Properties

Label 441.2.e.i
Level 441441
Weight 22
Character orbit 441.e
Analytic conductor 3.5213.521
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(226,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 441=3272 441 = 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 441.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.521402729143.52140272914
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2+(β11)q42β2q5β3q8+(6β16)q10+(2β3+2β2)q112q13+5β1q16+(2β32β2)q17+14q97+O(q100) q - \beta_{2} q^{2} + (\beta_1 - 1) q^{4} - 2 \beta_{2} q^{5} - \beta_{3} q^{8} + (6 \beta_1 - 6) q^{10} + ( - 2 \beta_{3} + 2 \beta_{2}) q^{11} - 2 q^{13} + 5 \beta_1 q^{16} + (2 \beta_{3} - 2 \beta_{2}) q^{17}+ \cdots - 14 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q412q108q13+10q168q19+24q2214q258q3124q344q37+12q4016q43+12q46+4q52+48q5520q61+4q64+8q67+56q97+O(q100) 4 q - 2 q^{4} - 12 q^{10} - 8 q^{13} + 10 q^{16} - 8 q^{19} + 24 q^{22} - 14 q^{25} - 8 q^{31} - 24 q^{34} - 4 q^{37} + 12 q^{40} - 16 q^{43} + 12 q^{46} + 4 q^{52} + 48 q^{55} - 20 q^{61} + 4 q^{64} + 8 q^{67}+ \cdots - 56 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ122 \zeta_{12}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ123+ζ12 \zeta_{12}^{3} + \zeta_{12} Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3+2β2)/3 ( -\beta_{3} + 2\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/441Z)×\left(\mathbb{Z}/441\mathbb{Z}\right)^\times.

nn 199199 344344
χ(n)\chi(n) β1-\beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
226.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 1.50000i 0 −0.500000 0.866025i −1.73205 + 3.00000i 0 0 −1.73205 0 −3.00000 5.19615i
226.2 0.866025 1.50000i 0 −0.500000 0.866025i 1.73205 3.00000i 0 0 1.73205 0 −3.00000 5.19615i
361.1 −0.866025 1.50000i 0 −0.500000 + 0.866025i −1.73205 3.00000i 0 0 −1.73205 0 −3.00000 + 5.19615i
361.2 0.866025 + 1.50000i 0 −0.500000 + 0.866025i 1.73205 + 3.00000i 0 0 1.73205 0 −3.00000 + 5.19615i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.e.i 4
3.b odd 2 1 inner 441.2.e.i 4
7.b odd 2 1 441.2.e.j 4
7.c even 3 1 441.2.a.g 2
7.c even 3 1 inner 441.2.e.i 4
7.d odd 6 1 63.2.a.b 2
7.d odd 6 1 441.2.e.j 4
21.c even 2 1 441.2.e.j 4
21.g even 6 1 63.2.a.b 2
21.g even 6 1 441.2.e.j 4
21.h odd 6 1 441.2.a.g 2
21.h odd 6 1 inner 441.2.e.i 4
28.f even 6 1 1008.2.a.n 2
28.g odd 6 1 7056.2.a.cm 2
35.i odd 6 1 1575.2.a.q 2
35.k even 12 2 1575.2.d.i 4
56.j odd 6 1 4032.2.a.bt 2
56.m even 6 1 4032.2.a.bq 2
63.i even 6 1 567.2.f.j 4
63.k odd 6 1 567.2.f.j 4
63.s even 6 1 567.2.f.j 4
63.t odd 6 1 567.2.f.j 4
77.i even 6 1 7623.2.a.bi 2
84.j odd 6 1 1008.2.a.n 2
84.n even 6 1 7056.2.a.cm 2
105.p even 6 1 1575.2.a.q 2
105.w odd 12 2 1575.2.d.i 4
168.ba even 6 1 4032.2.a.bt 2
168.be odd 6 1 4032.2.a.bq 2
231.k odd 6 1 7623.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.a.b 2 7.d odd 6 1
63.2.a.b 2 21.g even 6 1
441.2.a.g 2 7.c even 3 1
441.2.a.g 2 21.h odd 6 1
441.2.e.i 4 1.a even 1 1 trivial
441.2.e.i 4 3.b odd 2 1 inner
441.2.e.i 4 7.c even 3 1 inner
441.2.e.i 4 21.h odd 6 1 inner
441.2.e.j 4 7.b odd 2 1
441.2.e.j 4 7.d odd 6 1
441.2.e.j 4 21.c even 2 1
441.2.e.j 4 21.g even 6 1
567.2.f.j 4 63.i even 6 1
567.2.f.j 4 63.k odd 6 1
567.2.f.j 4 63.s even 6 1
567.2.f.j 4 63.t odd 6 1
1008.2.a.n 2 28.f even 6 1
1008.2.a.n 2 84.j odd 6 1
1575.2.a.q 2 35.i odd 6 1
1575.2.a.q 2 105.p even 6 1
1575.2.d.i 4 35.k even 12 2
1575.2.d.i 4 105.w odd 12 2
4032.2.a.bq 2 56.m even 6 1
4032.2.a.bq 2 168.be odd 6 1
4032.2.a.bt 2 56.j odd 6 1
4032.2.a.bt 2 168.ba even 6 1
7056.2.a.cm 2 28.g odd 6 1
7056.2.a.cm 2 84.n even 6 1
7623.2.a.bi 2 77.i even 6 1
7623.2.a.bi 2 231.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(441,[χ])S_{2}^{\mathrm{new}}(441, [\chi]):

T24+3T22+9 T_{2}^{4} + 3T_{2}^{2} + 9 Copy content Toggle raw display
T54+12T52+144 T_{5}^{4} + 12T_{5}^{2} + 144 Copy content Toggle raw display
T13+2 T_{13} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
1313 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
1717 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
1919 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
2323 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
3737 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
4141 (T2108)2 (T^{2} - 108)^{2} Copy content Toggle raw display
4343 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
4747 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
5353 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
5959 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
6161 (T2+10T+100)2 (T^{2} + 10 T + 100)^{2} Copy content Toggle raw display
6767 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
7171 (T2108)2 (T^{2} - 108)^{2} Copy content Toggle raw display
7373 (T214T+196)2 (T^{2} - 14 T + 196)^{2} Copy content Toggle raw display
7979 (T2+8T+64)2 (T^{2} + 8 T + 64)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
9797 (T+14)4 (T + 14)^{4} Copy content Toggle raw display
show more
show less