Properties

Label 448.2.m.a
Level $448$
Weight $2$
Character orbit 448.m
Analytic conductor $3.577$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,2,Mod(113,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 i + 2) q^{5} + i q^{7} + 3 i q^{9} + ( - i - 1) q^{11} - 2 q^{17} + (2 i - 2) q^{19} + 6 i q^{23} + 3 i q^{25} + ( - 7 i + 7) q^{29} + 8 q^{31} + (2 i - 2) q^{35} + ( - 5 i - 5) q^{37} + 10 i q^{41}+ \cdots + ( - 3 i + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 2 q^{11} - 4 q^{17} - 4 q^{19} + 14 q^{29} + 16 q^{31} - 4 q^{35} - 10 q^{37} + 2 q^{43} - 12 q^{45} + 24 q^{47} - 2 q^{49} - 2 q^{53} - 16 q^{59} + 12 q^{61} - 6 q^{63} - 6 q^{67} + 2 q^{77}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1
1.00000i
1.00000i
0 0 0 2.00000 + 2.00000i 0 1.00000i 0 3.00000i 0
337.1 0 0 0 2.00000 2.00000i 0 1.00000i 0 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.2.m.a 2
4.b odd 2 1 112.2.m.b 2
8.b even 2 1 896.2.m.c 2
8.d odd 2 1 896.2.m.b 2
16.e even 4 1 inner 448.2.m.a 2
16.e even 4 1 896.2.m.c 2
16.f odd 4 1 112.2.m.b 2
16.f odd 4 1 896.2.m.b 2
28.d even 2 1 784.2.m.a 2
28.f even 6 2 784.2.x.e 4
28.g odd 6 2 784.2.x.d 4
32.g even 8 2 7168.2.a.k 2
32.h odd 8 2 7168.2.a.b 2
112.j even 4 1 784.2.m.a 2
112.u odd 12 2 784.2.x.d 4
112.v even 12 2 784.2.x.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.2.m.b 2 4.b odd 2 1
112.2.m.b 2 16.f odd 4 1
448.2.m.a 2 1.a even 1 1 trivial
448.2.m.a 2 16.e even 4 1 inner
784.2.m.a 2 28.d even 2 1
784.2.m.a 2 112.j even 4 1
784.2.x.d 4 28.g odd 6 2
784.2.x.d 4 112.u odd 12 2
784.2.x.e 4 28.f even 6 2
784.2.x.e 4 112.v even 12 2
896.2.m.b 2 8.d odd 2 1
896.2.m.b 2 16.f odd 4 1
896.2.m.c 2 8.b even 2 1
896.2.m.c 2 16.e even 4 1
7168.2.a.b 2 32.h odd 8 2
7168.2.a.k 2 32.g even 8 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 8 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T + 8 \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} - 14T + 98 \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 10T + 50 \) Copy content Toggle raw display
$41$ \( T^{2} + 100 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$47$ \( (T - 12)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$59$ \( T^{2} + 16T + 128 \) Copy content Toggle raw display
$61$ \( T^{2} - 12T + 72 \) Copy content Toggle raw display
$67$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( (T + 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 20T + 200 \) Copy content Toggle raw display
$89$ \( T^{2} + 196 \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less