Properties

Label 441.3.l.b.391.6
Level $441$
Weight $3$
Character 441.391
Analytic conductor $12.016$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,3,Mod(97,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.97");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 391.6
Character \(\chi\) \(=\) 441.391
Dual form 441.3.l.b.97.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.227576 - 0.394173i) q^{2} +(-0.216177 - 2.99220i) q^{3} +(1.89642 - 3.28469i) q^{4} +(3.78523 + 2.18540i) q^{5} +(-1.13025 + 0.766164i) q^{6} -3.54692 q^{8} +(-8.90653 + 1.29369i) q^{9} +O(q^{10})\) \(q+(-0.227576 - 0.394173i) q^{2} +(-0.216177 - 2.99220i) q^{3} +(1.89642 - 3.28469i) q^{4} +(3.78523 + 2.18540i) q^{5} +(-1.13025 + 0.766164i) q^{6} -3.54692 q^{8} +(-8.90653 + 1.29369i) q^{9} -1.98938i q^{10} +(0.0697009 + 0.120725i) q^{11} +(-10.2384 - 4.96439i) q^{12} +(1.71085 + 0.987760i) q^{13} +(5.72089 - 11.7986i) q^{15} +(-6.77848 - 11.7407i) q^{16} -30.9273i q^{17} +(2.53685 + 3.21630i) q^{18} -29.1245i q^{19} +(14.3568 - 8.28888i) q^{20} +(0.0317245 - 0.0549484i) q^{22} +(-14.8892 + 25.7888i) q^{23} +(0.766764 + 10.6131i) q^{24} +(-2.94801 - 5.10610i) q^{25} -0.899161i q^{26} +(5.79637 + 26.3705i) q^{27} +(7.28707 + 12.6216i) q^{29} +(-5.95263 + 0.430059i) q^{30} +(-6.82604 - 3.94101i) q^{31} +(-10.1791 + 17.6307i) q^{32} +(0.346167 - 0.234657i) q^{33} +(-12.1907 + 7.03829i) q^{34} +(-12.6411 + 31.7086i) q^{36} +15.4652 q^{37} +(-11.4801 + 6.62804i) q^{38} +(2.58573 - 5.33274i) q^{39} +(-13.4259 - 7.75146i) q^{40} +(-0.747251 - 0.431426i) q^{41} +(-15.6629 - 27.1289i) q^{43} +0.528728 q^{44} +(-36.5405 - 14.5675i) q^{45} +13.5537 q^{46} +(58.0205 - 33.4982i) q^{47} +(-33.6651 + 22.8206i) q^{48} +(-1.34179 + 2.32405i) q^{50} +(-92.5406 + 6.68577i) q^{51} +(6.48898 - 3.74641i) q^{52} -33.8570 q^{53} +(9.07541 - 8.28605i) q^{54} +0.609299i q^{55} +(-87.1465 + 6.29606i) q^{57} +(3.31672 - 5.74473i) q^{58} +(57.4894 + 33.1915i) q^{59} +(-27.9056 - 41.1665i) q^{60} +(-35.9279 + 20.7430i) q^{61} +3.58752i q^{62} -44.9618 q^{64} +(4.31731 + 7.47781i) q^{65} +(-0.171275 - 0.0830474i) q^{66} +(-51.7774 + 89.6812i) q^{67} +(-101.587 - 58.6510i) q^{68} +(80.3841 + 38.9765i) q^{69} +86.4656 q^{71} +(31.5908 - 4.58862i) q^{72} -33.0384i q^{73} +(-3.51950 - 6.09595i) q^{74} +(-14.6412 + 9.92486i) q^{75} +(-95.6652 - 55.2323i) q^{76} +(-2.69047 + 0.194378i) q^{78} +(-24.3232 - 42.1291i) q^{79} -59.2549i q^{80} +(77.6527 - 23.0446i) q^{81} +0.392728i q^{82} +(102.894 - 59.4058i) q^{83} +(67.5886 - 117.067i) q^{85} +(-7.12897 + 12.3477i) q^{86} +(36.1910 - 24.5329i) q^{87} +(-0.247224 - 0.428204i) q^{88} +38.2703i q^{89} +(2.57364 + 17.7185i) q^{90} +(56.4723 + 97.8128i) q^{92} +(-10.3167 + 21.2768i) q^{93} +(-26.4081 - 15.2467i) q^{94} +(63.6489 - 110.243i) q^{95} +(54.9550 + 26.6465i) q^{96} +(-70.3678 + 40.6269i) q^{97} +(-0.776975 - 0.985074i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + q^{2} - 23 q^{4} + 3 q^{5} - 12 q^{6} - 16 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q + q^{2} - 23 q^{4} + 3 q^{5} - 12 q^{6} - 16 q^{8} + 6 q^{9} + 7 q^{11} + 27 q^{12} - 15 q^{13} - 18 q^{15} - 27 q^{16} + 9 q^{18} - 108 q^{20} - 10 q^{22} + 34 q^{23} + 120 q^{24} + 31 q^{25} + 81 q^{27} + 70 q^{29} + 33 q^{30} + 45 q^{31} + 153 q^{32} - 111 q^{33} - 12 q^{34} - 174 q^{36} - 18 q^{37} - 87 q^{38} - 9 q^{39} + 102 q^{40} + 234 q^{41} + 30 q^{43} - 102 q^{44} + 3 q^{45} + 44 q^{46} - 111 q^{47} - 147 q^{48} + 241 q^{50} - 6 q^{51} + 219 q^{52} - 296 q^{53} + 207 q^{54} + 189 q^{57} + 17 q^{58} + 42 q^{59} - 489 q^{60} + 120 q^{61} - 48 q^{64} + 114 q^{65} - 705 q^{66} - 34 q^{67} + 18 q^{68} - 78 q^{69} - 350 q^{71} + 177 q^{72} + 359 q^{74} + 387 q^{75} - 72 q^{76} - 375 q^{78} - 82 q^{79} + 438 q^{81} - 738 q^{83} + 3 q^{85} + 17 q^{86} + 564 q^{87} + 25 q^{88} + 543 q^{90} + 288 q^{92} - 30 q^{93} - 3 q^{94} + 507 q^{95} - 813 q^{96} + 57 q^{97} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.227576 0.394173i −0.113788 0.197086i 0.803507 0.595296i \(-0.202965\pi\)
−0.917295 + 0.398209i \(0.869632\pi\)
\(3\) −0.216177 2.99220i −0.0720591 0.997400i
\(4\) 1.89642 3.28469i 0.474105 0.821173i
\(5\) 3.78523 + 2.18540i 0.757046 + 0.437081i 0.828234 0.560382i \(-0.189346\pi\)
−0.0711878 + 0.997463i \(0.522679\pi\)
\(6\) −1.13025 + 0.766164i −0.188375 + 0.127694i
\(7\) 0 0
\(8\) −3.54692 −0.443365
\(9\) −8.90653 + 1.29369i −0.989615 + 0.143743i
\(10\) 1.98938i 0.198938i
\(11\) 0.0697009 + 0.120725i 0.00633644 + 0.0109750i 0.869176 0.494502i \(-0.164650\pi\)
−0.862840 + 0.505477i \(0.831316\pi\)
\(12\) −10.2384 4.96439i −0.853202 0.413699i
\(13\) 1.71085 + 0.987760i 0.131604 + 0.0759816i 0.564357 0.825531i \(-0.309124\pi\)
−0.432753 + 0.901513i \(0.642458\pi\)
\(14\) 0 0
\(15\) 5.72089 11.7986i 0.381393 0.786574i
\(16\) −6.77848 11.7407i −0.423655 0.733792i
\(17\) 30.9273i 1.81925i −0.415430 0.909625i \(-0.636369\pi\)
0.415430 0.909625i \(-0.363631\pi\)
\(18\) 2.53685 + 3.21630i 0.140936 + 0.178683i
\(19\) 29.1245i 1.53287i −0.642321 0.766435i \(-0.722029\pi\)
0.642321 0.766435i \(-0.277971\pi\)
\(20\) 14.3568 8.28888i 0.717838 0.414444i
\(21\) 0 0
\(22\) 0.0317245 0.0549484i 0.00144202 0.00249765i
\(23\) −14.8892 + 25.7888i −0.647356 + 1.12125i 0.336396 + 0.941721i \(0.390792\pi\)
−0.983752 + 0.179533i \(0.942541\pi\)
\(24\) 0.766764 + 10.6131i 0.0319485 + 0.442213i
\(25\) −2.94801 5.10610i −0.117920 0.204244i
\(26\) 0.899161i 0.0345831i
\(27\) 5.79637 + 26.3705i 0.214681 + 0.976684i
\(28\) 0 0
\(29\) 7.28707 + 12.6216i 0.251278 + 0.435227i 0.963878 0.266344i \(-0.0858157\pi\)
−0.712600 + 0.701571i \(0.752482\pi\)
\(30\) −5.95263 + 0.430059i −0.198421 + 0.0143353i
\(31\) −6.82604 3.94101i −0.220195 0.127129i 0.385846 0.922563i \(-0.373910\pi\)
−0.606040 + 0.795434i \(0.707243\pi\)
\(32\) −10.1791 + 17.6307i −0.318096 + 0.550959i
\(33\) 0.346167 0.234657i 0.0104899 0.00711082i
\(34\) −12.1907 + 7.03829i −0.358549 + 0.207009i
\(35\) 0 0
\(36\) −12.6411 + 31.7086i −0.351143 + 0.880795i
\(37\) 15.4652 0.417978 0.208989 0.977918i \(-0.432983\pi\)
0.208989 + 0.977918i \(0.432983\pi\)
\(38\) −11.4801 + 6.62804i −0.302108 + 0.174422i
\(39\) 2.58573 5.33274i 0.0663008 0.136737i
\(40\) −13.4259 7.75146i −0.335648 0.193787i
\(41\) −0.747251 0.431426i −0.0182256 0.0105226i 0.490859 0.871239i \(-0.336683\pi\)
−0.509085 + 0.860716i \(0.670016\pi\)
\(42\) 0 0
\(43\) −15.6629 27.1289i −0.364252 0.630904i 0.624403 0.781102i \(-0.285342\pi\)
−0.988656 + 0.150198i \(0.952009\pi\)
\(44\) 0.528728 0.0120165
\(45\) −36.5405 14.5675i −0.812012 0.323721i
\(46\) 13.5537 0.294645
\(47\) 58.0205 33.4982i 1.23448 0.712727i 0.266519 0.963830i \(-0.414127\pi\)
0.967960 + 0.251103i \(0.0807932\pi\)
\(48\) −33.6651 + 22.8206i −0.701356 + 0.475430i
\(49\) 0 0
\(50\) −1.34179 + 2.32405i −0.0268358 + 0.0464810i
\(51\) −92.5406 + 6.68577i −1.81452 + 0.131093i
\(52\) 6.48898 3.74641i 0.124788 0.0720464i
\(53\) −33.8570 −0.638812 −0.319406 0.947618i \(-0.603483\pi\)
−0.319406 + 0.947618i \(0.603483\pi\)
\(54\) 9.07541 8.28605i 0.168063 0.153445i
\(55\) 0.609299i 0.0110782i
\(56\) 0 0
\(57\) −87.1465 + 6.29606i −1.52889 + 0.110457i
\(58\) 3.31672 5.74473i 0.0571849 0.0990471i
\(59\) 57.4894 + 33.1915i 0.974396 + 0.562568i 0.900574 0.434704i \(-0.143147\pi\)
0.0738224 + 0.997271i \(0.476480\pi\)
\(60\) −27.9056 41.1665i −0.465094 0.686108i
\(61\) −35.9279 + 20.7430i −0.588982 + 0.340049i −0.764695 0.644393i \(-0.777110\pi\)
0.175713 + 0.984441i \(0.443777\pi\)
\(62\) 3.58752i 0.0578632i
\(63\) 0 0
\(64\) −44.9618 −0.702528
\(65\) 4.31731 + 7.47781i 0.0664202 + 0.115043i
\(66\) −0.171275 0.0830474i −0.00259507 0.00125829i
\(67\) −51.7774 + 89.6812i −0.772798 + 1.33852i 0.163226 + 0.986589i \(0.447810\pi\)
−0.936024 + 0.351936i \(0.885523\pi\)
\(68\) −101.587 58.6510i −1.49392 0.862515i
\(69\) 80.3841 + 38.9765i 1.16499 + 0.564877i
\(70\) 0 0
\(71\) 86.4656 1.21783 0.608913 0.793237i \(-0.291606\pi\)
0.608913 + 0.793237i \(0.291606\pi\)
\(72\) 31.5908 4.58862i 0.438761 0.0637309i
\(73\) 33.0384i 0.452580i −0.974060 0.226290i \(-0.927340\pi\)
0.974060 0.226290i \(-0.0726598\pi\)
\(74\) −3.51950 6.09595i −0.0475608 0.0823777i
\(75\) −14.6412 + 9.92486i −0.195216 + 0.132332i
\(76\) −95.6652 55.2323i −1.25875 0.726741i
\(77\) 0 0
\(78\) −2.69047 + 0.194378i −0.0344932 + 0.00249203i
\(79\) −24.3232 42.1291i −0.307889 0.533279i 0.670011 0.742351i \(-0.266289\pi\)
−0.977900 + 0.209071i \(0.932956\pi\)
\(80\) 59.2549i 0.740686i
\(81\) 77.6527 23.0446i 0.958676 0.284501i
\(82\) 0.392728i 0.00478937i
\(83\) 102.894 59.4058i 1.23968 0.715732i 0.270655 0.962676i \(-0.412760\pi\)
0.969030 + 0.246944i \(0.0794264\pi\)
\(84\) 0 0
\(85\) 67.5886 117.067i 0.795160 1.37726i
\(86\) −7.12897 + 12.3477i −0.0828950 + 0.143578i
\(87\) 36.1910 24.5329i 0.415989 0.281987i
\(88\) −0.247224 0.428204i −0.00280936 0.00486595i
\(89\) 38.2703i 0.430004i 0.976614 + 0.215002i \(0.0689758\pi\)
−0.976614 + 0.215002i \(0.931024\pi\)
\(90\) 2.57364 + 17.7185i 0.0285961 + 0.196872i
\(91\) 0 0
\(92\) 56.4723 + 97.8128i 0.613829 + 1.06318i
\(93\) −10.3167 + 21.2768i −0.110932 + 0.228783i
\(94\) −26.4081 15.2467i −0.280938 0.162199i
\(95\) 63.6489 110.243i 0.669989 1.16045i
\(96\) 54.9550 + 26.6465i 0.572448 + 0.277568i
\(97\) −70.3678 + 40.6269i −0.725441 + 0.418834i −0.816752 0.576989i \(-0.804228\pi\)
0.0913110 + 0.995822i \(0.470894\pi\)
\(98\) 0 0
\(99\) −0.776975 0.985074i −0.00784823 0.00995024i
\(100\) −22.3626 −0.223626
\(101\) −22.0036 + 12.7038i −0.217858 + 0.125780i −0.604958 0.796257i \(-0.706810\pi\)
0.387100 + 0.922038i \(0.373477\pi\)
\(102\) 23.6953 + 34.9555i 0.232307 + 0.342701i
\(103\) 95.4563 + 55.1117i 0.926760 + 0.535065i 0.885786 0.464095i \(-0.153620\pi\)
0.0409749 + 0.999160i \(0.486954\pi\)
\(104\) −6.06826 3.50351i −0.0583486 0.0336876i
\(105\) 0 0
\(106\) 7.70504 + 13.3455i 0.0726891 + 0.125901i
\(107\) 156.837 1.46577 0.732885 0.680353i \(-0.238174\pi\)
0.732885 + 0.680353i \(0.238174\pi\)
\(108\) 97.6113 + 30.9702i 0.903808 + 0.286761i
\(109\) −24.9677 −0.229062 −0.114531 0.993420i \(-0.536536\pi\)
−0.114531 + 0.993420i \(0.536536\pi\)
\(110\) 0.240169 0.138662i 0.00218335 0.00126056i
\(111\) −3.34322 46.2749i −0.0301191 0.416891i
\(112\) 0 0
\(113\) −50.2599 + 87.0526i −0.444777 + 0.770377i −0.998037 0.0626320i \(-0.980051\pi\)
0.553259 + 0.833009i \(0.313384\pi\)
\(114\) 22.3142 + 32.9179i 0.195738 + 0.288754i
\(115\) −112.718 + 65.0778i −0.980157 + 0.565894i
\(116\) 55.2774 0.476529
\(117\) −16.5156 6.58421i −0.141159 0.0562753i
\(118\) 30.2143i 0.256054i
\(119\) 0 0
\(120\) −20.2916 + 41.8488i −0.169096 + 0.348740i
\(121\) 60.4903 104.772i 0.499920 0.865886i
\(122\) 16.3526 + 9.44120i 0.134038 + 0.0773869i
\(123\) −1.12937 + 2.32919i −0.00918190 + 0.0189365i
\(124\) −25.8900 + 14.9476i −0.208791 + 0.120545i
\(125\) 135.041i 1.08033i
\(126\) 0 0
\(127\) 151.949 1.19645 0.598226 0.801327i \(-0.295872\pi\)
0.598226 + 0.801327i \(0.295872\pi\)
\(128\) 50.9485 + 88.2455i 0.398035 + 0.689418i
\(129\) −77.7891 + 52.7311i −0.603016 + 0.408768i
\(130\) 1.96503 3.40353i 0.0151156 0.0261810i
\(131\) 110.832 + 63.9890i 0.846047 + 0.488466i 0.859315 0.511446i \(-0.170890\pi\)
−0.0132678 + 0.999912i \(0.504223\pi\)
\(132\) −0.114299 1.58206i −0.000865901 0.0119853i
\(133\) 0 0
\(134\) 47.1332 0.351740
\(135\) −35.6895 + 112.486i −0.264367 + 0.833228i
\(136\) 109.697i 0.806592i
\(137\) −9.92897 17.1975i −0.0724743 0.125529i 0.827511 0.561450i \(-0.189756\pi\)
−0.899985 + 0.435921i \(0.856423\pi\)
\(138\) −2.92999 40.5553i −0.0212318 0.293879i
\(139\) −37.7617 21.8017i −0.271667 0.156847i 0.357978 0.933730i \(-0.383466\pi\)
−0.629645 + 0.776883i \(0.716800\pi\)
\(140\) 0 0
\(141\) −112.776 166.368i −0.799830 1.17991i
\(142\) −19.6775 34.0824i −0.138574 0.240017i
\(143\) 0.275391i 0.00192581i
\(144\) 75.5616 + 95.7995i 0.524733 + 0.665274i
\(145\) 63.7008i 0.439316i
\(146\) −13.0228 + 7.51873i −0.0891974 + 0.0514982i
\(147\) 0 0
\(148\) 29.3284 50.7984i 0.198165 0.343232i
\(149\) 100.910 174.781i 0.677248 1.17303i −0.298559 0.954391i \(-0.596506\pi\)
0.975806 0.218636i \(-0.0701609\pi\)
\(150\) 7.24409 + 3.51250i 0.0482940 + 0.0234167i
\(151\) 53.7144 + 93.0361i 0.355725 + 0.616133i 0.987242 0.159229i \(-0.0509008\pi\)
−0.631517 + 0.775362i \(0.717567\pi\)
\(152\) 103.302i 0.679622i
\(153\) 40.0103 + 275.455i 0.261505 + 1.80036i
\(154\) 0 0
\(155\) −17.2254 29.8353i −0.111132 0.192486i
\(156\) −12.6128 18.6064i −0.0808512 0.119272i
\(157\) 86.5180 + 49.9512i 0.551070 + 0.318160i 0.749553 0.661944i \(-0.230268\pi\)
−0.198483 + 0.980104i \(0.563602\pi\)
\(158\) −11.0708 + 19.1751i −0.0700681 + 0.121361i
\(159\) 7.31912 + 101.307i 0.0460322 + 0.637151i
\(160\) −77.0604 + 44.4908i −0.481627 + 0.278068i
\(161\) 0 0
\(162\) −26.7554 25.3642i −0.165157 0.156569i
\(163\) 124.888 0.766184 0.383092 0.923710i \(-0.374859\pi\)
0.383092 + 0.923710i \(0.374859\pi\)
\(164\) −2.83420 + 1.63633i −0.0172817 + 0.00997761i
\(165\) 1.82314 0.131716i 0.0110494 0.000798282i
\(166\) −46.8323 27.0386i −0.282122 0.162883i
\(167\) 113.210 + 65.3618i 0.677904 + 0.391388i 0.799065 0.601245i \(-0.205328\pi\)
−0.121161 + 0.992633i \(0.538662\pi\)
\(168\) 0 0
\(169\) −82.5487 142.978i −0.488454 0.846026i
\(170\) −61.5261 −0.361918
\(171\) 37.6782 + 259.399i 0.220340 + 1.51695i
\(172\) −118.813 −0.690775
\(173\) −72.7886 + 42.0245i −0.420743 + 0.242916i −0.695395 0.718628i \(-0.744771\pi\)
0.274652 + 0.961544i \(0.411437\pi\)
\(174\) −17.9064 8.68242i −0.102910 0.0498990i
\(175\) 0 0
\(176\) 0.944932 1.63667i 0.00536893 0.00929926i
\(177\) 86.8878 179.195i 0.490891 1.01240i
\(178\) 15.0851 8.70940i 0.0847479 0.0489292i
\(179\) −350.425 −1.95768 −0.978840 0.204625i \(-0.934402\pi\)
−0.978840 + 0.204625i \(0.934402\pi\)
\(180\) −117.146 + 92.3985i −0.650810 + 0.513325i
\(181\) 138.049i 0.762703i −0.924430 0.381351i \(-0.875459\pi\)
0.924430 0.381351i \(-0.124541\pi\)
\(182\) 0 0
\(183\) 69.8340 + 103.019i 0.381606 + 0.562947i
\(184\) 52.8108 91.4710i 0.287015 0.497125i
\(185\) 58.5393 + 33.7977i 0.316429 + 0.182690i
\(186\) 10.7346 0.775539i 0.0577128 0.00416957i
\(187\) 3.73371 2.15566i 0.0199663 0.0115276i
\(188\) 254.106i 1.35163i
\(189\) 0 0
\(190\) −57.9398 −0.304946
\(191\) 145.062 + 251.255i 0.759488 + 1.31547i 0.943112 + 0.332476i \(0.107884\pi\)
−0.183624 + 0.982997i \(0.558783\pi\)
\(192\) 9.71971 + 134.535i 0.0506235 + 0.700702i
\(193\) 110.240 190.941i 0.571192 0.989333i −0.425252 0.905075i \(-0.639815\pi\)
0.996444 0.0842581i \(-0.0268520\pi\)
\(194\) 32.0280 + 18.4914i 0.165093 + 0.0953164i
\(195\) 21.4418 14.5348i 0.109958 0.0745374i
\(196\) 0 0
\(197\) 118.429 0.601163 0.300581 0.953756i \(-0.402819\pi\)
0.300581 + 0.953756i \(0.402819\pi\)
\(198\) −0.211469 + 0.530441i −0.00106802 + 0.00267900i
\(199\) 175.694i 0.882885i −0.897289 0.441443i \(-0.854467\pi\)
0.897289 0.441443i \(-0.145533\pi\)
\(200\) 10.4564 + 18.1110i 0.0522818 + 0.0905548i
\(201\) 279.537 + 135.542i 1.39073 + 0.674336i
\(202\) 10.0150 + 5.78215i 0.0495791 + 0.0286245i
\(203\) 0 0
\(204\) −153.535 + 316.646i −0.752622 + 1.55219i
\(205\) −1.88568 3.26609i −0.00919844 0.0159322i
\(206\) 50.1684i 0.243536i
\(207\) 99.2483 248.951i 0.479460 1.20266i
\(208\) 26.7821i 0.128760i
\(209\) 3.51607 2.03001i 0.0168233 0.00971295i
\(210\) 0 0
\(211\) −9.18761 + 15.9134i −0.0435432 + 0.0754190i −0.886976 0.461816i \(-0.847198\pi\)
0.843432 + 0.537235i \(0.180531\pi\)
\(212\) −64.2071 + 111.210i −0.302864 + 0.524575i
\(213\) −18.6919 258.722i −0.0877554 1.21466i
\(214\) −35.6924 61.8210i −0.166787 0.288883i
\(215\) 136.919i 0.636831i
\(216\) −20.5593 93.5340i −0.0951819 0.433028i
\(217\) 0 0
\(218\) 5.68205 + 9.84159i 0.0260644 + 0.0451449i
\(219\) −98.8574 + 7.14214i −0.451404 + 0.0326125i
\(220\) 2.00136 + 1.15549i 0.00909709 + 0.00525221i
\(221\) 30.5487 52.9119i 0.138229 0.239420i
\(222\) −17.4795 + 11.8489i −0.0787364 + 0.0533732i
\(223\) 142.303 82.1586i 0.638129 0.368424i −0.145764 0.989319i \(-0.546564\pi\)
0.783894 + 0.620895i \(0.213231\pi\)
\(224\) 0 0
\(225\) 32.8623 + 41.6639i 0.146055 + 0.185173i
\(226\) 45.7517 0.202441
\(227\) −98.6637 + 56.9635i −0.434642 + 0.250941i −0.701322 0.712844i \(-0.747407\pi\)
0.266680 + 0.963785i \(0.414073\pi\)
\(228\) −144.586 + 298.189i −0.634147 + 1.30785i
\(229\) −158.172 91.3208i −0.690708 0.398781i 0.113169 0.993576i \(-0.463900\pi\)
−0.803877 + 0.594795i \(0.797233\pi\)
\(230\) 51.3038 + 29.6203i 0.223060 + 0.128784i
\(231\) 0 0
\(232\) −25.8467 44.7678i −0.111408 0.192964i
\(233\) −253.750 −1.08905 −0.544527 0.838743i \(-0.683291\pi\)
−0.544527 + 0.838743i \(0.683291\pi\)
\(234\) 1.16324 + 8.00841i 0.00497110 + 0.0342240i
\(235\) 292.828 1.24608
\(236\) 218.048 125.890i 0.923931 0.533432i
\(237\) −120.801 + 81.8874i −0.509707 + 0.345516i
\(238\) 0 0
\(239\) 65.6961 113.789i 0.274879 0.476104i −0.695226 0.718792i \(-0.744696\pi\)
0.970105 + 0.242687i \(0.0780289\pi\)
\(240\) −177.303 + 12.8096i −0.738761 + 0.0533732i
\(241\) 225.576 130.236i 0.935999 0.540399i 0.0472950 0.998881i \(-0.484940\pi\)
0.888704 + 0.458482i \(0.151607\pi\)
\(242\) −55.0645 −0.227539
\(243\) −85.7409 227.371i −0.352843 0.935683i
\(244\) 157.349i 0.644875i
\(245\) 0 0
\(246\) 1.17512 0.0848989i 0.00477692 0.000345117i
\(247\) 28.7681 49.8278i 0.116470 0.201732i
\(248\) 24.2114 + 13.9785i 0.0976267 + 0.0563648i
\(249\) −199.997 295.037i −0.803202 1.18489i
\(250\) −53.2293 + 30.7320i −0.212917 + 0.122928i
\(251\) 63.0463i 0.251181i 0.992082 + 0.125590i \(0.0400825\pi\)
−0.992082 + 0.125590i \(0.959918\pi\)
\(252\) 0 0
\(253\) −4.15116 −0.0164077
\(254\) −34.5800 59.8944i −0.136142 0.235805i
\(255\) −364.899 176.931i −1.43098 0.693849i
\(256\) −66.7343 + 115.587i −0.260681 + 0.451512i
\(257\) −106.641 61.5694i −0.414947 0.239570i 0.277966 0.960591i \(-0.410340\pi\)
−0.692913 + 0.721021i \(0.743673\pi\)
\(258\) 38.4881 + 18.6620i 0.149179 + 0.0723334i
\(259\) 0 0
\(260\) 32.7497 0.125960
\(261\) −81.2310 102.987i −0.311230 0.394587i
\(262\) 58.2494i 0.222326i
\(263\) 252.795 + 437.854i 0.961198 + 1.66484i 0.719499 + 0.694493i \(0.244371\pi\)
0.241699 + 0.970351i \(0.422295\pi\)
\(264\) −1.22783 + 0.832311i −0.00465086 + 0.00315269i
\(265\) −128.157 73.9913i −0.483610 0.279213i
\(266\) 0 0
\(267\) 114.513 8.27317i 0.428886 0.0309857i
\(268\) 196.383 + 340.146i 0.732774 + 1.26920i
\(269\) 8.87334i 0.0329864i 0.999864 + 0.0164932i \(0.00525018\pi\)
−0.999864 + 0.0164932i \(0.994750\pi\)
\(270\) 52.4609 11.5312i 0.194300 0.0427081i
\(271\) 135.761i 0.500964i −0.968121 0.250482i \(-0.919411\pi\)
0.968121 0.250482i \(-0.0805891\pi\)
\(272\) −363.107 + 209.640i −1.33495 + 0.770735i
\(273\) 0 0
\(274\) −4.51919 + 7.82746i −0.0164934 + 0.0285674i
\(275\) 0.410958 0.711800i 0.00149439 0.00258836i
\(276\) 280.468 190.121i 1.01619 0.688845i
\(277\) 162.697 + 281.799i 0.587353 + 1.01733i 0.994578 + 0.103998i \(0.0331635\pi\)
−0.407224 + 0.913328i \(0.633503\pi\)
\(278\) 19.8462i 0.0713890i
\(279\) 65.8948 + 26.2700i 0.236182 + 0.0941577i
\(280\) 0 0
\(281\) −7.89120 13.6680i −0.0280826 0.0486404i 0.851643 0.524123i \(-0.175607\pi\)
−0.879725 + 0.475483i \(0.842273\pi\)
\(282\) −39.9125 + 82.3144i −0.141534 + 0.291895i
\(283\) −273.509 157.910i −0.966461 0.557987i −0.0683057 0.997664i \(-0.521759\pi\)
−0.898156 + 0.439678i \(0.855093\pi\)
\(284\) 163.975 284.013i 0.577377 1.00005i
\(285\) −343.629 166.618i −1.20572 0.584626i
\(286\) 0.108552 0.0626723i 0.000379551 0.000219134i
\(287\) 0 0
\(288\) 67.8517 170.197i 0.235596 0.590961i
\(289\) −667.495 −2.30967
\(290\) 25.1091 14.4968i 0.0865832 0.0499888i
\(291\) 136.776 + 201.772i 0.470019 + 0.693374i
\(292\) −108.521 62.6546i −0.371647 0.214570i
\(293\) 344.571 + 198.938i 1.17601 + 0.678969i 0.955088 0.296322i \(-0.0957602\pi\)
0.220922 + 0.975292i \(0.429094\pi\)
\(294\) 0 0
\(295\) 145.074 + 251.275i 0.491775 + 0.851780i
\(296\) −54.8538 −0.185317
\(297\) −2.77958 + 2.53782i −0.00935884 + 0.00854483i
\(298\) −91.8586 −0.308250
\(299\) −50.9464 + 29.4139i −0.170389 + 0.0983742i
\(300\) 4.83429 + 66.9135i 0.0161143 + 0.223045i
\(301\) 0 0
\(302\) 24.4482 42.3455i 0.0809543 0.140217i
\(303\) 42.7690 + 63.0930i 0.141152 + 0.208228i
\(304\) −341.942 + 197.420i −1.12481 + 0.649408i
\(305\) −181.327 −0.594516
\(306\) 99.4714 78.4578i 0.325070 0.256398i
\(307\) 266.176i 0.867024i 0.901148 + 0.433512i \(0.142726\pi\)
−0.901148 + 0.433512i \(0.857274\pi\)
\(308\) 0 0
\(309\) 144.270 297.538i 0.466893 0.962908i
\(310\) −7.84018 + 13.5796i −0.0252909 + 0.0438051i
\(311\) 110.220 + 63.6356i 0.354406 + 0.204616i 0.666624 0.745394i \(-0.267739\pi\)
−0.312218 + 0.950010i \(0.601072\pi\)
\(312\) −9.17139 + 18.9148i −0.0293955 + 0.0606244i
\(313\) 432.327 249.604i 1.38124 0.797457i 0.388930 0.921267i \(-0.372845\pi\)
0.992306 + 0.123810i \(0.0395113\pi\)
\(314\) 45.4707i 0.144811i
\(315\) 0 0
\(316\) −184.508 −0.583887
\(317\) −98.4602 170.538i −0.310600 0.537975i 0.667892 0.744258i \(-0.267197\pi\)
−0.978492 + 0.206283i \(0.933863\pi\)
\(318\) 38.2668 25.9400i 0.120336 0.0815724i
\(319\) −1.01583 + 1.75947i −0.00318442 + 0.00551558i
\(320\) −170.191 98.2597i −0.531846 0.307062i
\(321\) −33.9046 469.289i −0.105622 1.46196i
\(322\) 0 0
\(323\) −900.742 −2.78868
\(324\) 71.5676 298.768i 0.220888 0.922122i
\(325\) 11.6477i 0.0358391i
\(326\) −28.4215 49.2275i −0.0871825 0.151005i
\(327\) 5.39745 + 74.7084i 0.0165060 + 0.228466i
\(328\) 2.65044 + 1.53023i 0.00808061 + 0.00466535i
\(329\) 0 0
\(330\) −0.466822 0.688658i −0.00141461 0.00208684i
\(331\) −96.3662 166.911i −0.291137 0.504263i 0.682942 0.730472i \(-0.260700\pi\)
−0.974079 + 0.226209i \(0.927367\pi\)
\(332\) 450.633i 1.35733i
\(333\) −137.741 + 20.0072i −0.413637 + 0.0600816i
\(334\) 59.4991i 0.178141i
\(335\) −391.979 + 226.309i −1.17009 + 0.675550i
\(336\) 0 0
\(337\) −189.897 + 328.912i −0.563493 + 0.975999i 0.433695 + 0.901060i \(0.357210\pi\)
−0.997188 + 0.0749390i \(0.976124\pi\)
\(338\) −37.5721 + 65.0769i −0.111160 + 0.192535i
\(339\) 271.344 + 131.569i 0.800425 + 0.388109i
\(340\) −256.352 444.015i −0.753978 1.30593i
\(341\) 1.09877i 0.00322220i
\(342\) 93.6733 73.8846i 0.273899 0.216037i
\(343\) 0 0
\(344\) 55.5549 + 96.2240i 0.161497 + 0.279721i
\(345\) 219.093 + 323.207i 0.635052 + 0.936831i
\(346\) 33.1298 + 19.1275i 0.0957509 + 0.0552818i
\(347\) 96.1388 166.517i 0.277057 0.479877i −0.693595 0.720365i \(-0.743974\pi\)
0.970652 + 0.240488i \(0.0773076\pi\)
\(348\) −11.9497 165.401i −0.0343382 0.475290i
\(349\) 65.3195 37.7122i 0.187162 0.108058i −0.403491 0.914983i \(-0.632203\pi\)
0.590653 + 0.806926i \(0.298870\pi\)
\(350\) 0 0
\(351\) −16.1310 + 50.8414i −0.0459572 + 0.144847i
\(352\) −2.83796 −0.00806240
\(353\) −490.119 + 282.970i −1.38844 + 0.801616i −0.993139 0.116937i \(-0.962693\pi\)
−0.395300 + 0.918552i \(0.629359\pi\)
\(354\) −90.4073 + 6.53165i −0.255388 + 0.0184510i
\(355\) 327.292 + 188.962i 0.921950 + 0.532288i
\(356\) 125.706 + 72.5766i 0.353108 + 0.203867i
\(357\) 0 0
\(358\) 79.7482 + 138.128i 0.222760 + 0.385832i
\(359\) −36.6268 −0.102025 −0.0510123 0.998698i \(-0.516245\pi\)
−0.0510123 + 0.998698i \(0.516245\pi\)
\(360\) 129.606 + 51.6697i 0.360018 + 0.143527i
\(361\) −487.239 −1.34969
\(362\) −54.4152 + 31.4167i −0.150318 + 0.0867863i
\(363\) −326.576 158.350i −0.899659 0.436225i
\(364\) 0 0
\(365\) 72.2022 125.058i 0.197814 0.342624i
\(366\) 24.7149 50.9713i 0.0675270 0.139266i
\(367\) 291.984 168.577i 0.795597 0.459338i −0.0463322 0.998926i \(-0.514753\pi\)
0.841929 + 0.539588i \(0.181420\pi\)
\(368\) 403.704 1.09702
\(369\) 7.21355 + 2.87580i 0.0195489 + 0.00779348i
\(370\) 30.7661i 0.0831517i
\(371\) 0 0
\(372\) 50.3231 + 74.2369i 0.135277 + 0.199562i
\(373\) −367.607 + 636.714i −0.985541 + 1.70701i −0.346034 + 0.938222i \(0.612472\pi\)
−0.639507 + 0.768785i \(0.720862\pi\)
\(374\) −1.69940 0.981151i −0.00454386 0.00262340i
\(375\) −404.069 + 29.1927i −1.07752 + 0.0778472i
\(376\) −205.794 + 118.815i −0.547325 + 0.315998i
\(377\) 28.7915i 0.0763701i
\(378\) 0 0
\(379\) 189.024 0.498745 0.249372 0.968408i \(-0.419776\pi\)
0.249372 + 0.968408i \(0.419776\pi\)
\(380\) −241.410 418.134i −0.635290 1.10035i
\(381\) −32.8480 454.663i −0.0862153 1.19334i
\(382\) 66.0253 114.359i 0.172841 0.299370i
\(383\) −12.2683 7.08313i −0.0320322 0.0184938i 0.483898 0.875124i \(-0.339220\pi\)
−0.515931 + 0.856630i \(0.672554\pi\)
\(384\) 253.034 171.525i 0.658943 0.446679i
\(385\) 0 0
\(386\) −100.352 −0.259979
\(387\) 174.598 + 221.361i 0.451158 + 0.571993i
\(388\) 308.182i 0.794284i
\(389\) 71.9971 + 124.703i 0.185082 + 0.320572i 0.943604 0.331075i \(-0.107411\pi\)
−0.758522 + 0.651648i \(0.774078\pi\)
\(390\) −10.6089 5.14400i −0.0272022 0.0131898i
\(391\) 797.578 + 460.482i 2.03984 + 1.17770i
\(392\) 0 0
\(393\) 167.509 345.465i 0.426230 0.879046i
\(394\) −26.9516 46.6815i −0.0684050 0.118481i
\(395\) 212.624i 0.538290i
\(396\) −4.70914 + 0.684011i −0.0118918 + 0.00172730i
\(397\) 206.130i 0.519219i 0.965714 + 0.259610i \(0.0835939\pi\)
−0.965714 + 0.259610i \(0.916406\pi\)
\(398\) −69.2539 + 39.9837i −0.174005 + 0.100462i
\(399\) 0 0
\(400\) −39.9661 + 69.2233i −0.0999152 + 0.173058i
\(401\) 178.201 308.654i 0.444393 0.769711i −0.553617 0.832771i \(-0.686753\pi\)
0.998010 + 0.0630606i \(0.0200861\pi\)
\(402\) −10.1891 141.032i −0.0253461 0.350826i
\(403\) −7.78556 13.4850i −0.0193190 0.0334615i
\(404\) 96.3668i 0.238532i
\(405\) 344.295 + 82.4734i 0.850112 + 0.203638i
\(406\) 0 0
\(407\) 1.07794 + 1.86704i 0.00264849 + 0.00458732i
\(408\) 328.234 23.7139i 0.804495 0.0581223i
\(409\) 456.496 + 263.558i 1.11613 + 0.644396i 0.940409 0.340044i \(-0.110442\pi\)
0.175718 + 0.984441i \(0.443775\pi\)
\(410\) −0.858270 + 1.48657i −0.00209334 + 0.00362577i
\(411\) −49.3119 + 33.4272i −0.119980 + 0.0813314i
\(412\) 362.050 209.030i 0.878763 0.507354i
\(413\) 0 0
\(414\) −120.716 + 17.5343i −0.291585 + 0.0423533i
\(415\) 519.303 1.25133
\(416\) −34.8298 + 20.1090i −0.0837254 + 0.0483389i
\(417\) −57.0719 + 117.703i −0.136863 + 0.282263i
\(418\) −1.60035 0.923961i −0.00382858 0.00221043i
\(419\) −274.217 158.319i −0.654455 0.377850i 0.135706 0.990749i \(-0.456670\pi\)
−0.790161 + 0.612899i \(0.790003\pi\)
\(420\) 0 0
\(421\) 68.8293 + 119.216i 0.163490 + 0.283173i 0.936118 0.351686i \(-0.114391\pi\)
−0.772628 + 0.634859i \(0.781058\pi\)
\(422\) 8.36351 0.0198187
\(423\) −473.426 + 373.413i −1.11921 + 0.882774i
\(424\) 120.088 0.283227
\(425\) −157.918 + 91.1739i −0.371571 + 0.214527i
\(426\) −97.7275 + 66.2468i −0.229407 + 0.155509i
\(427\) 0 0
\(428\) 297.429 515.162i 0.694928 1.20365i
\(429\) 0.824026 0.0595333i 0.00192081 0.000138772i
\(430\) −53.9696 + 31.1594i −0.125511 + 0.0724637i
\(431\) −631.153 −1.46439 −0.732196 0.681094i \(-0.761504\pi\)
−0.732196 + 0.681094i \(0.761504\pi\)
\(432\) 270.317 246.805i 0.625733 0.571308i
\(433\) 224.007i 0.517338i −0.965966 0.258669i \(-0.916716\pi\)
0.965966 0.258669i \(-0.0832839\pi\)
\(434\) 0 0
\(435\) 190.606 13.7707i 0.438174 0.0316567i
\(436\) −47.3492 + 82.0113i −0.108599 + 0.188099i
\(437\) 751.088 + 433.641i 1.71874 + 0.992313i
\(438\) 25.3128 + 37.3415i 0.0577918 + 0.0852546i
\(439\) −196.906 + 113.684i −0.448533 + 0.258961i −0.707210 0.707003i \(-0.750047\pi\)
0.258678 + 0.965964i \(0.416713\pi\)
\(440\) 2.16113i 0.00491167i
\(441\) 0 0
\(442\) −27.8086 −0.0629154
\(443\) −47.0412 81.4778i −0.106188 0.183923i 0.808035 0.589134i \(-0.200531\pi\)
−0.914223 + 0.405212i \(0.867198\pi\)
\(444\) −158.339 76.7752i −0.356620 0.172917i
\(445\) −83.6362 + 144.862i −0.187946 + 0.325533i
\(446\) −64.7693 37.3946i −0.145223 0.0838444i
\(447\) −544.795 264.159i −1.21878 0.590960i
\(448\) 0 0
\(449\) −293.686 −0.654089 −0.327044 0.945009i \(-0.606053\pi\)
−0.327044 + 0.945009i \(0.606053\pi\)
\(450\) 8.94411 22.4351i 0.0198758 0.0498558i
\(451\) 0.120283i 0.000266703i
\(452\) 190.627 + 330.176i 0.421742 + 0.730479i
\(453\) 266.771 180.837i 0.588898 0.399198i
\(454\) 44.9069 + 25.9270i 0.0989140 + 0.0571080i
\(455\) 0 0
\(456\) 309.102 22.3316i 0.677855 0.0489729i
\(457\) 142.012 + 245.972i 0.310749 + 0.538233i 0.978525 0.206130i \(-0.0660868\pi\)
−0.667776 + 0.744363i \(0.732753\pi\)
\(458\) 83.1296i 0.181506i
\(459\) 815.566 179.266i 1.77683 0.390558i
\(460\) 493.659i 1.07317i
\(461\) −563.505 + 325.340i −1.22235 + 0.705726i −0.965419 0.260703i \(-0.916046\pi\)
−0.256934 + 0.966429i \(0.582712\pi\)
\(462\) 0 0
\(463\) −215.001 + 372.393i −0.464365 + 0.804304i −0.999173 0.0406699i \(-0.987051\pi\)
0.534807 + 0.844974i \(0.320384\pi\)
\(464\) 98.7906 171.110i 0.212911 0.368772i
\(465\) −85.5495 + 57.9916i −0.183977 + 0.124713i
\(466\) 57.7473 + 100.021i 0.123921 + 0.214638i
\(467\) 250.455i 0.536306i 0.963376 + 0.268153i \(0.0864132\pi\)
−0.963376 + 0.268153i \(0.913587\pi\)
\(468\) −52.9476 + 41.7623i −0.113136 + 0.0892357i
\(469\) 0 0
\(470\) −66.6406 115.425i −0.141789 0.245585i
\(471\) 130.761 269.678i 0.277624 0.572564i
\(472\) −203.910 117.728i −0.432013 0.249423i
\(473\) 2.18343 3.78181i 0.00461613 0.00799537i
\(474\) 59.7690 + 28.9807i 0.126095 + 0.0611407i
\(475\) −148.713 + 85.8595i −0.313080 + 0.180757i
\(476\) 0 0
\(477\) 301.549 43.8006i 0.632178 0.0918251i
\(478\) −59.8033 −0.125112
\(479\) −463.619 + 267.671i −0.967889 + 0.558811i −0.898592 0.438785i \(-0.855409\pi\)
−0.0692973 + 0.997596i \(0.522076\pi\)
\(480\) 149.784 + 220.962i 0.312050 + 0.460338i
\(481\) 26.4586 + 15.2759i 0.0550075 + 0.0317586i
\(482\) −102.671 59.2772i −0.213011 0.122982i
\(483\) 0 0
\(484\) −229.430 397.384i −0.474028 0.821041i
\(485\) −355.145 −0.732257
\(486\) −70.1109 + 85.5408i −0.144261 + 0.176010i
\(487\) 733.392 1.50594 0.752969 0.658056i \(-0.228621\pi\)
0.752969 + 0.658056i \(0.228621\pi\)
\(488\) 127.433 73.5737i 0.261134 0.150766i
\(489\) −26.9979 373.690i −0.0552105 0.764193i
\(490\) 0 0
\(491\) −69.4113 + 120.224i −0.141367 + 0.244855i −0.928012 0.372551i \(-0.878483\pi\)
0.786645 + 0.617406i \(0.211816\pi\)
\(492\) 5.50891 + 8.12677i 0.0111970 + 0.0165178i
\(493\) 390.351 225.369i 0.791787 0.457138i
\(494\) −26.1877 −0.0530115
\(495\) −0.788244 5.42674i −0.00159241 0.0109631i
\(496\) 106.856i 0.215436i
\(497\) 0 0
\(498\) −70.7809 + 145.977i −0.142130 + 0.293126i
\(499\) 47.9299 83.0170i 0.0960519 0.166367i −0.813995 0.580872i \(-0.802712\pi\)
0.910047 + 0.414505i \(0.136045\pi\)
\(500\) −443.567 256.094i −0.887134 0.512187i
\(501\) 171.102 352.877i 0.341522 0.704345i
\(502\) 24.8511 14.3478i 0.0495043 0.0285813i
\(503\) 41.5091i 0.0825231i 0.999148 + 0.0412615i \(0.0131377\pi\)
−0.999148 + 0.0412615i \(0.986862\pi\)
\(504\) 0 0
\(505\) −111.052 −0.219904
\(506\) 0.944703 + 1.63627i 0.00186700 + 0.00323374i
\(507\) −409.975 + 277.911i −0.808630 + 0.548148i
\(508\) 288.160 499.107i 0.567244 0.982495i
\(509\) −75.2739 43.4594i −0.147886 0.0853819i 0.424231 0.905554i \(-0.360544\pi\)
−0.572117 + 0.820172i \(0.693878\pi\)
\(510\) 13.3005 + 184.098i 0.0260795 + 0.360977i
\(511\) 0 0
\(512\) 468.337 0.914720
\(513\) 768.028 168.817i 1.49713 0.329078i
\(514\) 56.0468i 0.109040i
\(515\) 240.883 + 417.221i 0.467734 + 0.810139i
\(516\) 25.6847 + 355.513i 0.0497766 + 0.688979i
\(517\) 8.08816 + 4.66970i 0.0156444 + 0.00903231i
\(518\) 0 0
\(519\) 141.481 + 208.713i 0.272603 + 0.402145i
\(520\) −15.3132 26.5232i −0.0294484 0.0510061i
\(521\) 180.917i 0.347249i −0.984812 0.173624i \(-0.944452\pi\)
0.984812 0.173624i \(-0.0555479\pi\)
\(522\) −22.1086 + 55.4565i −0.0423536 + 0.106238i
\(523\) 453.302i 0.866734i −0.901217 0.433367i \(-0.857325\pi\)
0.901217 0.433367i \(-0.142675\pi\)
\(524\) 420.369 242.700i 0.802230 0.463168i
\(525\) 0 0
\(526\) 115.060 199.290i 0.218745 0.378878i
\(527\) −121.885 + 211.111i −0.231280 + 0.400589i
\(528\) −5.10152 2.47362i −0.00966197 0.00468488i
\(529\) −178.876 309.822i −0.338139 0.585675i
\(530\) 67.3546i 0.127084i
\(531\) −554.971 221.248i −1.04514 0.416662i
\(532\) 0 0
\(533\) −0.852290 1.47621i −0.00159904 0.00276963i
\(534\) −29.3213 43.2549i −0.0549089 0.0810018i
\(535\) 593.666 + 342.753i 1.10966 + 0.640660i
\(536\) 183.651 318.092i 0.342632 0.593455i
\(537\) 75.7539 + 1048.54i 0.141069 + 1.95259i
\(538\) 3.49763 2.01936i 0.00650117 0.00375345i
\(539\) 0 0
\(540\) 301.799 + 330.549i 0.558887 + 0.612128i
\(541\) 385.783 0.713093 0.356546 0.934278i \(-0.383954\pi\)
0.356546 + 0.934278i \(0.383954\pi\)
\(542\) −53.5134 + 30.8960i −0.0987333 + 0.0570037i
\(543\) −413.071 + 29.8431i −0.760720 + 0.0549597i
\(544\) 545.269 + 314.811i 1.00233 + 0.578697i
\(545\) −94.5086 54.5646i −0.173410 0.100118i
\(546\) 0 0
\(547\) 341.808 + 592.029i 0.624877 + 1.08232i 0.988565 + 0.150798i \(0.0481843\pi\)
−0.363687 + 0.931521i \(0.618482\pi\)
\(548\) −75.3180 −0.137442
\(549\) 293.158 231.228i 0.533985 0.421180i
\(550\) −0.374096 −0.000680175
\(551\) 367.598 212.233i 0.667147 0.385177i
\(552\) −285.116 138.247i −0.516514 0.250447i
\(553\) 0 0
\(554\) 74.0518 128.261i 0.133667 0.231519i
\(555\) 88.4746 182.468i 0.159414 0.328770i
\(556\) −143.224 + 82.6903i −0.257597 + 0.148724i
\(557\) 161.119 0.289262 0.144631 0.989486i \(-0.453800\pi\)
0.144631 + 0.989486i \(0.453800\pi\)
\(558\) −4.64114 31.9523i −0.00831745 0.0572623i
\(559\) 61.8846i 0.110706i
\(560\) 0 0
\(561\) −7.25730 10.7060i −0.0129364 0.0190838i
\(562\) −3.59169 + 6.22099i −0.00639091 + 0.0110694i
\(563\) 473.617 + 273.443i 0.841239 + 0.485689i 0.857685 0.514175i \(-0.171902\pi\)
−0.0164464 + 0.999865i \(0.505235\pi\)
\(564\) −760.337 + 54.9320i −1.34811 + 0.0973971i
\(565\) −380.490 + 219.676i −0.673434 + 0.388808i
\(566\) 143.746i 0.253969i
\(567\) 0 0
\(568\) −306.687 −0.539941
\(569\) 301.145 + 521.599i 0.529253 + 0.916694i 0.999418 + 0.0341151i \(0.0108613\pi\)
−0.470164 + 0.882579i \(0.655805\pi\)
\(570\) 12.5253 + 173.368i 0.0219742 + 0.304154i
\(571\) −160.184 + 277.446i −0.280532 + 0.485895i −0.971516 0.236975i \(-0.923844\pi\)
0.690984 + 0.722870i \(0.257177\pi\)
\(572\) 0.904575 + 0.522257i 0.00158143 + 0.000913036i
\(573\) 720.447 488.371i 1.25732 0.852306i
\(574\) 0 0
\(575\) 175.574 0.305346
\(576\) 400.454 58.1667i 0.695232 0.100984i
\(577\) 106.843i 0.185170i −0.995705 0.0925849i \(-0.970487\pi\)
0.995705 0.0925849i \(-0.0295129\pi\)
\(578\) 151.906 + 263.108i 0.262813 + 0.455205i
\(579\) −595.166 288.583i −1.02792 0.498416i
\(580\) 209.238 + 120.803i 0.360755 + 0.208282i
\(581\) 0 0
\(582\) 48.4062 99.8316i 0.0831721 0.171532i
\(583\) −2.35987 4.08741i −0.00404780 0.00701099i
\(584\) 117.184i 0.200658i
\(585\) −48.1263 61.0161i −0.0822671 0.104301i
\(586\) 181.094i 0.309034i
\(587\) −269.081 + 155.354i −0.458400 + 0.264657i −0.711371 0.702816i \(-0.751926\pi\)
0.252971 + 0.967474i \(0.418592\pi\)
\(588\) 0 0
\(589\) −114.780 + 198.805i −0.194873 + 0.337530i
\(590\) 66.0305 114.368i 0.111916 0.193844i
\(591\) −25.6017 354.364i −0.0433192 0.599600i
\(592\) −104.830 181.572i −0.177078 0.306709i
\(593\) 848.638i 1.43109i 0.698565 + 0.715546i \(0.253822\pi\)
−0.698565 + 0.715546i \(0.746178\pi\)
\(594\) 1.63290 + 0.518088i 0.00274899 + 0.000872202i
\(595\) 0 0
\(596\) −382.735 662.916i −0.642173 1.11228i
\(597\) −525.712 + 37.9811i −0.880590 + 0.0636199i
\(598\) 23.1883 + 13.3878i 0.0387764 + 0.0223876i
\(599\) −176.616 + 305.907i −0.294851 + 0.510697i −0.974950 0.222423i \(-0.928603\pi\)
0.680099 + 0.733120i \(0.261937\pi\)
\(600\) 51.9312 35.2027i 0.0865520 0.0586712i
\(601\) 582.924 336.552i 0.969924 0.559986i 0.0707111 0.997497i \(-0.477473\pi\)
0.899213 + 0.437511i \(0.144140\pi\)
\(602\) 0 0
\(603\) 345.138 865.732i 0.572368 1.43571i
\(604\) 407.460 0.674603
\(605\) 457.940 264.392i 0.756925 0.437011i
\(606\) 15.1363 31.2168i 0.0249775 0.0515129i
\(607\) −671.609 387.754i −1.10644 0.638804i −0.168535 0.985696i \(-0.553904\pi\)
−0.937905 + 0.346892i \(0.887237\pi\)
\(608\) 513.486 + 296.461i 0.844549 + 0.487600i
\(609\) 0 0
\(610\) 41.2657 + 71.4743i 0.0676487 + 0.117171i
\(611\) 132.353 0.216616
\(612\) 980.660 + 390.956i 1.60239 + 0.638817i
\(613\) −133.357 −0.217549 −0.108774 0.994066i \(-0.534693\pi\)
−0.108774 + 0.994066i \(0.534693\pi\)
\(614\) 104.920 60.5753i 0.170879 0.0986569i
\(615\) −9.36517 + 6.34839i −0.0152279 + 0.0103226i
\(616\) 0 0
\(617\) −496.756 + 860.406i −0.805115 + 1.39450i 0.111099 + 0.993809i \(0.464563\pi\)
−0.916214 + 0.400690i \(0.868770\pi\)
\(618\) −150.114 + 10.8453i −0.242903 + 0.0175490i
\(619\) −687.090 + 396.691i −1.11000 + 0.640859i −0.938829 0.344383i \(-0.888088\pi\)
−0.171170 + 0.985241i \(0.554755\pi\)
\(620\) −130.666 −0.210752
\(621\) −766.367 243.153i −1.23409 0.391551i
\(622\) 57.9277i 0.0931314i
\(623\) 0 0
\(624\) −80.1373 + 5.78967i −0.128425 + 0.00927832i
\(625\) 221.418 383.508i 0.354269 0.613612i
\(626\) −196.774 113.608i −0.314336 0.181482i
\(627\) −6.83428 10.0820i −0.0109000 0.0160797i
\(628\) 328.149 189.457i 0.522530 0.301683i
\(629\) 478.295i 0.760406i
\(630\) 0 0
\(631\) −124.394 −0.197137 −0.0985687 0.995130i \(-0.531426\pi\)
−0.0985687 + 0.995130i \(0.531426\pi\)
\(632\) 86.2726 + 149.429i 0.136507 + 0.236438i
\(633\) 49.6023 + 24.0511i 0.0783606 + 0.0379954i
\(634\) −44.8143 + 77.6206i −0.0706850 + 0.122430i
\(635\) 575.164 + 332.071i 0.905770 + 0.522947i
\(636\) 346.643 + 168.080i 0.545036 + 0.264276i
\(637\) 0 0
\(638\) 0.924714 0.00144939
\(639\) −770.109 + 111.860i −1.20518 + 0.175054i
\(640\) 445.373i 0.695895i
\(641\) −430.255 745.224i −0.671225 1.16260i −0.977557 0.210671i \(-0.932435\pi\)
0.306332 0.951925i \(-0.400898\pi\)
\(642\) −177.265 + 120.163i −0.276114 + 0.187170i
\(643\) −847.964 489.572i −1.31876 0.761387i −0.335232 0.942135i \(-0.608815\pi\)
−0.983529 + 0.180748i \(0.942148\pi\)
\(644\) 0 0
\(645\) −409.688 + 29.5987i −0.635176 + 0.0458895i
\(646\) 204.987 + 355.048i 0.317318 + 0.549610i
\(647\) 706.721i 1.09231i 0.837686 + 0.546153i \(0.183908\pi\)
−0.837686 + 0.546153i \(0.816092\pi\)
\(648\) −275.428 + 81.7374i −0.425043 + 0.126138i
\(649\) 9.25391i 0.0142587i
\(650\) −4.59121 + 2.65074i −0.00706340 + 0.00407806i
\(651\) 0 0
\(652\) 236.840 410.219i 0.363252 0.629170i
\(653\) 420.493 728.315i 0.643940 1.11534i −0.340605 0.940207i \(-0.610632\pi\)
0.984545 0.175131i \(-0.0560348\pi\)
\(654\) 28.2197 19.1294i 0.0431494 0.0292498i
\(655\) 279.684 + 484.427i 0.426998 + 0.739582i
\(656\) 11.6976i 0.0178318i
\(657\) 42.7414 + 294.257i 0.0650555 + 0.447880i
\(658\) 0 0
\(659\) −241.065 417.537i −0.365804 0.633591i 0.623101 0.782141i \(-0.285873\pi\)
−0.988905 + 0.148550i \(0.952539\pi\)
\(660\) 3.02480 6.23826i 0.00458302 0.00945191i
\(661\) −716.914 413.911i −1.08459 0.626189i −0.152460 0.988310i \(-0.548719\pi\)
−0.932131 + 0.362121i \(0.882053\pi\)
\(662\) −43.8612 + 75.9699i −0.0662556 + 0.114758i
\(663\) −164.927 79.9696i −0.248759 0.120618i
\(664\) −364.956 + 210.708i −0.549633 + 0.317331i
\(665\) 0 0
\(666\) 39.2328 + 49.7407i 0.0589081 + 0.0746857i
\(667\) −433.994 −0.650666
\(668\) 429.387 247.907i 0.642795 0.371118i
\(669\) −276.598 408.038i −0.413449 0.609922i
\(670\) 178.410 + 103.005i 0.266284 + 0.153739i
\(671\) −5.00841 2.89161i −0.00746410 0.00430940i
\(672\) 0 0
\(673\) 325.267 + 563.379i 0.483309 + 0.837116i 0.999816 0.0191670i \(-0.00610143\pi\)
−0.516507 + 0.856283i \(0.672768\pi\)
\(674\) 172.864 0.256475
\(675\) 117.563 107.337i 0.174167 0.159018i
\(676\) −626.187 −0.926312
\(677\) −366.544 + 211.624i −0.541424 + 0.312591i −0.745656 0.666331i \(-0.767864\pi\)
0.204232 + 0.978923i \(0.434530\pi\)
\(678\) −9.89047 136.898i −0.0145877 0.201915i
\(679\) 0 0
\(680\) −239.731 + 415.227i −0.352546 + 0.610628i
\(681\) 191.775 + 282.907i 0.281608 + 0.415429i
\(682\) −0.433105 + 0.250053i −0.000635051 + 0.000366647i
\(683\) 439.670 0.643734 0.321867 0.946785i \(-0.395690\pi\)
0.321867 + 0.946785i \(0.395690\pi\)
\(684\) 923.499 + 368.167i 1.35014 + 0.538256i
\(685\) 86.7953i 0.126709i
\(686\) 0 0
\(687\) −239.057 + 493.024i −0.347972 + 0.717648i
\(688\) −212.341 + 367.785i −0.308635 + 0.534571i
\(689\) −57.9244 33.4426i −0.0840702 0.0485379i
\(690\) 77.5391 159.915i 0.112375 0.231760i
\(691\) 700.681 404.539i 1.01401 0.585439i 0.101647 0.994821i \(-0.467589\pi\)
0.912363 + 0.409381i \(0.134255\pi\)
\(692\) 318.784i 0.460671i
\(693\) 0 0
\(694\) −87.5155 −0.126103
\(695\) −95.2911 165.049i −0.137109 0.237481i
\(696\) −128.367 + 87.0162i −0.184435 + 0.125023i
\(697\) −13.3428 + 23.1104i −0.0191432 + 0.0331570i
\(698\) −29.7303 17.1648i −0.0425935 0.0245914i
\(699\) 54.8549 + 759.270i 0.0784763 + 1.08622i
\(700\) 0 0
\(701\) −14.5407 −0.0207428 −0.0103714 0.999946i \(-0.503301\pi\)
−0.0103714 + 0.999946i \(0.503301\pi\)
\(702\) 23.7113 5.21188i 0.0337768 0.00742432i
\(703\) 450.416i 0.640706i
\(704\) −3.13388 5.42803i −0.00445153 0.00771028i
\(705\) −63.3028 876.201i −0.0897912 1.24284i
\(706\) 223.078 + 128.794i 0.315975 + 0.182428i
\(707\) 0 0
\(708\) −423.825 625.228i −0.598623 0.883091i
\(709\) −475.616 823.790i −0.670826 1.16190i −0.977670 0.210145i \(-0.932606\pi\)
0.306844 0.951760i \(-0.400727\pi\)
\(710\) 172.013i 0.242272i
\(711\) 271.138 + 343.757i 0.381347 + 0.483484i
\(712\) 135.742i 0.190649i
\(713\) 203.268 117.357i 0.285089 0.164596i
\(714\) 0 0
\(715\) −0.601841 + 1.04242i −0.000841736 + 0.00145793i
\(716\) −664.552 + 1151.04i −0.928145 + 1.60760i
\(717\) −354.681 171.977i −0.494674 0.239857i
\(718\) 8.33538 + 14.4373i 0.0116092 + 0.0201077i
\(719\) 1057.31i 1.47052i −0.677783 0.735262i \(-0.737059\pi\)
0.677783 0.735262i \(-0.262941\pi\)
\(720\) 76.6575 + 527.756i 0.106469 + 0.732994i
\(721\) 0 0
\(722\) 110.884 + 192.056i 0.153579 + 0.266006i
\(723\) −438.457 646.814i −0.606441 0.894625i
\(724\) −453.449 261.799i −0.626311 0.361601i
\(725\) 42.9647 74.4171i 0.0592617 0.102644i
\(726\) 11.9037 + 164.764i 0.0163963 + 0.226948i
\(727\) −1105.69 + 638.372i −1.52090 + 0.878091i −0.521202 + 0.853434i \(0.674516\pi\)
−0.999696 + 0.0246570i \(0.992151\pi\)
\(728\) 0 0
\(729\) −661.804 + 305.706i −0.907825 + 0.419350i
\(730\) −65.7259 −0.0900355
\(731\) −839.021 + 484.409i −1.14777 + 0.662666i
\(732\) 470.821 34.0154i 0.643198 0.0464691i
\(733\) 75.3308 + 43.4922i 0.102770 + 0.0593346i 0.550504 0.834832i \(-0.314435\pi\)
−0.447734 + 0.894167i \(0.647769\pi\)
\(734\) −132.897 76.7281i −0.181059 0.104534i
\(735\) 0 0
\(736\) −303.116 525.013i −0.411843 0.713333i
\(737\) −14.4357 −0.0195872
\(738\) −0.508069 3.49785i −0.000688440 0.00473963i
\(739\) 777.826 1.05254 0.526269 0.850318i \(-0.323590\pi\)
0.526269 + 0.850318i \(0.323590\pi\)
\(740\) 222.030 128.189i 0.300041 0.173228i
\(741\) −155.314 75.3082i −0.209600 0.101631i
\(742\) 0 0
\(743\) 162.682 281.774i 0.218953 0.379238i −0.735535 0.677487i \(-0.763069\pi\)
0.954488 + 0.298249i \(0.0964025\pi\)
\(744\) 36.5924 75.4673i 0.0491834 0.101434i
\(745\) 763.935 441.058i 1.02542 0.592024i
\(746\) 334.634 0.448571
\(747\) −839.575 + 662.212i −1.12393 + 0.886496i
\(748\) 16.3521i 0.0218611i
\(749\) 0 0
\(750\) 103.463 + 152.629i 0.137951 + 0.203506i
\(751\) −160.798 + 278.510i −0.214112 + 0.370852i −0.952997 0.302979i \(-0.902019\pi\)
0.738886 + 0.673831i \(0.235352\pi\)
\(752\) −786.582 454.133i −1.04599 0.603901i
\(753\) 188.647 13.6292i 0.250528 0.0180998i
\(754\) 11.3488 6.55225i 0.0150515 0.00868999i
\(755\) 469.551i 0.621922i
\(756\) 0 0
\(757\) 1029.44 1.35989 0.679946 0.733263i \(-0.262003\pi\)
0.679946 + 0.733263i \(0.262003\pi\)
\(758\) −43.0174 74.5083i −0.0567511 0.0982958i
\(759\) 0.897386 + 12.4211i 0.00118233 + 0.0163651i
\(760\) −225.758 + 391.024i −0.297050 + 0.514505i
\(761\) −936.211 540.522i −1.23024 0.710278i −0.263158 0.964753i \(-0.584764\pi\)
−0.967079 + 0.254475i \(0.918097\pi\)
\(762\) −171.741 + 116.418i −0.225381 + 0.152780i
\(763\) 0 0
\(764\) 1100.40 1.44031
\(765\) −450.532 + 1130.10i −0.588930 + 1.47725i
\(766\) 6.44780i 0.00841749i
\(767\) 65.5705 + 113.571i 0.0854896 + 0.148072i
\(768\) 360.287 + 174.695i 0.469123 + 0.227468i
\(769\) 345.681 + 199.579i 0.449520 + 0.259531i 0.707627 0.706586i \(-0.249766\pi\)
−0.258107 + 0.966116i \(0.583099\pi\)
\(770\) 0 0
\(771\) −161.175 + 332.402i −0.209046 + 0.431131i
\(772\) −418.122 724.209i −0.541609 0.938095i
\(773\) 696.903i 0.901557i −0.892636 0.450778i \(-0.851146\pi\)
0.892636 0.450778i \(-0.148854\pi\)
\(774\) 47.5203 119.198i 0.0613957 0.154003i
\(775\) 46.4726i 0.0599646i
\(776\) 249.589 144.100i 0.321635 0.185696i
\(777\) 0 0
\(778\) 32.7696 56.7586i 0.0421203 0.0729544i
\(779\) −12.5651 + 21.7634i −0.0161298 + 0.0279376i
\(780\) −7.07974 97.9938i −0.00907660 0.125633i
\(781\) 6.02673 + 10.4386i 0.00771668 + 0.0133657i
\(782\) 419.178i 0.536033i
\(783\) −290.598 + 265.323i −0.371135 + 0.338854i
\(784\) 0 0
\(785\) 218.327 + 378.154i 0.278124 + 0.481725i
\(786\) −174.294 + 12.5922i −0.221748 + 0.0160206i
\(787\) −68.7086 39.6689i −0.0873044 0.0504052i 0.455712 0.890127i \(-0.349385\pi\)
−0.543017 + 0.839722i \(0.682718\pi\)
\(788\) 224.591 389.003i 0.285014 0.493659i
\(789\) 1255.50 851.068i 1.59125 1.07867i
\(790\) −83.8108 + 48.3882i −0.106090 + 0.0612509i
\(791\) 0 0
\(792\) 2.75587 + 3.49398i 0.00347963 + 0.00441159i
\(793\) −81.9564 −0.103350
\(794\) 81.2509 46.9102i 0.102331 0.0590809i
\(795\) −193.692 + 399.466i −0.243638 + 0.502473i
\(796\) −577.101 333.190i −0.725002 0.418580i
\(797\) −79.3190 45.7948i −0.0995219 0.0574590i 0.449413 0.893324i \(-0.351633\pi\)
−0.548935 + 0.835865i \(0.684967\pi\)
\(798\) 0 0
\(799\) −1036.01 1794.42i −1.29663 2.24583i
\(800\) 120.032 0.150040
\(801\) −49.5100 340.856i −0.0618102 0.425538i
\(802\) −162.217 −0.202266
\(803\) 3.98857 2.30280i 0.00496709 0.00286775i
\(804\) 975.332 661.150i 1.21310 0.822326i
\(805\) 0 0
\(806\) −3.54361 + 6.13771i −0.00439654 + 0.00761502i
\(807\) 26.5508 1.91821i 0.0329006 0.00237697i
\(808\) 78.0451 45.0594i 0.0965905 0.0557665i
\(809\) −1278.01 −1.57974 −0.789871 0.613273i \(-0.789852\pi\)
−0.789871 + 0.613273i \(0.789852\pi\)
\(810\) −45.8445 154.481i −0.0565982 0.190717i
\(811\) 176.218i 0.217285i −0.994081 0.108642i \(-0.965350\pi\)
0.994081 0.108642i \(-0.0346503\pi\)
\(812\) 0 0
\(813\) −406.225 + 29.3485i −0.499662 + 0.0360990i
\(814\) 0.490624 0.849787i 0.000602733 0.00104396i
\(815\) 472.730 + 272.931i 0.580037 + 0.334885i
\(816\) 705.780 + 1041.17i 0.864926 + 1.27594i
\(817\) −790.116 + 456.174i −0.967094 + 0.558352i
\(818\) 239.918i 0.293298i
\(819\) 0 0
\(820\) −14.3042 −0.0174441
\(821\) 195.125 + 337.966i 0.237667 + 0.411651i 0.960044 0.279848i \(-0.0902840\pi\)
−0.722377 + 0.691499i \(0.756951\pi\)
\(822\) 24.3983 + 11.8302i 0.0296816 + 0.0143920i
\(823\) 49.6717 86.0339i 0.0603544 0.104537i −0.834269 0.551357i \(-0.814110\pi\)
0.894624 + 0.446820i \(0.147444\pi\)
\(824\) −338.576 195.477i −0.410893 0.237229i
\(825\) −2.21869 1.07579i −0.00268932 0.00130399i
\(826\) 0 0
\(827\) 494.422 0.597850 0.298925 0.954277i \(-0.403372\pi\)
0.298925 + 0.954277i \(0.403372\pi\)
\(828\) −629.512 798.116i −0.760280 0.963908i
\(829\) 756.983i 0.913128i −0.889690 0.456564i \(-0.849080\pi\)
0.889690 0.456564i \(-0.150920\pi\)
\(830\) −118.181 204.695i −0.142386 0.246620i
\(831\) 808.029 547.740i 0.972357 0.659134i
\(832\) −76.9229 44.4115i −0.0924555 0.0533792i
\(833\) 0 0
\(834\) 59.3837 4.29029i 0.0712035 0.00514423i
\(835\) 285.684 + 494.819i 0.342137 + 0.592598i
\(836\) 15.3990i 0.0184198i
\(837\) 64.3602 202.849i 0.0768939 0.242353i
\(838\) 144.118i 0.171979i
\(839\) 1345.92 777.067i 1.60419 0.926182i 0.613559 0.789649i \(-0.289737\pi\)
0.990636 0.136533i \(-0.0435960\pi\)
\(840\) 0 0
\(841\) 314.297 544.379i 0.373718 0.647299i
\(842\) 31.3278 54.2613i 0.0372064 0.0644433i
\(843\) −39.1914 + 26.5667i −0.0464904 + 0.0315145i
\(844\) 34.8471 + 60.3570i 0.0412880 + 0.0715130i
\(845\) 721.609i 0.853975i
\(846\) 254.930 + 101.632i 0.301335 + 0.120132i
\(847\) 0 0
\(848\) 229.499 + 397.504i 0.270636 + 0.468755i
\(849\) −413.373 + 852.529i −0.486894 + 1.00416i
\(850\) 71.8765 + 41.4979i 0.0845606 + 0.0488211i
\(851\) −230.264 + 398.829i −0.270580 + 0.468659i
\(852\) −885.272 429.249i −1.03905 0.503813i
\(853\) 667.098 385.149i 0.782061 0.451523i −0.0550992 0.998481i \(-0.517548\pi\)
0.837160 + 0.546958i \(0.184214\pi\)
\(854\) 0 0
\(855\) −424.271 + 1064.23i −0.496223 + 1.24471i
\(856\) −556.290 −0.649871
\(857\) 982.010 566.964i 1.14587 0.661568i 0.197992 0.980204i \(-0.436558\pi\)
0.947877 + 0.318635i \(0.103225\pi\)
\(858\) −0.210995 0.311260i −0.000245915 0.000362774i
\(859\) −610.092 352.237i −0.710235 0.410054i 0.100913 0.994895i \(-0.467824\pi\)
−0.811148 + 0.584841i \(0.801157\pi\)
\(860\) −449.736 259.655i −0.522949 0.301925i
\(861\) 0 0
\(862\) 143.635 + 248.783i 0.166630 + 0.288612i
\(863\) −550.428 −0.637807 −0.318904 0.947787i \(-0.603315\pi\)
−0.318904 + 0.947787i \(0.603315\pi\)
\(864\) −523.931 166.233i −0.606402 0.192399i
\(865\) −367.362 −0.424696
\(866\) −88.2976 + 50.9786i −0.101960 + 0.0588668i
\(867\) 144.297 + 1997.28i 0.166433 + 2.30367i
\(868\) 0 0
\(869\) 3.39070 5.87287i 0.00390184 0.00675819i
\(870\) −48.8053 71.9977i −0.0560980 0.0827560i
\(871\) −177.167 + 102.287i −0.203406 + 0.117437i
\(872\) 88.5585 0.101558
\(873\) 574.174 452.879i 0.657703 0.518761i
\(874\) 394.745i 0.451653i
\(875\) 0 0
\(876\) −164.015 + 338.261i −0.187232 + 0.386142i
\(877\) −11.2603 + 19.5034i −0.0128396 + 0.0222388i −0.872374 0.488839i \(-0.837420\pi\)
0.859534 + 0.511078i \(0.170754\pi\)
\(878\) 89.6220 + 51.7433i 0.102075 + 0.0589331i
\(879\) 520.774 1074.03i 0.592462 1.22188i
\(880\) 7.15358 4.13012i 0.00812906 0.00469332i
\(881\) 443.014i 0.502854i −0.967876 0.251427i \(-0.919100\pi\)
0.967876 0.251427i \(-0.0808998\pi\)
\(882\) 0 0
\(883\) 331.418 0.375332 0.187666 0.982233i \(-0.439908\pi\)
0.187666 + 0.982233i \(0.439908\pi\)
\(884\) −115.866 200.686i −0.131070 0.227021i
\(885\) 720.504 488.410i 0.814129 0.551875i
\(886\) −21.4109 + 37.0847i −0.0241658 + 0.0418564i
\(887\) 328.087 + 189.421i 0.369883 + 0.213552i 0.673408 0.739271i \(-0.264830\pi\)
−0.303524 + 0.952824i \(0.598163\pi\)
\(888\) 11.8581 + 164.134i 0.0133538 + 0.184835i
\(889\) 0 0
\(890\) 76.1343 0.0855441
\(891\) 8.19454 + 7.76843i 0.00919701 + 0.00871878i
\(892\) 623.228i 0.698686i
\(893\) −975.619 1689.82i −1.09252 1.89230i
\(894\) 19.8577 + 274.859i 0.0222122 + 0.307449i
\(895\) −1326.44 765.820i −1.48206 0.855665i
\(896\) 0 0
\(897\) 99.0257 + 146.083i 0.110397 + 0.162857i
\(898\) 66.8358 + 115.763i 0.0744274 + 0.128912i
\(899\) 114.874i 0.127780i
\(900\) 199.174 28.9304i 0.221304 0.0321448i
\(901\) 1047.11i 1.16216i
\(902\) −0.0474123 + 0.0273735i −5.25635e−5 + 3.03476e-5i
\(903\) 0 0
\(904\) 178.268 308.769i 0.197199 0.341558i
\(905\) 301.693 522.548i 0.333363 0.577402i
\(906\) −131.991 63.9998i −0.145686 0.0706400i
\(907\) 196.898 + 341.037i 0.217087 + 0.376006i 0.953916 0.300073i \(-0.0970111\pi\)
−0.736829 + 0.676079i \(0.763678\pi\)
\(908\) 432.107i 0.475888i
\(909\) 179.541 141.613i 0.197515 0.155790i
\(910\) 0 0
\(911\) 571.193 + 989.335i 0.626995 + 1.08599i 0.988151 + 0.153482i \(0.0490488\pi\)
−0.361156 + 0.932505i \(0.617618\pi\)
\(912\) 664.641 + 980.481i 0.728773 + 1.07509i
\(913\) 14.3436 + 8.28127i 0.0157104 + 0.00907039i
\(914\) 64.6371 111.955i 0.0707189 0.122489i
\(915\) 39.1988 + 542.568i 0.0428402 + 0.592970i
\(916\) −599.921 + 346.365i −0.654936 + 0.378127i
\(917\) 0 0
\(918\) −256.265 280.678i −0.279156 0.305749i
\(919\) −375.149 −0.408214 −0.204107 0.978949i \(-0.565429\pi\)
−0.204107 + 0.978949i \(0.565429\pi\)
\(920\) 399.802 230.826i 0.434568 0.250898i
\(921\) 796.454 57.5413i 0.864770 0.0624770i
\(922\) 256.480 + 148.079i 0.278178 + 0.160606i
\(923\) 147.930 + 85.4073i 0.160271 + 0.0925323i
\(924\) 0 0
\(925\) −45.5915 78.9668i −0.0492881 0.0853695i
\(926\) 195.716 0.211357
\(927\) −921.483 367.364i −0.994048 0.396293i
\(928\) −296.703 −0.319723
\(929\) 56.1689 32.4291i 0.0604617 0.0349076i −0.469464 0.882951i \(-0.655553\pi\)
0.529926 + 0.848044i \(0.322220\pi\)
\(930\) 42.3277 + 20.5238i 0.0455137 + 0.0220686i
\(931\) 0 0
\(932\) −481.216 + 833.490i −0.516326 + 0.894303i
\(933\) 166.584 343.557i 0.178546 0.368229i
\(934\) 98.7224 56.9974i 0.105699 0.0610251i
\(935\) 18.8439 0.0201539
\(936\) 58.5796 + 23.3537i 0.0625850 + 0.0249505i
\(937\) 1198.08i 1.27863i 0.768944 + 0.639316i \(0.220783\pi\)
−0.768944 + 0.639316i \(0.779217\pi\)
\(938\) 0 0
\(939\) −840.325 1239.65i −0.894915 1.32018i
\(940\) 555.325 961.851i 0.590771 1.02325i
\(941\) −671.665 387.786i −0.713778 0.412100i 0.0986805 0.995119i \(-0.468538\pi\)
−0.812458 + 0.583019i \(0.801871\pi\)
\(942\) −136.058 + 9.82973i −0.144435 + 0.0104350i
\(943\) 22.2519 12.8472i 0.0235969 0.0136237i
\(944\) 899.952i 0.953339i
\(945\) 0 0
\(946\) −1.98758 −0.00210104
\(947\) 424.142 + 734.636i 0.447880 + 0.775751i 0.998248 0.0591714i \(-0.0188458\pi\)
−0.550368 + 0.834922i \(0.685513\pi\)
\(948\) 39.8864 + 552.085i 0.0420743 + 0.582369i
\(949\) 32.6340 56.5237i 0.0343878 0.0595614i
\(950\) 67.6869 + 39.0791i 0.0712494 + 0.0411359i
\(951\) −488.999 + 331.479i −0.514195 + 0.348558i
\(952\) 0 0
\(953\) −846.104 −0.887832 −0.443916 0.896068i \(-0.646411\pi\)
−0.443916 + 0.896068i \(0.646411\pi\)
\(954\) −85.8902 108.894i −0.0900317 0.114145i
\(955\) 1268.08i 1.32783i
\(956\) −249.174 431.583i −0.260643 0.451447i
\(957\) 5.48429 + 2.65921i 0.00573071 + 0.00277870i
\(958\) 211.017 + 121.831i 0.220268 + 0.127172i
\(959\) 0 0
\(960\) −257.222 + 530.487i −0.267939 + 0.552590i
\(961\) −449.437 778.447i −0.467676 0.810039i
\(962\) 13.9057i 0.0144550i
\(963\) −1396.88 + 202.899i −1.45055 + 0.210695i
\(964\) 987.929i 1.02482i
\(965\) 834.568 481.838i 0.864837 0.499314i
\(966\) 0 0
\(967\) 84.2016 145.842i 0.0870751 0.150819i −0.819198 0.573510i \(-0.805581\pi\)
0.906274 + 0.422692i \(0.138915\pi\)
\(968\) −214.554 + 371.619i −0.221647 + 0.383904i
\(969\) 194.720 + 2695.20i 0.200949 + 2.78143i
\(970\) 80.8223 + 139.988i 0.0833219 + 0.144318i
\(971\) 1029.28i 1.06002i 0.847992 + 0.530010i \(0.177812\pi\)
−0.847992 + 0.530010i \(0.822188\pi\)
\(972\) −909.444 149.558i −0.935642 0.153866i
\(973\) 0 0
\(974\) −166.902 289.083i −0.171358 0.296800i
\(975\) −34.8523 + 2.51797i −0.0357459 + 0.00258253i
\(976\) 487.073 + 281.212i 0.499050 + 0.288127i
\(977\) −486.819 + 843.195i −0.498279 + 0.863045i −0.999998 0.00198578i \(-0.999368\pi\)
0.501719 + 0.865031i \(0.332701\pi\)
\(978\) −141.154 + 95.6847i −0.144330 + 0.0978371i
\(979\) −4.62020 + 2.66748i −0.00471931 + 0.00272469i
\(980\) 0 0
\(981\) 222.376 32.3005i 0.226683 0.0329261i
\(982\) 63.1853 0.0643435
\(983\) −530.517 + 306.294i −0.539692 + 0.311591i −0.744954 0.667116i \(-0.767529\pi\)
0.205262 + 0.978707i \(0.434195\pi\)
\(984\) 4.00580 8.26146i 0.00407094 0.00839579i
\(985\) 448.282 + 258.815i 0.455108 + 0.262757i
\(986\) −177.669 102.577i −0.180191 0.104034i
\(987\) 0 0
\(988\) −109.113 188.989i −0.110438 0.191284i
\(989\) 932.829 0.943204
\(990\) −1.95969 + 1.54570i −0.00197948 + 0.00156131i
\(991\) −205.562 −0.207429 −0.103714 0.994607i \(-0.533073\pi\)
−0.103714 + 0.994607i \(0.533073\pi\)
\(992\) 138.966 80.2318i 0.140086 0.0808788i
\(993\) −478.600 + 324.429i −0.481973 + 0.326716i
\(994\) 0 0
\(995\) 383.963 665.043i 0.385892 0.668385i
\(996\) −1348.38 + 97.4165i −1.35380 + 0.0978078i
\(997\) −197.186 + 113.845i −0.197779 + 0.114188i −0.595619 0.803267i \(-0.703093\pi\)
0.397840 + 0.917455i \(0.369760\pi\)
\(998\) −43.6307 −0.0437182
\(999\) 89.6420 + 407.824i 0.0897317 + 0.408232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.l.b.391.6 28
7.2 even 3 441.3.k.b.31.6 28
7.3 odd 6 441.3.t.a.166.9 28
7.4 even 3 63.3.t.a.40.9 yes 28
7.5 odd 6 63.3.k.a.31.6 28
7.6 odd 2 441.3.l.a.391.6 28
9.7 even 3 441.3.l.a.97.6 28
21.5 even 6 189.3.k.a.10.9 28
21.11 odd 6 189.3.t.a.145.6 28
63.11 odd 6 189.3.k.a.19.9 28
63.16 even 3 441.3.t.a.178.9 28
63.25 even 3 63.3.k.a.61.6 yes 28
63.34 odd 6 inner 441.3.l.b.97.6 28
63.47 even 6 189.3.t.a.73.6 28
63.52 odd 6 441.3.k.b.313.6 28
63.61 odd 6 63.3.t.a.52.9 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.6 28 7.5 odd 6
63.3.k.a.61.6 yes 28 63.25 even 3
63.3.t.a.40.9 yes 28 7.4 even 3
63.3.t.a.52.9 yes 28 63.61 odd 6
189.3.k.a.10.9 28 21.5 even 6
189.3.k.a.19.9 28 63.11 odd 6
189.3.t.a.73.6 28 63.47 even 6
189.3.t.a.145.6 28 21.11 odd 6
441.3.k.b.31.6 28 7.2 even 3
441.3.k.b.313.6 28 63.52 odd 6
441.3.l.a.97.6 28 9.7 even 3
441.3.l.a.391.6 28 7.6 odd 2
441.3.l.b.97.6 28 63.34 odd 6 inner
441.3.l.b.391.6 28 1.1 even 1 trivial
441.3.t.a.166.9 28 7.3 odd 6
441.3.t.a.178.9 28 63.16 even 3