\) 0 0
\(958\) 0.769553 0.0248631
\(959\) 0 0
\(960\) 0 0
\(961\) −29.6274 −0.955723
\(962\) 4.28427 0.138130
\(963\) 0 0
\(964\) 29.6985 0.956524
\(965\) −18.1421 −0.584016
\(966\) 0 0
\(967\) 33.6569 1.08233 0.541166 0.840916i \(-0.317983\pi\)
0.541166 + 0.840916i \(0.317983\pi\)
\(968\) −11.1005 −0.356784
\(969\) 0 0
\(970\) 3.65685 0.117415
\(971\) 50.6274 1.62471 0.812356 0.583162i \(-0.198185\pi\)
0.812356 + 0.583162i \(0.198185\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −11.0294 −0.353406
\(975\) 0 0
\(976\) 36.7279 1.17563
\(977\) 21.1716 0.677339 0.338669 0.940905i \(-0.390023\pi\)
0.338669 + 0.940905i \(0.390023\pi\)
\(978\) 0 0
\(979\) 28.4853 0.910394
\(980\) 0 0
\(981\) 0 0
\(982\) 2.08326 0.0664795
\(983\) 53.2548 1.69857 0.849283 0.527938i \(-0.177035\pi\)
0.849283 + 0.527938i \(0.177035\pi\)
\(984\) 0 0
\(985\) 6.82843 0.217572
\(986\) −6.34315 −0.202007
\(987\) 0 0
\(988\) 13.3726 0.425439
\(989\) 43.3137 1.37730
\(990\) 0 0
\(991\) −12.9706 −0.412024 −0.206012 0.978550i \(-0.566049\pi\)
−0.206012 + 0.978550i \(0.566049\pi\)
\(992\) 5.17157 0.164198
\(993\) 0 0
\(994\) 0 0
\(995\) −73.9411 −2.34409
\(996\) 0 0
\(997\) 26.3848 0.835614 0.417807 0.908536i \(-0.362799\pi\)
0.417807 + 0.908536i \(0.362799\pi\)
\(998\) −1.37258 −0.0434484
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.a.i.1.1 2
3.2 odd 2 147.2.a.e.1.2 yes 2
4.3 odd 2 7056.2.a.cf.1.1 2
7.2 even 3 441.2.e.g.361.2 4
7.3 odd 6 441.2.e.f.226.2 4
7.4 even 3 441.2.e.g.226.2 4
7.5 odd 6 441.2.e.f.361.2 4
7.6 odd 2 441.2.a.j.1.1 2
12.11 even 2 2352.2.a.bc.1.2 2
15.14 odd 2 3675.2.a.bd.1.1 2
21.2 odd 6 147.2.e.d.67.1 4
21.5 even 6 147.2.e.e.67.1 4
21.11 odd 6 147.2.e.d.79.1 4
21.17 even 6 147.2.e.e.79.1 4
21.20 even 2 147.2.a.d.1.2 2
24.5 odd 2 9408.2.a.di.1.1 2
24.11 even 2 9408.2.a.dt.1.1 2
28.27 even 2 7056.2.a.cv.1.2 2
84.11 even 6 2352.2.q.bd.961.1 4
84.23 even 6 2352.2.q.bd.1537.1 4
84.47 odd 6 2352.2.q.bb.1537.2 4
84.59 odd 6 2352.2.q.bb.961.2 4
84.83 odd 2 2352.2.a.be.1.1 2
105.104 even 2 3675.2.a.bf.1.1 2
168.83 odd 2 9408.2.a.dq.1.2 2
168.125 even 2 9408.2.a.ef.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.a.d.1.2 2 21.20 even 2
147.2.a.e.1.2 yes 2 3.2 odd 2
147.2.e.d.67.1 4 21.2 odd 6
147.2.e.d.79.1 4 21.11 odd 6
147.2.e.e.67.1 4 21.5 even 6
147.2.e.e.79.1 4 21.17 even 6
441.2.a.i.1.1 2 1.1 even 1 trivial
441.2.a.j.1.1 2 7.6 odd 2
441.2.e.f.226.2 4 7.3 odd 6
441.2.e.f.361.2 4 7.5 odd 6
441.2.e.g.226.2 4 7.4 even 3
441.2.e.g.361.2 4 7.2 even 3
2352.2.a.bc.1.2 2 12.11 even 2
2352.2.a.be.1.1 2 84.83 odd 2
2352.2.q.bb.961.2 4 84.59 odd 6
2352.2.q.bb.1537.2 4 84.47 odd 6
2352.2.q.bd.961.1 4 84.11 even 6
2352.2.q.bd.1537.1 4 84.23 even 6
3675.2.a.bd.1.1 2 15.14 odd 2
3675.2.a.bf.1.1 2 105.104 even 2
7056.2.a.cf.1.1 2 4.3 odd 2
7056.2.a.cv.1.2 2 28.27 even 2
9408.2.a.di.1.1 2 24.5 odd 2
9408.2.a.dq.1.2 2 168.83 odd 2
9408.2.a.dt.1.1 2 24.11 even 2
9408.2.a.ef.1.2 2 168.125 even 2