Properties

Label 441.2.bg.a.395.5
Level $441$
Weight $2$
Character 441.395
Analytic conductor $3.521$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(17,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 25]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.bg (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(18\) over \(\Q(\zeta_{42})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{42}]$

Embedding invariants

Embedding label 395.5
Character \(\chi\) \(=\) 441.395
Dual form 441.2.bg.a.278.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50023 - 0.588795i) q^{2} +(0.437895 + 0.406307i) q^{4} +(3.18030 + 2.16829i) q^{5} +(2.37141 - 1.17321i) q^{7} +(0.980812 + 2.03668i) q^{8} +(-3.49449 - 5.12548i) q^{10} +(0.655355 + 4.34800i) q^{11} +(-3.43618 + 2.74026i) q^{13} +(-4.24843 + 0.363804i) q^{14} +(-0.361535 - 4.82435i) q^{16} +(-3.21706 - 0.992330i) q^{17} +(-0.776988 + 0.448594i) q^{19} +(0.511645 + 2.24166i) q^{20} +(1.57690 - 6.90885i) q^{22} +(0.732111 + 2.37344i) q^{23} +(3.58612 + 9.13730i) q^{25} +(6.76850 - 2.08781i) q^{26} +(1.51511 + 0.449778i) q^{28} +(-8.30122 + 1.89470i) q^{29} +(4.67386 + 2.69846i) q^{31} +(-0.965559 + 3.13027i) q^{32} +(4.24203 + 3.38291i) q^{34} +(10.0857 + 1.41075i) q^{35} +(5.45716 - 5.06350i) q^{37} +(1.42979 - 0.215506i) q^{38} +(-1.29684 + 8.60394i) q^{40} +(5.36277 - 2.58258i) q^{41} +(-2.54826 - 1.22718i) q^{43} +(-1.47965 + 2.17024i) q^{44} +(0.299142 - 3.99177i) q^{46} +(-1.55456 + 3.96096i) q^{47} +(4.24716 - 5.56432i) q^{49} -15.8195i q^{50} +(-2.61807 - 0.196198i) q^{52} +(8.87284 - 9.56264i) q^{53} +(-7.34351 + 15.2490i) q^{55} +(4.71536 + 3.67910i) q^{56} +(13.5693 + 2.04524i) q^{58} +(6.88259 - 4.69247i) q^{59} +(2.93497 + 3.16315i) q^{61} +(-5.42301 - 6.80024i) q^{62} +(-2.74110 + 3.43722i) q^{64} +(-16.8698 + 1.26422i) q^{65} +(-1.42922 + 2.47548i) q^{67} +(-1.00554 - 1.74165i) q^{68} +(-14.3001 - 8.05484i) q^{70} +(-7.30694 - 1.66776i) q^{71} +(3.88677 - 1.52545i) q^{73} +(-11.1683 + 4.38325i) q^{74} +(-0.522506 - 0.119259i) q^{76} +(6.65522 + 9.54201i) q^{77} +(-1.80778 - 3.13117i) q^{79} +(9.31082 - 16.1268i) q^{80} +(-9.56598 + 0.716871i) q^{82} +(-8.34856 + 10.4688i) q^{83} +(-8.07955 - 10.1314i) q^{85} +(3.10041 + 3.34145i) q^{86} +(-8.21269 + 5.59932i) q^{88} +(3.95521 + 0.596152i) q^{89} +(-4.93369 + 10.5296i) q^{91} +(-0.643760 + 1.33678i) q^{92} +(4.66439 - 5.02702i) q^{94} +(-3.44374 - 0.258073i) q^{95} -18.1405i q^{97} +(-9.64795 + 5.84702i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 16 q^{4} + 2 q^{7} + 12 q^{10} + 12 q^{16} - 6 q^{19} + 44 q^{22} + 26 q^{25} + 84 q^{28} - 6 q^{31} - 112 q^{34} + 60 q^{37} - 304 q^{40} + 20 q^{43} - 20 q^{46} - 86 q^{49} - 168 q^{52} - 84 q^{55}+ \cdots + 52 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{42}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50023 0.588795i −1.06082 0.416341i −0.230178 0.973148i \(-0.573931\pi\)
−0.830642 + 0.556807i \(0.812026\pi\)
\(3\) 0 0
\(4\) 0.437895 + 0.406307i 0.218947 + 0.203154i
\(5\) 3.18030 + 2.16829i 1.42227 + 0.969691i 0.997938 + 0.0641862i \(0.0204451\pi\)
0.424337 + 0.905504i \(0.360507\pi\)
\(6\) 0 0
\(7\) 2.37141 1.17321i 0.896308 0.443431i
\(8\) 0.980812 + 2.03668i 0.346770 + 0.720074i
\(9\) 0 0
\(10\) −3.49449 5.12548i −1.10506 1.62082i
\(11\) 0.655355 + 4.34800i 0.197597 + 1.31097i 0.839153 + 0.543895i \(0.183051\pi\)
−0.641556 + 0.767076i \(0.721711\pi\)
\(12\) 0 0
\(13\) −3.43618 + 2.74026i −0.953025 + 0.760012i −0.970815 0.239830i \(-0.922908\pi\)
0.0177899 + 0.999842i \(0.494337\pi\)
\(14\) −4.24843 + 0.363804i −1.13544 + 0.0972306i
\(15\) 0 0
\(16\) −0.361535 4.82435i −0.0903838 1.20609i
\(17\) −3.21706 0.992330i −0.780250 0.240675i −0.121054 0.992646i \(-0.538627\pi\)
−0.659197 + 0.751971i \(0.729104\pi\)
\(18\) 0 0
\(19\) −0.776988 + 0.448594i −0.178253 + 0.102915i −0.586472 0.809970i \(-0.699483\pi\)
0.408218 + 0.912884i \(0.366150\pi\)
\(20\) 0.511645 + 2.24166i 0.114407 + 0.501251i
\(21\) 0 0
\(22\) 1.57690 6.90885i 0.336196 1.47297i
\(23\) 0.732111 + 2.37344i 0.152656 + 0.494897i 0.999306 0.0372524i \(-0.0118605\pi\)
−0.846650 + 0.532150i \(0.821384\pi\)
\(24\) 0 0
\(25\) 3.58612 + 9.13730i 0.717225 + 1.82746i
\(26\) 6.76850 2.08781i 1.32741 0.409453i
\(27\) 0 0
\(28\) 1.51511 + 0.449778i 0.286329 + 0.0850001i
\(29\) −8.30122 + 1.89470i −1.54150 + 0.351837i −0.907015 0.421099i \(-0.861644\pi\)
−0.634484 + 0.772936i \(0.718787\pi\)
\(30\) 0 0
\(31\) 4.67386 + 2.69846i 0.839451 + 0.484657i 0.857077 0.515188i \(-0.172278\pi\)
−0.0176268 + 0.999845i \(0.505611\pi\)
\(32\) −0.965559 + 3.13027i −0.170688 + 0.553358i
\(33\) 0 0
\(34\) 4.24203 + 3.38291i 0.727502 + 0.580164i
\(35\) 10.0857 + 1.41075i 1.70479 + 0.238461i
\(36\) 0 0
\(37\) 5.45716 5.06350i 0.897151 0.832435i −0.0893816 0.995997i \(-0.528489\pi\)
0.986533 + 0.163563i \(0.0522986\pi\)
\(38\) 1.42979 0.215506i 0.231942 0.0349597i
\(39\) 0 0
\(40\) −1.29684 + 8.60394i −0.205048 + 1.36040i
\(41\) 5.36277 2.58258i 0.837524 0.403331i 0.0345927 0.999401i \(-0.488987\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(42\) 0 0
\(43\) −2.54826 1.22718i −0.388606 0.187143i 0.229371 0.973339i \(-0.426333\pi\)
−0.617977 + 0.786196i \(0.712047\pi\)
\(44\) −1.47965 + 2.17024i −0.223065 + 0.327176i
\(45\) 0 0
\(46\) 0.299142 3.99177i 0.0441060 0.588554i
\(47\) −1.55456 + 3.96096i −0.226756 + 0.577765i −0.998292 0.0584204i \(-0.981394\pi\)
0.771536 + 0.636186i \(0.219489\pi\)
\(48\) 0 0
\(49\) 4.24716 5.56432i 0.606738 0.794902i
\(50\) 15.8195i 2.23722i
\(51\) 0 0
\(52\) −2.61807 0.196198i −0.363062 0.0272077i
\(53\) 8.87284 9.56264i 1.21878 1.31353i 0.283775 0.958891i \(-0.408413\pi\)
0.935003 0.354639i \(-0.115396\pi\)
\(54\) 0 0
\(55\) −7.34351 + 15.2490i −0.990199 + 2.05617i
\(56\) 4.71536 + 3.67910i 0.630116 + 0.491640i
\(57\) 0 0
\(58\) 13.5693 + 2.04524i 1.78174 + 0.268554i
\(59\) 6.88259 4.69247i 0.896037 0.610908i −0.0252968 0.999680i \(-0.508053\pi\)
0.921334 + 0.388772i \(0.127101\pi\)
\(60\) 0 0
\(61\) 2.93497 + 3.16315i 0.375784 + 0.404999i 0.892420 0.451206i \(-0.149006\pi\)
−0.516635 + 0.856206i \(0.672816\pi\)
\(62\) −5.42301 6.80024i −0.688723 0.863632i
\(63\) 0 0
\(64\) −2.74110 + 3.43722i −0.342637 + 0.429653i
\(65\) −16.8698 + 1.26422i −2.09244 + 0.156807i
\(66\) 0 0
\(67\) −1.42922 + 2.47548i −0.174607 + 0.302428i −0.940025 0.341105i \(-0.889199\pi\)
0.765418 + 0.643533i \(0.222532\pi\)
\(68\) −1.00554 1.74165i −0.121940 0.211206i
\(69\) 0 0
\(70\) −14.3001 8.05484i −1.70919 0.962737i
\(71\) −7.30694 1.66776i −0.867175 0.197927i −0.234284 0.972168i \(-0.575275\pi\)
−0.632891 + 0.774241i \(0.718132\pi\)
\(72\) 0 0
\(73\) 3.88677 1.52545i 0.454912 0.178540i −0.126811 0.991927i \(-0.540474\pi\)
0.581723 + 0.813387i \(0.302379\pi\)
\(74\) −11.1683 + 4.38325i −1.29829 + 0.509543i
\(75\) 0 0
\(76\) −0.522506 0.119259i −0.0599356 0.0136799i
\(77\) 6.65522 + 9.54201i 0.758433 + 1.08741i
\(78\) 0 0
\(79\) −1.80778 3.13117i −0.203391 0.352284i 0.746228 0.665691i \(-0.231863\pi\)
−0.949619 + 0.313407i \(0.898530\pi\)
\(80\) 9.31082 16.1268i 1.04098 1.80303i
\(81\) 0 0
\(82\) −9.56598 + 0.716871i −1.05639 + 0.0791652i
\(83\) −8.34856 + 10.4688i −0.916373 + 1.14910i 0.0720540 + 0.997401i \(0.477045\pi\)
−0.988427 + 0.151695i \(0.951527\pi\)
\(84\) 0 0
\(85\) −8.07955 10.1314i −0.876350 1.09891i
\(86\) 3.10041 + 3.34145i 0.334326 + 0.360318i
\(87\) 0 0
\(88\) −8.21269 + 5.59932i −0.875476 + 0.596889i
\(89\) 3.95521 + 0.596152i 0.419251 + 0.0631919i 0.355280 0.934760i \(-0.384385\pi\)
0.0639709 + 0.997952i \(0.479624\pi\)
\(90\) 0 0
\(91\) −4.93369 + 10.5296i −0.517191 + 1.10381i
\(92\) −0.643760 + 1.33678i −0.0671166 + 0.139369i
\(93\) 0 0
\(94\) 4.66439 5.02702i 0.481095 0.518497i
\(95\) −3.44374 0.258073i −0.353320 0.0264777i
\(96\) 0 0
\(97\) 18.1405i 1.84189i −0.389690 0.920946i \(-0.627418\pi\)
0.389690 0.920946i \(-0.372582\pi\)
\(98\) −9.64795 + 5.84702i −0.974590 + 0.590638i
\(99\) 0 0
\(100\) −2.14220 + 5.45824i −0.214220 + 0.545824i
\(101\) 0.182498 2.43527i 0.0181593 0.242319i −0.980736 0.195336i \(-0.937420\pi\)
0.998896 0.0469828i \(-0.0149606\pi\)
\(102\) 0 0
\(103\) 10.6815 15.6669i 1.05248 1.54370i 0.231424 0.972853i \(-0.425662\pi\)
0.821055 0.570849i \(-0.193386\pi\)
\(104\) −8.95128 4.31071i −0.877745 0.422700i
\(105\) 0 0
\(106\) −18.9417 + 9.12184i −1.83978 + 0.885992i
\(107\) −0.405749 + 2.69197i −0.0392252 + 0.260242i −0.999845 0.0176251i \(-0.994389\pi\)
0.960619 + 0.277867i \(0.0896276\pi\)
\(108\) 0 0
\(109\) 11.5445 1.74005i 1.10576 0.166667i 0.429313 0.903156i \(-0.358756\pi\)
0.676449 + 0.736489i \(0.263518\pi\)
\(110\) 19.9954 18.5531i 1.90649 1.76896i
\(111\) 0 0
\(112\) −6.51732 11.0164i −0.615829 1.04095i
\(113\) −9.04782 7.21539i −0.851147 0.678767i 0.0974544 0.995240i \(-0.468930\pi\)
−0.948602 + 0.316473i \(0.897501\pi\)
\(114\) 0 0
\(115\) −2.81799 + 9.13570i −0.262779 + 0.851909i
\(116\) −4.40489 2.54317i −0.408984 0.236127i
\(117\) 0 0
\(118\) −13.0883 + 2.98733i −1.20488 + 0.275006i
\(119\) −8.79316 + 1.42106i −0.806068 + 0.130268i
\(120\) 0 0
\(121\) −7.96429 + 2.45666i −0.724026 + 0.223333i
\(122\) −2.54067 6.47353i −0.230022 0.586086i
\(123\) 0 0
\(124\) 0.950259 + 3.08066i 0.0853358 + 0.276652i
\(125\) −4.12482 + 18.0720i −0.368935 + 1.61641i
\(126\) 0 0
\(127\) 2.54710 + 11.1596i 0.226018 + 0.990251i 0.952852 + 0.303437i \(0.0981342\pi\)
−0.726833 + 0.686814i \(0.759009\pi\)
\(128\) 11.8099 6.81847i 1.04386 0.602673i
\(129\) 0 0
\(130\) 26.0529 + 8.03625i 2.28499 + 0.704825i
\(131\) 0.421231 + 5.62093i 0.0368031 + 0.491103i 0.984900 + 0.173123i \(0.0553857\pi\)
−0.948097 + 0.317981i \(0.896995\pi\)
\(132\) 0 0
\(133\) −1.31626 + 1.97537i −0.114134 + 0.171286i
\(134\) 3.60170 2.87226i 0.311139 0.248125i
\(135\) 0 0
\(136\) −1.13427 7.52539i −0.0972629 0.645297i
\(137\) −10.1322 14.8611i −0.865648 1.26967i −0.961647 0.274291i \(-0.911557\pi\)
0.0959983 0.995381i \(-0.469396\pi\)
\(138\) 0 0
\(139\) 2.66447 + 5.53282i 0.225997 + 0.469288i 0.982876 0.184267i \(-0.0589911\pi\)
−0.756879 + 0.653555i \(0.773277\pi\)
\(140\) 3.84326 + 4.71564i 0.324815 + 0.398544i
\(141\) 0 0
\(142\) 9.98010 + 6.80431i 0.837511 + 0.571005i
\(143\) −14.1666 13.1447i −1.18467 1.09921i
\(144\) 0 0
\(145\) −30.5087 11.9738i −2.53361 0.994368i
\(146\) −6.72921 −0.556913
\(147\) 0 0
\(148\) 4.44700 0.365541
\(149\) 6.21653 + 2.43981i 0.509278 + 0.199877i 0.606045 0.795430i \(-0.292755\pi\)
−0.0967671 + 0.995307i \(0.530850\pi\)
\(150\) 0 0
\(151\) 8.46747 + 7.85666i 0.689073 + 0.639366i 0.944901 0.327356i \(-0.106158\pi\)
−0.255828 + 0.966722i \(0.582348\pi\)
\(152\) −1.67572 1.14249i −0.135919 0.0926680i
\(153\) 0 0
\(154\) −4.36605 18.2337i −0.351826 1.46932i
\(155\) 9.01326 + 18.7162i 0.723962 + 1.50332i
\(156\) 0 0
\(157\) 2.61302 + 3.83259i 0.208541 + 0.305874i 0.916232 0.400649i \(-0.131215\pi\)
−0.707690 + 0.706523i \(0.750263\pi\)
\(158\) 0.868463 + 5.76187i 0.0690912 + 0.458390i
\(159\) 0 0
\(160\) −9.85811 + 7.86158i −0.779352 + 0.621512i
\(161\) 4.52068 + 4.76949i 0.356279 + 0.375888i
\(162\) 0 0
\(163\) −0.887218 11.8391i −0.0694923 0.927310i −0.917605 0.397494i \(-0.869880\pi\)
0.848112 0.529816i \(-0.177739\pi\)
\(164\) 3.39765 + 1.04804i 0.265312 + 0.0818379i
\(165\) 0 0
\(166\) 18.6887 10.7899i 1.45052 0.837460i
\(167\) −5.11430 22.4072i −0.395756 1.73392i −0.643819 0.765177i \(-0.722651\pi\)
0.248063 0.968744i \(-0.420206\pi\)
\(168\) 0 0
\(169\) 1.40553 6.15801i 0.108117 0.473693i
\(170\) 6.15581 + 19.9566i 0.472129 + 1.53060i
\(171\) 0 0
\(172\) −0.617260 1.57275i −0.0470656 0.119921i
\(173\) 12.5556 3.87288i 0.954583 0.294450i 0.221938 0.975061i \(-0.428762\pi\)
0.732645 + 0.680611i \(0.238285\pi\)
\(174\) 0 0
\(175\) 19.2241 + 17.4610i 1.45321 + 1.31993i
\(176\) 20.7393 4.73362i 1.56329 0.356810i
\(177\) 0 0
\(178\) −5.58269 3.22317i −0.418441 0.241587i
\(179\) −5.16876 + 16.7567i −0.386331 + 1.25246i 0.528609 + 0.848866i \(0.322714\pi\)
−0.914940 + 0.403590i \(0.867762\pi\)
\(180\) 0 0
\(181\) −4.95113 3.94840i −0.368015 0.293482i 0.421968 0.906611i \(-0.361339\pi\)
−0.789983 + 0.613129i \(0.789911\pi\)
\(182\) 13.6015 12.8919i 1.00821 0.955612i
\(183\) 0 0
\(184\) −4.11588 + 3.81898i −0.303427 + 0.281539i
\(185\) 28.3346 4.27075i 2.08320 0.313992i
\(186\) 0 0
\(187\) 2.20633 14.6381i 0.161343 1.07044i
\(188\) −2.29010 + 1.10285i −0.167023 + 0.0804339i
\(189\) 0 0
\(190\) 5.01444 + 2.41483i 0.363786 + 0.175190i
\(191\) −2.58021 + 3.78448i −0.186698 + 0.273835i −0.908164 0.418614i \(-0.862516\pi\)
0.721467 + 0.692449i \(0.243468\pi\)
\(192\) 0 0
\(193\) 0.0550106 0.734065i 0.00395975 0.0528392i −0.994874 0.101123i \(-0.967756\pi\)
0.998834 + 0.0482843i \(0.0153753\pi\)
\(194\) −10.6811 + 27.2149i −0.766856 + 1.95392i
\(195\) 0 0
\(196\) 4.12063 0.710933i 0.294331 0.0507809i
\(197\) 5.02513i 0.358025i −0.983847 0.179013i \(-0.942710\pi\)
0.983847 0.179013i \(-0.0572903\pi\)
\(198\) 0 0
\(199\) 1.83712 + 0.137673i 0.130230 + 0.00975937i 0.139685 0.990196i \(-0.455391\pi\)
−0.00945574 + 0.999955i \(0.503010\pi\)
\(200\) −15.0924 + 16.2658i −1.06719 + 1.15016i
\(201\) 0 0
\(202\) −1.70767 + 3.54600i −0.120151 + 0.249496i
\(203\) −17.4627 + 14.2322i −1.22564 + 0.998903i
\(204\) 0 0
\(205\) 22.6550 + 3.41470i 1.58230 + 0.238493i
\(206\) −25.2492 + 17.2146i −1.75920 + 1.19940i
\(207\) 0 0
\(208\) 14.4623 + 15.5866i 1.00278 + 1.08074i
\(209\) −2.45969 3.08435i −0.170140 0.213349i
\(210\) 0 0
\(211\) −7.68161 + 9.63244i −0.528824 + 0.663124i −0.972456 0.233084i \(-0.925118\pi\)
0.443632 + 0.896209i \(0.353690\pi\)
\(212\) 7.77074 0.582336i 0.533697 0.0399950i
\(213\) 0 0
\(214\) 2.19373 3.79966i 0.149960 0.259739i
\(215\) −5.44336 9.42818i −0.371234 0.642997i
\(216\) 0 0
\(217\) 14.2495 + 0.915727i 0.967319 + 0.0621636i
\(218\) −18.3439 4.18687i −1.24240 0.283571i
\(219\) 0 0
\(220\) −9.41144 + 3.69372i −0.634519 + 0.249031i
\(221\) 13.7736 5.40575i 0.926514 0.363630i
\(222\) 0 0
\(223\) −0.0216823 0.00494884i −0.00145195 0.000331399i 0.221795 0.975093i \(-0.428808\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(224\) 1.38272 + 8.55594i 0.0923868 + 0.571668i
\(225\) 0 0
\(226\) 9.32538 + 16.1520i 0.620315 + 1.07442i
\(227\) 4.56676 7.90986i 0.303106 0.524996i −0.673732 0.738976i \(-0.735310\pi\)
0.976838 + 0.213980i \(0.0686429\pi\)
\(228\) 0 0
\(229\) −3.95603 + 0.296463i −0.261422 + 0.0195908i −0.204796 0.978805i \(-0.565653\pi\)
−0.0566254 + 0.998395i \(0.518034\pi\)
\(230\) 9.60668 12.0464i 0.633446 0.794316i
\(231\) 0 0
\(232\) −12.0008 15.0486i −0.787893 0.987987i
\(233\) 10.0603 + 10.8424i 0.659069 + 0.710307i 0.970807 0.239861i \(-0.0771017\pi\)
−0.311738 + 0.950168i \(0.600911\pi\)
\(234\) 0 0
\(235\) −13.5325 + 9.22631i −0.882763 + 0.601858i
\(236\) 4.92044 + 0.741636i 0.320293 + 0.0482764i
\(237\) 0 0
\(238\) 14.0284 + 3.04547i 0.909329 + 0.197408i
\(239\) 5.51570 11.4535i 0.356781 0.740863i −0.642905 0.765946i \(-0.722271\pi\)
0.999685 + 0.0250833i \(0.00798509\pi\)
\(240\) 0 0
\(241\) −8.72384 + 9.40207i −0.561952 + 0.605640i −0.948558 0.316605i \(-0.897457\pi\)
0.386605 + 0.922245i \(0.373648\pi\)
\(242\) 13.3947 + 1.00379i 0.861044 + 0.0645264i
\(243\) 0 0
\(244\) 2.57762i 0.165015i
\(245\) 25.5723 8.48711i 1.63376 0.542222i
\(246\) 0 0
\(247\) 1.44061 3.67060i 0.0916635 0.233555i
\(248\) −0.911703 + 12.1658i −0.0578932 + 0.772531i
\(249\) 0 0
\(250\) 16.8289 24.6834i 1.06435 1.56112i
\(251\) 14.8498 + 7.15128i 0.937310 + 0.451385i 0.839219 0.543793i \(-0.183012\pi\)
0.0980903 + 0.995178i \(0.468727\pi\)
\(252\) 0 0
\(253\) −9.83994 + 4.73866i −0.618632 + 0.297917i
\(254\) 2.74948 18.2416i 0.172517 1.14458i
\(255\) 0 0
\(256\) −13.0377 + 1.96512i −0.814857 + 0.122820i
\(257\) 8.36052 7.75743i 0.521515 0.483895i −0.374928 0.927054i \(-0.622333\pi\)
0.896443 + 0.443159i \(0.146142\pi\)
\(258\) 0 0
\(259\) 7.00061 18.4100i 0.434997 1.14394i
\(260\) −7.90086 6.30072i −0.489990 0.390754i
\(261\) 0 0
\(262\) 2.67764 8.68069i 0.165425 0.536295i
\(263\) −6.94717 4.01095i −0.428381 0.247326i 0.270276 0.962783i \(-0.412885\pi\)
−0.698657 + 0.715457i \(0.746218\pi\)
\(264\) 0 0
\(265\) 48.9529 11.1732i 3.00715 0.686363i
\(266\) 3.13778 2.18849i 0.192390 0.134185i
\(267\) 0 0
\(268\) −1.63165 + 0.503298i −0.0996689 + 0.0307438i
\(269\) −0.0713278 0.181740i −0.00434893 0.0110809i 0.928683 0.370875i \(-0.120942\pi\)
−0.933032 + 0.359794i \(0.882847\pi\)
\(270\) 0 0
\(271\) −0.693161 2.24717i −0.0421065 0.136506i 0.932079 0.362255i \(-0.117993\pi\)
−0.974185 + 0.225749i \(0.927517\pi\)
\(272\) −3.62427 + 15.8790i −0.219754 + 0.962804i
\(273\) 0 0
\(274\) 6.45035 + 28.2608i 0.389680 + 1.70730i
\(275\) −37.3788 + 21.5806i −2.25402 + 1.30136i
\(276\) 0 0
\(277\) −22.3119 6.88231i −1.34059 0.413518i −0.460221 0.887804i \(-0.652230\pi\)
−0.880371 + 0.474286i \(0.842706\pi\)
\(278\) −0.739603 9.86931i −0.0443584 0.591922i
\(279\) 0 0
\(280\) 7.01889 + 21.9249i 0.419459 + 1.31027i
\(281\) −7.57759 + 6.04292i −0.452041 + 0.360491i −0.822888 0.568203i \(-0.807639\pi\)
0.370847 + 0.928694i \(0.379067\pi\)
\(282\) 0 0
\(283\) −1.79996 11.9419i −0.106996 0.709874i −0.976432 0.215827i \(-0.930755\pi\)
0.869435 0.494047i \(-0.164483\pi\)
\(284\) −2.52205 3.69917i −0.149656 0.219505i
\(285\) 0 0
\(286\) 13.5136 + 28.0612i 0.799073 + 1.65929i
\(287\) 9.68743 12.4160i 0.571831 0.732893i
\(288\) 0 0
\(289\) −4.68133 3.19168i −0.275373 0.187746i
\(290\) 38.7198 + 35.9267i 2.27371 + 2.10969i
\(291\) 0 0
\(292\) 2.32180 + 0.911238i 0.135873 + 0.0533262i
\(293\) −11.9276 −0.696817 −0.348409 0.937343i \(-0.613278\pi\)
−0.348409 + 0.937343i \(0.613278\pi\)
\(294\) 0 0
\(295\) 32.0634 1.86680
\(296\) 15.6652 + 6.14813i 0.910520 + 0.357353i
\(297\) 0 0
\(298\) −7.88966 7.32053i −0.457036 0.424067i
\(299\) −9.01952 6.14941i −0.521613 0.355629i
\(300\) 0 0
\(301\) −7.48271 + 0.0795013i −0.431296 + 0.00458238i
\(302\) −8.07715 16.7724i −0.464788 0.965142i
\(303\) 0 0
\(304\) 2.44509 + 3.58628i 0.140235 + 0.205687i
\(305\) 2.47547 + 16.4236i 0.141745 + 0.940415i
\(306\) 0 0
\(307\) 22.0802 17.6084i 1.26018 1.00496i 0.260968 0.965347i \(-0.415958\pi\)
0.999215 0.0396152i \(-0.0126132\pi\)
\(308\) −0.962699 + 6.88246i −0.0548549 + 0.392165i
\(309\) 0 0
\(310\) −2.50190 33.3855i −0.142098 1.89617i
\(311\) −18.2667 5.63452i −1.03581 0.319504i −0.270195 0.962806i \(-0.587088\pi\)
−0.765613 + 0.643301i \(0.777564\pi\)
\(312\) 0 0
\(313\) −29.5626 + 17.0680i −1.67098 + 0.964739i −0.703885 + 0.710314i \(0.748553\pi\)
−0.967093 + 0.254425i \(0.918114\pi\)
\(314\) −1.66350 7.28829i −0.0938770 0.411302i
\(315\) 0 0
\(316\) 0.480598 2.10564i 0.0270357 0.118451i
\(317\) −2.40572 7.79916i −0.135119 0.438044i 0.862574 0.505930i \(-0.168851\pi\)
−0.997693 + 0.0678861i \(0.978375\pi\)
\(318\) 0 0
\(319\) −13.6784 34.8520i −0.765843 1.95134i
\(320\) −16.1704 + 4.98792i −0.903954 + 0.278833i
\(321\) 0 0
\(322\) −3.97379 9.81707i −0.221451 0.547084i
\(323\) 2.94477 0.672124i 0.163851 0.0373980i
\(324\) 0 0
\(325\) −37.3612 21.5705i −2.07242 1.19651i
\(326\) −5.63978 + 18.2837i −0.312359 + 1.01264i
\(327\) 0 0
\(328\) 10.5197 + 8.38922i 0.580856 + 0.463217i
\(329\) 0.960530 + 11.2169i 0.0529557 + 0.618407i
\(330\) 0 0
\(331\) −22.0820 + 20.4891i −1.21374 + 1.12618i −0.225341 + 0.974280i \(0.572350\pi\)
−0.988395 + 0.151903i \(0.951460\pi\)
\(332\) −7.90932 + 1.19214i −0.434081 + 0.0654271i
\(333\) 0 0
\(334\) −5.52065 + 36.6271i −0.302077 + 2.00415i
\(335\) −9.91290 + 4.77380i −0.541600 + 0.260821i
\(336\) 0 0
\(337\) −26.1851 12.6101i −1.42640 0.686916i −0.448072 0.893998i \(-0.647889\pi\)
−0.978324 + 0.207082i \(0.933603\pi\)
\(338\) −5.73442 + 8.41085i −0.311911 + 0.457490i
\(339\) 0 0
\(340\) 0.578480 7.71928i 0.0313725 0.418637i
\(341\) −8.66984 + 22.0904i −0.469498 + 1.19626i
\(342\) 0 0
\(343\) 3.54366 18.1781i 0.191339 0.981524i
\(344\) 6.39362i 0.344721i
\(345\) 0 0
\(346\) −21.1166 1.58247i −1.13523 0.0850739i
\(347\) −8.34219 + 8.99074i −0.447832 + 0.482648i −0.916107 0.400935i \(-0.868685\pi\)
0.468275 + 0.883583i \(0.344876\pi\)
\(348\) 0 0
\(349\) −1.40591 + 2.91940i −0.0752565 + 0.156272i −0.935203 0.354113i \(-0.884783\pi\)
0.859946 + 0.510385i \(0.170497\pi\)
\(350\) −18.5596 37.5145i −0.992051 2.00524i
\(351\) 0 0
\(352\) −14.2432 2.14681i −0.759163 0.114425i
\(353\) 4.43190 3.02162i 0.235886 0.160824i −0.439608 0.898190i \(-0.644883\pi\)
0.675494 + 0.737365i \(0.263930\pi\)
\(354\) 0 0
\(355\) −19.6221 21.1476i −1.04143 1.12240i
\(356\) 1.48974 + 1.86808i 0.0789563 + 0.0990081i
\(357\) 0 0
\(358\) 17.6206 22.0955i 0.931277 1.16778i
\(359\) −31.7494 + 2.37929i −1.67567 + 0.125574i −0.878360 0.478000i \(-0.841362\pi\)
−0.797307 + 0.603574i \(0.793743\pi\)
\(360\) 0 0
\(361\) −9.09753 + 15.7574i −0.478817 + 0.829336i
\(362\) 5.10302 + 8.83869i 0.268209 + 0.464551i
\(363\) 0 0
\(364\) −6.43871 + 2.60628i −0.337480 + 0.136606i
\(365\) 15.6687 + 3.57628i 0.820139 + 0.187191i
\(366\) 0 0
\(367\) −9.53927 + 3.74389i −0.497946 + 0.195429i −0.601004 0.799246i \(-0.705232\pi\)
0.103058 + 0.994675i \(0.467137\pi\)
\(368\) 11.1856 4.39004i 0.583092 0.228847i
\(369\) 0 0
\(370\) −45.0229 10.2762i −2.34063 0.534233i
\(371\) 9.82215 33.0866i 0.509941 1.71777i
\(372\) 0 0
\(373\) 6.35426 + 11.0059i 0.329011 + 0.569864i 0.982316 0.187231i \(-0.0599512\pi\)
−0.653305 + 0.757095i \(0.726618\pi\)
\(374\) −11.9288 + 20.6613i −0.616825 + 1.06837i
\(375\) 0 0
\(376\) −9.59193 + 0.718816i −0.494666 + 0.0370701i
\(377\) 23.3325 29.2581i 1.20169 1.50687i
\(378\) 0 0
\(379\) 23.0179 + 28.8635i 1.18235 + 1.48262i 0.839610 + 0.543190i \(0.182784\pi\)
0.342740 + 0.939430i \(0.388645\pi\)
\(380\) −1.40314 1.51223i −0.0719796 0.0775755i
\(381\) 0 0
\(382\) 6.09919 4.15836i 0.312062 0.212760i
\(383\) 2.39721 + 0.361321i 0.122492 + 0.0184627i 0.210002 0.977701i \(-0.432653\pi\)
−0.0875103 + 0.996164i \(0.527891\pi\)
\(384\) 0 0
\(385\) 0.475741 + 44.7770i 0.0242460 + 2.28205i
\(386\) −0.514742 + 1.06887i −0.0261997 + 0.0544042i
\(387\) 0 0
\(388\) 7.37063 7.94365i 0.374187 0.403278i
\(389\) −3.19974 0.239787i −0.162233 0.0121577i −0.00663415 0.999978i \(-0.502112\pi\)
−0.155599 + 0.987820i \(0.549731\pi\)
\(390\) 0 0
\(391\) 8.36200i 0.422884i
\(392\) 15.4984 + 3.19255i 0.782787 + 0.161248i
\(393\) 0 0
\(394\) −2.95877 + 7.53883i −0.149061 + 0.379801i
\(395\) 1.04000 13.8779i 0.0523282 0.698271i
\(396\) 0 0
\(397\) 17.6855 25.9398i 0.887608 1.30188i −0.0650632 0.997881i \(-0.520725\pi\)
0.952672 0.304001i \(-0.0983227\pi\)
\(398\) −2.67503 1.28823i −0.134087 0.0645729i
\(399\) 0 0
\(400\) 42.7850 20.6042i 2.13925 1.03021i
\(401\) 3.40985 22.6229i 0.170280 1.12973i −0.726471 0.687197i \(-0.758841\pi\)
0.896751 0.442535i \(-0.145921\pi\)
\(402\) 0 0
\(403\) −23.4547 + 3.53523i −1.16836 + 0.176102i
\(404\) 1.06938 0.992243i 0.0532038 0.0493659i
\(405\) 0 0
\(406\) 34.5779 11.0695i 1.71607 0.549371i
\(407\) 25.5925 + 20.4093i 1.26857 + 1.01165i
\(408\) 0 0
\(409\) −0.786141 + 2.54861i −0.0388721 + 0.126020i −0.972929 0.231103i \(-0.925766\pi\)
0.934057 + 0.357124i \(0.116243\pi\)
\(410\) −31.9771 18.4620i −1.57924 0.911773i
\(411\) 0 0
\(412\) 11.0429 2.52048i 0.544046 0.124175i
\(413\) 10.8162 19.2025i 0.532230 0.944893i
\(414\) 0 0
\(415\) −49.2503 + 15.1917i −2.41760 + 0.745732i
\(416\) −5.25991 13.4020i −0.257889 0.657089i
\(417\) 0 0
\(418\) 1.87404 + 6.07548i 0.0916622 + 0.297162i
\(419\) 7.01996 30.7565i 0.342947 1.50255i −0.449871 0.893093i \(-0.648530\pi\)
0.792819 0.609458i \(-0.208613\pi\)
\(420\) 0 0
\(421\) 2.52739 + 11.0732i 0.123178 + 0.539676i 0.998430 + 0.0560100i \(0.0178379\pi\)
−0.875253 + 0.483666i \(0.839305\pi\)
\(422\) 17.1957 9.92794i 0.837073 0.483284i
\(423\) 0 0
\(424\) 28.1786 + 8.69195i 1.36847 + 0.422118i
\(425\) −2.46955 32.9538i −0.119791 1.59849i
\(426\) 0 0
\(427\) 10.6710 + 4.05778i 0.516408 + 0.196370i
\(428\) −1.27144 + 1.01394i −0.0614574 + 0.0490106i
\(429\) 0 0
\(430\) 2.61501 + 17.3494i 0.126107 + 0.836664i
\(431\) 4.08471 + 5.99117i 0.196754 + 0.288585i 0.911919 0.410371i \(-0.134601\pi\)
−0.715165 + 0.698956i \(0.753648\pi\)
\(432\) 0 0
\(433\) −5.40026 11.2138i −0.259520 0.538899i 0.729974 0.683475i \(-0.239532\pi\)
−0.989494 + 0.144577i \(0.953818\pi\)
\(434\) −20.8383 9.76383i −1.00027 0.468679i
\(435\) 0 0
\(436\) 5.76227 + 3.92865i 0.275963 + 0.188148i
\(437\) −1.63355 1.51572i −0.0781435 0.0725066i
\(438\) 0 0
\(439\) 34.4035 + 13.5024i 1.64199 + 0.644433i 0.993188 0.116525i \(-0.0371754\pi\)
0.648801 + 0.760958i \(0.275271\pi\)
\(440\) −38.2598 −1.82396
\(441\) 0 0
\(442\) −23.8464 −1.13426
\(443\) 9.19111 + 3.60724i 0.436683 + 0.171385i 0.573490 0.819212i \(-0.305589\pi\)
−0.136808 + 0.990598i \(0.543684\pi\)
\(444\) 0 0
\(445\) 11.2861 + 10.4720i 0.535014 + 0.496420i
\(446\) 0.0296145 + 0.0201908i 0.00140229 + 0.000956063i
\(447\) 0 0
\(448\) −2.46768 + 11.3669i −0.116587 + 0.537038i
\(449\) −2.05379 4.26475i −0.0969245 0.201266i 0.846869 0.531802i \(-0.178485\pi\)
−0.943793 + 0.330536i \(0.892771\pi\)
\(450\) 0 0
\(451\) 14.7436 + 21.6248i 0.694247 + 1.01827i
\(452\) −1.03033 6.83578i −0.0484625 0.321528i
\(453\) 0 0
\(454\) −11.5085 + 9.17769i −0.540119 + 0.430730i
\(455\) −38.5220 + 22.7898i −1.80594 + 1.06840i
\(456\) 0 0
\(457\) −1.23467 16.4756i −0.0577556 0.770695i −0.948618 0.316423i \(-0.897518\pi\)
0.890863 0.454273i \(-0.150101\pi\)
\(458\) 6.10949 + 1.88453i 0.285478 + 0.0880582i
\(459\) 0 0
\(460\) −4.94589 + 2.85551i −0.230603 + 0.133139i
\(461\) −2.95601 12.9511i −0.137675 0.603194i −0.995943 0.0899916i \(-0.971316\pi\)
0.858267 0.513203i \(-0.171541\pi\)
\(462\) 0 0
\(463\) −8.14915 + 35.7038i −0.378723 + 1.65929i 0.322664 + 0.946514i \(0.395422\pi\)
−0.701387 + 0.712781i \(0.747435\pi\)
\(464\) 12.1419 + 39.3630i 0.563673 + 1.82738i
\(465\) 0 0
\(466\) −8.70871 22.1894i −0.403423 1.02791i
\(467\) 6.35492 1.96023i 0.294071 0.0907088i −0.144210 0.989547i \(-0.546064\pi\)
0.438280 + 0.898838i \(0.355588\pi\)
\(468\) 0 0
\(469\) −0.485008 + 7.54714i −0.0223956 + 0.348494i
\(470\) 25.7342 5.87367i 1.18703 0.270932i
\(471\) 0 0
\(472\) 16.3076 + 9.41519i 0.750617 + 0.433369i
\(473\) 3.66575 11.8841i 0.168551 0.546430i
\(474\) 0 0
\(475\) −6.88531 5.49085i −0.315920 0.251938i
\(476\) −4.42787 2.95045i −0.202951 0.135234i
\(477\) 0 0
\(478\) −15.0185 + 13.9352i −0.686932 + 0.637380i
\(479\) −19.8784 + 2.99619i −0.908268 + 0.136899i −0.586528 0.809929i \(-0.699506\pi\)
−0.321740 + 0.946828i \(0.604268\pi\)
\(480\) 0 0
\(481\) −4.87645 + 32.3532i −0.222347 + 1.47518i
\(482\) 18.6236 8.96867i 0.848283 0.408512i
\(483\) 0 0
\(484\) −4.48568 2.16019i −0.203895 0.0981905i
\(485\) 39.3340 57.6924i 1.78607 2.61968i
\(486\) 0 0
\(487\) −0.296814 + 3.96071i −0.0134499 + 0.179477i 0.986433 + 0.164165i \(0.0524931\pi\)
−0.999883 + 0.0153116i \(0.995126\pi\)
\(488\) −3.56365 + 9.08004i −0.161319 + 0.411034i
\(489\) 0 0
\(490\) −43.3615 2.32428i −1.95887 0.105000i
\(491\) 11.1315i 0.502357i 0.967941 + 0.251179i \(0.0808182\pi\)
−0.967941 + 0.251179i \(0.919182\pi\)
\(492\) 0 0
\(493\) 28.5857 + 2.14220i 1.28743 + 0.0964798i
\(494\) −4.32247 + 4.65851i −0.194477 + 0.209596i
\(495\) 0 0
\(496\) 11.3285 23.5240i 0.508666 1.05626i
\(497\) −19.2844 + 4.61762i −0.865023 + 0.207129i
\(498\) 0 0
\(499\) 29.2283 + 4.40545i 1.30844 + 0.197215i 0.765978 0.642867i \(-0.222255\pi\)
0.542459 + 0.840082i \(0.317493\pi\)
\(500\) −9.14902 + 6.23770i −0.409157 + 0.278958i
\(501\) 0 0
\(502\) −18.0674 19.4720i −0.806387 0.869079i
\(503\) 19.4052 + 24.3333i 0.865235 + 1.08497i 0.995619 + 0.0935062i \(0.0298075\pi\)
−0.130384 + 0.991464i \(0.541621\pi\)
\(504\) 0 0
\(505\) 5.86079 7.34919i 0.260802 0.327035i
\(506\) 17.5522 1.31536i 0.780292 0.0584748i
\(507\) 0 0
\(508\) −3.41885 + 5.92162i −0.151687 + 0.262729i
\(509\) 7.33336 + 12.7017i 0.325045 + 0.562995i 0.981522 0.191352i \(-0.0612871\pi\)
−0.656476 + 0.754347i \(0.727954\pi\)
\(510\) 0 0
\(511\) 7.42746 8.17745i 0.328571 0.361749i
\(512\) −5.87349 1.34059i −0.259574 0.0592461i
\(513\) 0 0
\(514\) −17.1102 + 6.71527i −0.754699 + 0.296198i
\(515\) 67.9408 26.6648i 2.99383 1.17499i
\(516\) 0 0
\(517\) −18.2410 4.16340i −0.802240 0.183106i
\(518\) −21.3422 + 23.4973i −0.937724 + 1.03241i
\(519\) 0 0
\(520\) −19.1209 33.1184i −0.838507 1.45234i
\(521\) −10.3784 + 17.9759i −0.454686 + 0.787540i −0.998670 0.0515557i \(-0.983582\pi\)
0.543984 + 0.839096i \(0.316915\pi\)
\(522\) 0 0
\(523\) 27.5060 2.06129i 1.20275 0.0901340i 0.541765 0.840530i \(-0.317756\pi\)
0.660989 + 0.750396i \(0.270137\pi\)
\(524\) −2.09937 + 2.63253i −0.0917114 + 0.115002i
\(525\) 0 0
\(526\) 8.06069 + 10.1078i 0.351463 + 0.440721i
\(527\) −12.3583 13.3191i −0.538337 0.580189i
\(528\) 0 0
\(529\) 13.9062 9.48111i 0.604619 0.412222i
\(530\) −80.0192 12.0610i −3.47581 0.523894i
\(531\) 0 0
\(532\) −1.37899 + 0.330198i −0.0597868 + 0.0143159i
\(533\) −11.3505 + 23.5696i −0.491646 + 1.02091i
\(534\) 0 0
\(535\) −7.12738 + 7.68149i −0.308143 + 0.332100i
\(536\) −6.44354 0.482877i −0.278319 0.0208571i
\(537\) 0 0
\(538\) 0.314649i 0.0135655i
\(539\) 26.9770 + 14.8200i 1.16198 + 0.638345i
\(540\) 0 0
\(541\) −3.00765 + 7.66336i −0.129309 + 0.329474i −0.980835 0.194838i \(-0.937582\pi\)
0.851527 + 0.524311i \(0.175677\pi\)
\(542\) −0.283227 + 3.77940i −0.0121656 + 0.162339i
\(543\) 0 0
\(544\) 6.21251 9.11208i 0.266359 0.390677i
\(545\) 40.4879 + 19.4980i 1.73431 + 0.835201i
\(546\) 0 0
\(547\) −30.9935 + 14.9257i −1.32519 + 0.638177i −0.956597 0.291415i \(-0.905874\pi\)
−0.368591 + 0.929592i \(0.620160\pi\)
\(548\) 1.60137 10.6244i 0.0684071 0.453851i
\(549\) 0 0
\(550\) 68.7832 10.3674i 2.93292 0.442067i
\(551\) 5.60000 5.19604i 0.238568 0.221359i
\(552\) 0 0
\(553\) −7.96050 5.30438i −0.338515 0.225565i
\(554\) 29.4206 + 23.4622i 1.24996 + 0.996812i
\(555\) 0 0
\(556\) −1.08127 + 3.50539i −0.0458560 + 0.148662i
\(557\) 13.2494 + 7.64952i 0.561394 + 0.324121i 0.753705 0.657213i \(-0.228265\pi\)
−0.192311 + 0.981334i \(0.561598\pi\)
\(558\) 0 0
\(559\) 12.1191 2.76610i 0.512582 0.116994i
\(560\) 3.15965 49.1668i 0.133519 2.07768i
\(561\) 0 0
\(562\) 14.9261 4.60410i 0.629621 0.194212i
\(563\) −6.01917 15.3366i −0.253678 0.646360i 0.746134 0.665796i \(-0.231908\pi\)
−0.999811 + 0.0194364i \(0.993813\pi\)
\(564\) 0 0
\(565\) −13.1297 42.5655i −0.552371 1.79074i
\(566\) −4.33101 + 18.9754i −0.182046 + 0.797596i
\(567\) 0 0
\(568\) −3.77005 16.5177i −0.158188 0.693065i
\(569\) 13.2052 7.62404i 0.553592 0.319616i −0.196978 0.980408i \(-0.563113\pi\)
0.750569 + 0.660792i \(0.229779\pi\)
\(570\) 0 0
\(571\) −38.7414 11.9502i −1.62128 0.500098i −0.654575 0.755997i \(-0.727153\pi\)
−0.966704 + 0.255899i \(0.917629\pi\)
\(572\) −0.862702 11.5120i −0.0360714 0.481339i
\(573\) 0 0
\(574\) −21.8438 + 12.9229i −0.911743 + 0.539391i
\(575\) −19.0614 + 15.2010i −0.794916 + 0.633925i
\(576\) 0 0
\(577\) −3.75825 24.9343i −0.156458 1.03803i −0.919900 0.392154i \(-0.871730\pi\)
0.763442 0.645877i \(-0.223508\pi\)
\(578\) 5.14381 + 7.54459i 0.213954 + 0.313814i
\(579\) 0 0
\(580\) −8.49456 17.6391i −0.352718 0.732426i
\(581\) −7.51581 + 34.6203i −0.311808 + 1.43629i
\(582\) 0 0
\(583\) 47.3932 + 32.3121i 1.96283 + 1.33823i
\(584\) 6.91903 + 6.41993i 0.286312 + 0.265658i
\(585\) 0 0
\(586\) 17.8941 + 7.02291i 0.739198 + 0.290114i
\(587\) −2.24197 −0.0925360 −0.0462680 0.998929i \(-0.514733\pi\)
−0.0462680 + 0.998929i \(0.514733\pi\)
\(588\) 0 0
\(589\) −4.84205 −0.199513
\(590\) −48.1023 18.8788i −1.98034 0.777227i
\(591\) 0 0
\(592\) −26.4011 24.4966i −1.08508 1.00680i
\(593\) 32.4557 + 22.1279i 1.33279 + 0.908684i 0.999418 0.0341103i \(-0.0108597\pi\)
0.333376 + 0.942794i \(0.391812\pi\)
\(594\) 0 0
\(595\) −31.0462 14.5468i −1.27277 0.596360i
\(596\) 1.73088 + 3.59420i 0.0708995 + 0.147224i
\(597\) 0 0
\(598\) 9.91058 + 14.5362i 0.405274 + 0.594428i
\(599\) −4.17473 27.6976i −0.170575 1.13169i −0.896216 0.443618i \(-0.853695\pi\)
0.725641 0.688074i \(-0.241543\pi\)
\(600\) 0 0
\(601\) 19.9039 15.8728i 0.811896 0.647466i −0.126909 0.991914i \(-0.540506\pi\)
0.938805 + 0.344449i \(0.111934\pi\)
\(602\) 11.2726 + 4.28651i 0.459435 + 0.174705i
\(603\) 0 0
\(604\) 0.515643 + 6.88078i 0.0209812 + 0.279975i
\(605\) −30.6556 9.45601i −1.24633 0.384441i
\(606\) 0 0
\(607\) −11.0459 + 6.37734i −0.448338 + 0.258848i −0.707128 0.707086i \(-0.750010\pi\)
0.258790 + 0.965934i \(0.416676\pi\)
\(608\) −0.653991 2.86532i −0.0265228 0.116204i
\(609\) 0 0
\(610\) 5.95641 26.0967i 0.241168 1.05663i
\(611\) −5.51231 17.8705i −0.223004 0.722962i
\(612\) 0 0
\(613\) −5.50861 14.0357i −0.222491 0.566897i 0.775424 0.631441i \(-0.217536\pi\)
−0.997915 + 0.0645435i \(0.979441\pi\)
\(614\) −43.4930 + 13.4158i −1.75524 + 0.541418i
\(615\) 0 0
\(616\) −12.9065 + 22.9135i −0.520017 + 0.923210i
\(617\) −28.8631 + 6.58782i −1.16199 + 0.265216i −0.759685 0.650292i \(-0.774647\pi\)
−0.402301 + 0.915507i \(0.631790\pi\)
\(618\) 0 0
\(619\) 19.2524 + 11.1154i 0.773819 + 0.446765i 0.834235 0.551409i \(-0.185910\pi\)
−0.0604163 + 0.998173i \(0.519243\pi\)
\(620\) −3.65767 + 11.8579i −0.146896 + 0.476224i
\(621\) 0 0
\(622\) 24.0865 + 19.2084i 0.965783 + 0.770186i
\(623\) 10.0788 3.22656i 0.403800 0.129270i
\(624\) 0 0
\(625\) −16.3260 + 15.1484i −0.653042 + 0.605934i
\(626\) 54.4001 8.19950i 2.17427 0.327718i
\(627\) 0 0
\(628\) −0.412982 + 2.73996i −0.0164798 + 0.109336i
\(629\) −22.5806 + 10.8743i −0.900349 + 0.433585i
\(630\) 0 0
\(631\) 6.82205 + 3.28533i 0.271582 + 0.130787i 0.564718 0.825284i \(-0.308985\pi\)
−0.293137 + 0.956071i \(0.594699\pi\)
\(632\) 4.60409 6.75296i 0.183141 0.268618i
\(633\) 0 0
\(634\) −0.982981 + 13.1170i −0.0390392 + 0.520942i
\(635\) −16.0967 + 41.0136i −0.638777 + 1.62758i
\(636\) 0 0
\(637\) 0.653668 + 30.7583i 0.0258993 + 1.21869i
\(638\) 60.3396i 2.38887i
\(639\) 0 0
\(640\) 52.3436 + 3.92261i 2.06906 + 0.155055i
\(641\) 5.33852 5.75356i 0.210859 0.227252i −0.618763 0.785578i \(-0.712366\pi\)
0.829622 + 0.558326i \(0.188556\pi\)
\(642\) 0 0
\(643\) −13.2286 + 27.4694i −0.521684 + 1.08329i 0.459135 + 0.888367i \(0.348160\pi\)
−0.980819 + 0.194922i \(0.937555\pi\)
\(644\) 0.0417052 + 3.92532i 0.00164342 + 0.154679i
\(645\) 0 0
\(646\) −4.81356 0.725527i −0.189387 0.0285455i
\(647\) 7.77763 5.30270i 0.305770 0.208471i −0.400707 0.916206i \(-0.631236\pi\)
0.706478 + 0.707736i \(0.250283\pi\)
\(648\) 0 0
\(649\) 24.9134 + 26.8503i 0.977936 + 1.05396i
\(650\) 43.3496 + 54.3587i 1.70031 + 2.13212i
\(651\) 0 0
\(652\) 4.42181 5.54477i 0.173171 0.217150i
\(653\) −12.8389 + 0.962144i −0.502426 + 0.0376516i −0.323533 0.946217i \(-0.604871\pi\)
−0.178893 + 0.983869i \(0.557252\pi\)
\(654\) 0 0
\(655\) −10.8482 + 18.7896i −0.423874 + 0.734171i
\(656\) −14.3981 24.9382i −0.562151 0.973674i
\(657\) 0 0
\(658\) 5.16344 17.3934i 0.201292 0.678066i
\(659\) 1.07593 + 0.245573i 0.0419121 + 0.00956617i 0.243426 0.969920i \(-0.421729\pi\)
−0.201513 + 0.979486i \(0.564586\pi\)
\(660\) 0 0
\(661\) 23.8238 9.35014i 0.926637 0.363678i 0.146445 0.989219i \(-0.453217\pi\)
0.780192 + 0.625541i \(0.215122\pi\)
\(662\) 45.1919 17.7365i 1.75643 0.689349i
\(663\) 0 0
\(664\) −29.5099 6.73543i −1.14520 0.261386i
\(665\) −8.46929 + 3.42823i −0.328425 + 0.132941i
\(666\) 0 0
\(667\) −10.5744 18.3154i −0.409441 0.709173i
\(668\) 6.86468 11.8900i 0.265602 0.460037i
\(669\) 0 0
\(670\) 17.6824 1.32511i 0.683130 0.0511935i
\(671\) −11.8299 + 14.8342i −0.456688 + 0.572669i
\(672\) 0 0
\(673\) −10.2056 12.7974i −0.393395 0.493302i 0.545208 0.838301i \(-0.316451\pi\)
−0.938603 + 0.344999i \(0.887879\pi\)
\(674\) 31.8589 + 34.3357i 1.22716 + 1.32256i
\(675\) 0 0
\(676\) 3.11752 2.12549i 0.119905 0.0817495i
\(677\) −15.7345 2.37159i −0.604725 0.0911477i −0.160459 0.987042i \(-0.551297\pi\)
−0.444266 + 0.895895i \(0.646536\pi\)
\(678\) 0 0
\(679\) −21.2826 43.0186i −0.816752 1.65090i
\(680\) 12.7099 26.3925i 0.487404 1.01211i
\(681\) 0 0
\(682\) 26.0134 28.0358i 0.996106 1.07355i
\(683\) 29.2178 + 2.18957i 1.11799 + 0.0837818i 0.620880 0.783906i \(-0.286775\pi\)
0.497110 + 0.867688i \(0.334395\pi\)
\(684\) 0 0
\(685\) 69.2324i 2.64523i
\(686\) −16.0195 + 25.1847i −0.611626 + 0.961558i
\(687\) 0 0
\(688\) −4.99905 + 12.7374i −0.190587 + 0.485608i
\(689\) −4.28451 + 57.1729i −0.163227 + 2.17811i
\(690\) 0 0
\(691\) −0.376066 + 0.551588i −0.0143062 + 0.0209834i −0.833325 0.552783i \(-0.813566\pi\)
0.819019 + 0.573766i \(0.194518\pi\)
\(692\) 7.07161 + 3.40551i 0.268822 + 0.129458i
\(693\) 0 0
\(694\) 17.8089 8.57630i 0.676016 0.325552i
\(695\) −3.52297 + 23.3734i −0.133634 + 0.886604i
\(696\) 0 0
\(697\) −19.8151 + 2.98665i −0.750551 + 0.113127i
\(698\) 3.82811 3.55196i 0.144896 0.134444i
\(699\) 0 0
\(700\) 1.32362 + 15.4570i 0.0500281 + 0.584219i
\(701\) −14.6783 11.7056i −0.554394 0.442114i 0.305790 0.952099i \(-0.401080\pi\)
−0.860183 + 0.509985i \(0.829651\pi\)
\(702\) 0 0
\(703\) −1.96869 + 6.38233i −0.0742505 + 0.240714i
\(704\) −16.7414 9.66567i −0.630967 0.364289i
\(705\) 0 0
\(706\) −8.42796 + 1.92363i −0.317191 + 0.0723967i
\(707\) −2.42430 5.98913i −0.0911753 0.225245i
\(708\) 0 0
\(709\) 32.8575 10.1352i 1.23399 0.380635i 0.391917 0.920001i \(-0.371812\pi\)
0.842072 + 0.539366i \(0.181336\pi\)
\(710\) 16.9860 + 43.2796i 0.637472 + 1.62425i
\(711\) 0 0
\(712\) 2.66515 + 8.64020i 0.0998806 + 0.323805i
\(713\) −2.98285 + 13.0687i −0.111709 + 0.489427i
\(714\) 0 0
\(715\) −16.5525 72.5213i −0.619029 2.71214i
\(716\) −9.07174 + 5.23757i −0.339027 + 0.195737i
\(717\) 0 0
\(718\) 49.0321 + 15.1244i 1.82986 + 0.564438i
\(719\) −3.06099 40.8461i −0.114156 1.52330i −0.700741 0.713415i \(-0.747147\pi\)
0.586586 0.809887i \(-0.300472\pi\)
\(720\) 0 0
\(721\) 6.94968 49.6842i 0.258819 1.85034i
\(722\) 22.9262 18.2830i 0.853226 0.680425i
\(723\) 0 0
\(724\) −0.563814 3.74066i −0.0209540 0.139021i
\(725\) −47.0816 69.0561i −1.74857 2.56468i
\(726\) 0 0
\(727\) 16.9262 + 35.1477i 0.627759 + 1.30356i 0.935917 + 0.352220i \(0.114573\pi\)
−0.308158 + 0.951335i \(0.599713\pi\)
\(728\) −26.2845 + 0.279264i −0.974169 + 0.0103502i
\(729\) 0 0
\(730\) −21.4009 14.5909i −0.792084 0.540034i
\(731\) 6.98013 + 6.47662i 0.258170 + 0.239546i
\(732\) 0 0
\(733\) −15.3173 6.01161i −0.565759 0.222044i 0.0651842 0.997873i \(-0.479237\pi\)
−0.630943 + 0.775829i \(0.717332\pi\)
\(734\) 16.5154 0.609596
\(735\) 0 0
\(736\) −8.13641 −0.299912
\(737\) −11.7000 4.59192i −0.430975 0.169145i
\(738\) 0 0
\(739\) 16.0870 + 14.9265i 0.591769 + 0.549081i 0.918189 0.396144i \(-0.129652\pi\)
−0.326420 + 0.945225i \(0.605842\pi\)
\(740\) 14.1428 + 9.64240i 0.519900 + 0.354462i
\(741\) 0 0
\(742\) −34.2167 + 43.8542i −1.25613 + 1.60994i
\(743\) 6.05682 + 12.5771i 0.222203 + 0.461409i 0.982032 0.188713i \(-0.0604317\pi\)
−0.759829 + 0.650123i \(0.774717\pi\)
\(744\) 0 0
\(745\) 14.4802 + 21.2386i 0.530515 + 0.778122i
\(746\) −3.05261 20.2527i −0.111764 0.741504i
\(747\) 0 0
\(748\) 6.91370 5.51349i 0.252790 0.201593i
\(749\) 2.19604 + 6.85978i 0.0802416 + 0.250651i
\(750\) 0 0
\(751\) 0.0540646 + 0.721442i 0.00197285 + 0.0263258i 0.998103 0.0615607i \(-0.0196078\pi\)
−0.996130 + 0.0878865i \(0.971989\pi\)
\(752\) 19.6711 + 6.06773i 0.717331 + 0.221267i
\(753\) 0 0
\(754\) −52.2311 + 30.1556i −1.90214 + 1.09820i
\(755\) 9.89356 + 43.3465i 0.360063 + 1.57754i
\(756\) 0 0
\(757\) −9.26950 + 40.6123i −0.336906 + 1.47608i 0.468556 + 0.883434i \(0.344774\pi\)
−0.805462 + 0.592647i \(0.798083\pi\)
\(758\) −17.5373 56.8547i −0.636985 2.06505i
\(759\) 0 0
\(760\) −2.85205 7.26691i −0.103455 0.263599i
\(761\) 13.4562 4.15068i 0.487786 0.150462i −0.0410997 0.999155i \(-0.513086\pi\)
0.528886 + 0.848693i \(0.322610\pi\)
\(762\) 0 0
\(763\) 25.3353 17.6705i 0.917198 0.639714i
\(764\) −2.66752 + 0.608845i −0.0965076 + 0.0220272i
\(765\) 0 0
\(766\) −3.38361 1.95353i −0.122255 0.0705839i
\(767\) −10.7912 + 34.9843i −0.389649 + 1.26321i
\(768\) 0 0
\(769\) −7.77227 6.19818i −0.280275 0.223512i 0.473255 0.880926i \(-0.343079\pi\)
−0.753530 + 0.657414i \(0.771650\pi\)
\(770\) 25.6508 67.4557i 0.924389 2.43093i
\(771\) 0 0
\(772\) 0.322345 0.299092i 0.0116014 0.0107646i
\(773\) −40.8349 + 6.15487i −1.46873 + 0.221375i −0.834173 0.551503i \(-0.814055\pi\)
−0.634555 + 0.772878i \(0.718817\pi\)
\(774\) 0 0
\(775\) −7.89554 + 52.3835i −0.283616 + 1.88167i
\(776\) 36.9464 17.7925i 1.32630 0.638712i
\(777\) 0 0
\(778\) 4.65915 + 2.24373i 0.167038 + 0.0804415i
\(779\) −3.00828 + 4.41234i −0.107783 + 0.158088i
\(780\) 0 0
\(781\) 2.46278 32.8635i 0.0881253 1.17595i
\(782\) −4.92350 + 12.5449i −0.176064 + 0.448604i
\(783\) 0 0
\(784\) −28.3797 18.4781i −1.01356 0.659933i
\(785\) 17.8546i 0.637258i
\(786\) 0 0
\(787\) 27.0998 + 2.03085i 0.966004 + 0.0723920i 0.548381 0.836229i \(-0.315244\pi\)
0.417623 + 0.908621i \(0.362863\pi\)
\(788\) 2.04174 2.20048i 0.0727341 0.0783888i
\(789\) 0 0
\(790\) −9.73146 + 20.2076i −0.346230 + 0.718954i
\(791\) −29.9212 6.49567i −1.06388 0.230960i
\(792\) 0 0
\(793\) −18.7529 2.82655i −0.665936 0.100374i
\(794\) −41.8055 + 28.5025i −1.48362 + 1.01152i
\(795\) 0 0
\(796\) 0.748527 + 0.806720i 0.0265308 + 0.0285934i
\(797\) −15.2817 19.1626i −0.541304 0.678774i 0.433675 0.901069i \(-0.357217\pi\)
−0.974979 + 0.222295i \(0.928645\pi\)
\(798\) 0 0
\(799\) 8.93169 11.2000i 0.315981 0.396227i
\(800\) −32.0648 + 2.40292i −1.13366 + 0.0849561i
\(801\) 0 0
\(802\) −18.4358 + 31.9317i −0.650990 + 1.12755i
\(803\) 9.17985 + 15.9000i 0.323950 + 0.561098i
\(804\) 0 0
\(805\) 4.03548 + 24.9706i 0.142232 + 0.880097i
\(806\) 37.2689 + 8.50639i 1.31274 + 0.299625i
\(807\) 0 0
\(808\) 5.13886 2.01685i 0.180785 0.0709527i
\(809\) −25.3246 + 9.93918i −0.890366 + 0.349443i −0.766036 0.642798i \(-0.777774\pi\)
−0.124330 + 0.992241i \(0.539678\pi\)
\(810\) 0 0
\(811\) 1.16493 + 0.265887i 0.0409062 + 0.00933656i 0.242925 0.970045i \(-0.421893\pi\)
−0.202019 + 0.979382i \(0.564750\pi\)
\(812\) −13.4295 0.863029i −0.471282 0.0302864i
\(813\) 0 0
\(814\) −26.3776 45.6873i −0.924534 1.60134i
\(815\) 22.8490 39.5757i 0.800367 1.38628i
\(816\) 0 0
\(817\) 2.53047 0.189633i 0.0885301 0.00663441i
\(818\) 2.68000 3.36061i 0.0937038 0.117501i
\(819\) 0 0
\(820\) 8.53311 + 10.7002i 0.297989 + 0.373666i
\(821\) 14.9254 + 16.0858i 0.520900 + 0.561397i 0.937631 0.347633i \(-0.113015\pi\)
−0.416730 + 0.909030i \(0.636824\pi\)
\(822\) 0 0
\(823\) −4.96524 + 3.38524i −0.173077 + 0.118002i −0.646760 0.762693i \(-0.723877\pi\)
0.473683 + 0.880695i \(0.342924\pi\)
\(824\) 42.3849 + 6.38850i 1.47655 + 0.222554i
\(825\) 0 0
\(826\) −27.5331 + 22.4395i −0.957998 + 0.780772i
\(827\) −12.6790 + 26.3282i −0.440892 + 0.915522i 0.555569 + 0.831470i \(0.312500\pi\)
−0.996461 + 0.0840519i \(0.973214\pi\)
\(828\) 0 0
\(829\) 13.9609 15.0463i 0.484883 0.522580i −0.442462 0.896787i \(-0.645895\pi\)
0.927345 + 0.374208i \(0.122085\pi\)
\(830\) 82.8314 + 6.20736i 2.87512 + 0.215460i
\(831\) 0 0
\(832\) 19.3222i 0.669878i
\(833\) −19.1850 + 13.6861i −0.664721 + 0.474196i
\(834\) 0 0
\(835\) 32.3204 82.3510i 1.11849 2.84987i
\(836\) 0.176109 2.35001i 0.00609086 0.0812769i
\(837\) 0 0
\(838\) −28.6408 + 42.0083i −0.989379 + 1.45115i
\(839\) 3.86101 + 1.85937i 0.133297 + 0.0641924i 0.499343 0.866404i \(-0.333575\pi\)
−0.366047 + 0.930597i \(0.619289\pi\)
\(840\) 0 0
\(841\) 39.1923 18.8740i 1.35146 0.650828i
\(842\) 2.72821 18.1005i 0.0940202 0.623783i
\(843\) 0 0
\(844\) −7.27747 + 1.09690i −0.250501 + 0.0377569i
\(845\) 17.8224 16.5368i 0.613109 0.568882i
\(846\) 0 0
\(847\) −16.0044 + 15.1695i −0.549918 + 0.521231i
\(848\) −49.3414 39.3485i −1.69439 1.35123i
\(849\) 0 0
\(850\) −15.6982 + 50.8922i −0.538443 + 1.74559i
\(851\) 16.0132 + 9.24522i 0.548925 + 0.316922i
\(852\) 0 0
\(853\) 17.0442 3.89023i 0.583583 0.133199i 0.0794710 0.996837i \(-0.474677\pi\)
0.504112 + 0.863638i \(0.331820\pi\)
\(854\) −13.6198 12.3706i −0.466059 0.423315i
\(855\) 0 0
\(856\) −5.88063 + 1.81393i −0.200996 + 0.0619990i
\(857\) −15.1470 38.5938i −0.517410 1.31834i −0.915988 0.401205i \(-0.868591\pi\)
0.398578 0.917135i \(-0.369504\pi\)
\(858\) 0 0
\(859\) 3.69007 + 11.9629i 0.125904 + 0.408170i 0.996477 0.0838695i \(-0.0267279\pi\)
−0.870573 + 0.492039i \(0.836252\pi\)
\(860\) 1.44712 6.34023i 0.0493462 0.216200i
\(861\) 0 0
\(862\) −2.60042 11.3932i −0.0885706 0.388053i
\(863\) 1.23502 0.713038i 0.0420405 0.0242721i −0.478832 0.877906i \(-0.658940\pi\)
0.520873 + 0.853634i \(0.325607\pi\)
\(864\) 0 0
\(865\) 48.3281 + 14.9072i 1.64321 + 0.506862i
\(866\) 1.49900 + 20.0028i 0.0509382 + 0.679723i
\(867\) 0 0
\(868\) 5.86772 + 6.19066i 0.199163 + 0.210125i
\(869\) 12.4296 9.91225i 0.421644 0.336250i
\(870\) 0 0
\(871\) −1.87241 12.4226i −0.0634441 0.420924i
\(872\) 14.8669 + 21.8057i 0.503457 + 0.738436i
\(873\) 0 0
\(874\) 1.55825 + 3.23575i 0.0527087 + 0.109451i
\(875\) 11.4206 + 47.6954i 0.386087 + 1.61240i
\(876\) 0 0
\(877\) −7.07045 4.82055i −0.238752 0.162778i 0.438033 0.898959i \(-0.355675\pi\)
−0.676785 + 0.736180i \(0.736628\pi\)
\(878\) −43.6629 40.5132i −1.47355 1.36726i
\(879\) 0 0
\(880\) 76.2213 + 29.9146i 2.56942 + 1.00842i
\(881\) 46.2571 1.55844 0.779221 0.626749i \(-0.215615\pi\)
0.779221 + 0.626749i \(0.215615\pi\)
\(882\) 0 0
\(883\) 47.2579 1.59035 0.795177 0.606378i \(-0.207378\pi\)
0.795177 + 0.606378i \(0.207378\pi\)
\(884\) 8.22780 + 3.22917i 0.276731 + 0.108609i
\(885\) 0 0
\(886\) −11.6648 10.8234i −0.391887 0.363618i
\(887\) 34.3701 + 23.4331i 1.15403 + 0.786807i 0.980208 0.197969i \(-0.0634345\pi\)
0.173826 + 0.984776i \(0.444387\pi\)
\(888\) 0 0
\(889\) 19.1327 + 23.4756i 0.641690 + 0.787347i
\(890\) −10.7659 22.3556i −0.360873 0.749361i
\(891\) 0 0
\(892\) −0.00748381 0.0109767i −0.000250577 0.000367528i
\(893\) −0.568988 3.77499i −0.0190404 0.126325i
\(894\) 0 0
\(895\) −52.7717 + 42.0840i −1.76396 + 1.40671i
\(896\) 20.0067 30.0249i 0.668377 1.00306i
\(897\) 0 0
\(898\) 0.570092 + 7.60735i 0.0190242 + 0.253861i
\(899\) −43.9115 13.5449i −1.46453 0.451748i
\(900\) 0 0
\(901\) −38.0337 + 21.9588i −1.26709 + 0.731553i
\(902\) −9.38607 41.1231i −0.312522 1.36925i
\(903\) 0 0
\(904\) 5.82122 25.5044i 0.193611 0.848265i
\(905\) −7.18482 23.2926i −0.238832 0.774273i
\(906\) 0 0
\(907\) −3.60632 9.18876i −0.119746 0.305108i 0.858415 0.512955i \(-0.171449\pi\)
−0.978161 + 0.207848i \(0.933354\pi\)
\(908\) 5.21359 1.60818i 0.173019 0.0533693i
\(909\) 0 0
\(910\) 71.2102 11.5082i 2.36060 0.381494i
\(911\) −44.0955 + 10.0645i −1.46095 + 0.333452i −0.877845 0.478944i \(-0.841020\pi\)
−0.583105 + 0.812397i \(0.698162\pi\)
\(912\) 0 0
\(913\) −50.9894 29.4388i −1.68750 0.974281i
\(914\) −7.84845 + 25.4441i −0.259604 + 0.841615i
\(915\) 0 0
\(916\) −1.85278 1.47754i −0.0612175 0.0488194i
\(917\) 7.59344 + 12.8353i 0.250757 + 0.423860i
\(918\) 0 0
\(919\) −18.5948 + 17.2534i −0.613385 + 0.569138i −0.924475 0.381243i \(-0.875496\pi\)
0.311090 + 0.950380i \(0.399306\pi\)
\(920\) −21.3704 + 3.22107i −0.704561 + 0.106196i
\(921\) 0 0
\(922\) −3.19088 + 21.1701i −0.105086 + 0.697201i
\(923\) 29.6781 14.2922i 0.976866 0.470434i
\(924\) 0 0
\(925\) 65.8368 + 31.7053i 2.16470 + 1.04246i
\(926\) 33.2478 48.7655i 1.09259 1.60253i
\(927\) 0 0
\(928\) 2.08441 27.8145i 0.0684240 0.913055i
\(929\) 13.6488 34.7767i 0.447804 1.14099i −0.511669 0.859183i \(-0.670972\pi\)
0.959472 0.281803i \(-0.0909323\pi\)
\(930\) 0 0
\(931\) −0.803875 + 6.22866i −0.0263459 + 0.204136i
\(932\) 8.83537i 0.289412i
\(933\) 0 0
\(934\) −10.6880 0.800955i −0.349722 0.0262080i
\(935\) 38.7565 41.7695i 1.26747 1.36601i
\(936\) 0 0
\(937\) −11.1684 + 23.1914i −0.364856 + 0.757631i −0.999890 0.0148533i \(-0.995272\pi\)
0.635034 + 0.772484i \(0.280986\pi\)
\(938\) 5.17134 11.0368i 0.168850 0.360366i
\(939\) 0 0
\(940\) −9.67453 1.45820i −0.315548 0.0475613i
\(941\) −15.0278 + 10.2458i −0.489894 + 0.334004i −0.782943 0.622093i \(-0.786282\pi\)
0.293049 + 0.956097i \(0.405330\pi\)
\(942\) 0 0
\(943\) 10.0557 + 10.8375i 0.327460 + 0.352918i
\(944\) −25.1264 31.5076i −0.817796 1.02548i
\(945\) 0 0
\(946\) −12.4967 + 15.6704i −0.406304 + 0.509489i
\(947\) −1.95112 + 0.146216i −0.0634028 + 0.00475138i −0.106394 0.994324i \(-0.533930\pi\)
0.0429909 + 0.999075i \(0.486311\pi\)
\(948\) 0 0
\(949\) −9.17553 + 15.8925i −0.297850 + 0.515892i
\(950\) 7.09654 + 12.2916i 0.230242 + 0.398791i
\(951\) 0 0
\(952\) −11.5187 16.5151i −0.373323 0.535256i
\(953\) 25.7801 + 5.88414i 0.835099 + 0.190606i 0.618629 0.785683i \(-0.287688\pi\)
0.216470 + 0.976289i \(0.430546\pi\)
\(954\) 0 0
\(955\) −16.4117 + 6.44113i −0.531071 + 0.208430i
\(956\) 7.06892 2.77435i 0.228625 0.0897288i
\(957\) 0 0
\(958\) 31.5863 + 7.20936i 1.02051 + 0.232924i
\(959\) −41.4627 23.3547i −1.33890 0.754163i
\(960\) 0 0
\(961\) −0.936667 1.62236i −0.0302151 0.0523340i
\(962\) 26.3652 45.6658i 0.850047 1.47233i
\(963\) 0 0
\(964\) −7.64025 + 0.572558i −0.246076 + 0.0184408i
\(965\) 1.76662 2.21527i 0.0568695 0.0713121i
\(966\) 0 0
\(967\) −9.01074 11.2991i −0.289766 0.363355i 0.615547 0.788100i \(-0.288935\pi\)
−0.905313 + 0.424745i \(0.860364\pi\)
\(968\) −12.8149 13.8112i −0.411886 0.443908i
\(969\) 0 0
\(970\) −92.9789 + 63.3920i −2.98537 + 2.03539i
\(971\) −22.0429 3.32244i −0.707391 0.106622i −0.214514 0.976721i \(-0.568817\pi\)
−0.492877 + 0.870099i \(0.664055\pi\)
\(972\) 0 0
\(973\) 12.8097 + 9.99461i 0.410660 + 0.320413i
\(974\) 2.77734 5.76720i 0.0889917 0.184793i
\(975\) 0 0
\(976\) 14.1990 15.3029i 0.454500 0.489834i
\(977\) 5.43664 + 0.407420i 0.173933 + 0.0130345i 0.161412 0.986887i \(-0.448395\pi\)
0.0125213 + 0.999922i \(0.496014\pi\)
\(978\) 0 0
\(979\) 17.5879i 0.562112i
\(980\) 14.6464 + 6.67376i 0.467861 + 0.213185i
\(981\) 0 0
\(982\) 6.55417 16.6998i 0.209152 0.532911i
\(983\) −2.26325 + 30.2010i −0.0721865 + 0.963261i 0.837089 + 0.547067i \(0.184256\pi\)
−0.909275 + 0.416195i \(0.863363\pi\)
\(984\) 0 0
\(985\) 10.8960 15.9814i 0.347174 0.509211i
\(986\) −41.6236 20.0449i −1.32557 0.638359i
\(987\) 0 0
\(988\) 2.12223 1.02201i 0.0675170 0.0325145i
\(989\) 1.04703 6.94659i 0.0332936 0.220889i
\(990\) 0 0
\(991\) 26.4333 3.98418i 0.839681 0.126562i 0.284899 0.958557i \(-0.408040\pi\)
0.554782 + 0.831996i \(0.312802\pi\)
\(992\) −12.9598 + 12.0249i −0.411473 + 0.381791i
\(993\) 0 0
\(994\) 31.6498 + 4.42708i 1.00387 + 0.140418i
\(995\) 5.54407 + 4.42125i 0.175759 + 0.140163i
\(996\) 0 0
\(997\) −11.6386 + 37.7315i −0.368599 + 1.19497i 0.561444 + 0.827515i \(0.310246\pi\)
−0.930042 + 0.367452i \(0.880230\pi\)
\(998\) −41.2551 23.8187i −1.30591 0.753966i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.bg.a.395.5 yes 216
3.2 odd 2 inner 441.2.bg.a.395.14 yes 216
49.33 odd 42 inner 441.2.bg.a.278.14 yes 216
147.131 even 42 inner 441.2.bg.a.278.5 216
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.bg.a.278.5 216 147.131 even 42 inner
441.2.bg.a.278.14 yes 216 49.33 odd 42 inner
441.2.bg.a.395.5 yes 216 1.1 even 1 trivial
441.2.bg.a.395.14 yes 216 3.2 odd 2 inner