Properties

Label 441.6.a.q
Level 441441
Weight 66
Character orbit 441.a
Self dual yes
Analytic conductor 70.72970.729
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,6,Mod(1,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 441=3272 441 = 3^{2} \cdot 7^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 441.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3,0,37,-72,0,0,249,0,-108,-480,0,1296] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 70.729264537570.7292645375
Analytic rank: 11
Dimension: 22
Coefficient field: Q(193)\Q(\sqrt{193})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x48 x^{2} - x - 48 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 147)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+193)\beta = \frac{1}{2}(1 + \sqrt{193}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+1)q2+(3β+17)q436q5+(9β+129)q8+(36β36)q10+(8β236)q11+(72β+612)q13+(15β847)q16+(216β576)q17++(19584β+8136)q97+O(q100) q + (\beta + 1) q^{2} + (3 \beta + 17) q^{4} - 36 q^{5} + ( - 9 \beta + 129) q^{8} + ( - 36 \beta - 36) q^{10} + ( - 8 \beta - 236) q^{11} + (72 \beta + 612) q^{13} + (15 \beta - 847) q^{16} + (216 \beta - 576) q^{17}+ \cdots + (19584 \beta + 8136) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q2+37q472q5+249q8108q10480q11+1296q131679q16936q17216q191332q201492q22+504q233658q25+8892q266372q29++35856q97+O(q100) 2 q + 3 q^{2} + 37 q^{4} - 72 q^{5} + 249 q^{8} - 108 q^{10} - 480 q^{11} + 1296 q^{13} - 1679 q^{16} - 936 q^{17} - 216 q^{19} - 1332 q^{20} - 1492 q^{22} + 504 q^{23} - 3658 q^{25} + 8892 q^{26} - 6372 q^{29}+ \cdots + 35856 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−6.44622
7.44622
−5.44622 0 −2.33867 −36.0000 0 0 187.016 0 196.064
1.2 8.44622 0 39.3387 −36.0000 0 0 61.9840 0 −304.064
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.6.a.q 2
3.b odd 2 1 147.6.a.h 2
7.b odd 2 1 441.6.a.r 2
21.c even 2 1 147.6.a.j yes 2
21.g even 6 2 147.6.e.m 4
21.h odd 6 2 147.6.e.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.6.a.h 2 3.b odd 2 1
147.6.a.j yes 2 21.c even 2 1
147.6.e.m 4 21.g even 6 2
147.6.e.n 4 21.h odd 6 2
441.6.a.q 2 1.a even 1 1 trivial
441.6.a.r 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(441))S_{6}^{\mathrm{new}}(\Gamma_0(441)):

T223T246 T_{2}^{2} - 3T_{2} - 46 Copy content Toggle raw display
T5+36 T_{5} + 36 Copy content Toggle raw display
T1321296T13+169776 T_{13}^{2} - 1296T_{13} + 169776 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T23T46 T^{2} - 3T - 46 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+36)2 (T + 36)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+480T+54512 T^{2} + 480T + 54512 Copy content Toggle raw display
1313 T21296T+169776 T^{2} - 1296 T + 169776 Copy content Toggle raw display
1717 T2+936T2032128 T^{2} + 936 T - 2032128 Copy content Toggle raw display
1919 T2+216T3990384 T^{2} + 216 T - 3990384 Copy content Toggle raw display
2323 T2504T87808 T^{2} - 504T - 87808 Copy content Toggle raw display
2929 T2+6372T9612604 T^{2} + 6372 T - 9612604 Copy content Toggle raw display
3131 T29936T+8672832 T^{2} - 9936 T + 8672832 Copy content Toggle raw display
3737 T211124T22869468 T^{2} - 11124 T - 22869468 Copy content Toggle raw display
4141 T2+20952T+107495424 T^{2} + 20952 T + 107495424 Copy content Toggle raw display
4343 T2+6264T268110576 T^{2} + 6264 T - 268110576 Copy content Toggle raw display
4747 T2+7920T560613312 T^{2} + 7920 T - 560613312 Copy content Toggle raw display
5353 T2+2220T66407452 T^{2} + 2220 T - 66407452 Copy content Toggle raw display
5959 T2+29736T+185038992 T^{2} + 29736 T + 185038992 Copy content Toggle raw display
6161 T2+17280T982141200 T^{2} + 17280 T - 982141200 Copy content Toggle raw display
6767 T2+1919121200 T^{2} + \cdots - 1919121200 Copy content Toggle raw display
7171 T2++1814661632 T^{2} + \cdots + 1814661632 Copy content Toggle raw display
7373 T256592T+631577088 T^{2} - 56592 T + 631577088 Copy content Toggle raw display
7979 T2+1239346496 T^{2} + \cdots - 1239346496 Copy content Toggle raw display
8383 T2+3085453296 T^{2} + \cdots - 3085453296 Copy content Toggle raw display
8989 T2++3143484288 T^{2} + \cdots + 3143484288 Copy content Toggle raw display
9797 T2+18184056768 T^{2} + \cdots - 18184056768 Copy content Toggle raw display
show more
show less