Properties

Label 448.4.a.d
Level 448448
Weight 44
Character orbit 448.a
Self dual yes
Analytic conductor 26.43326.433
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 448=267 448 = 2^{6} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 26.432855682626.4328556826
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 28)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q4q36q5+7q711q9+12q11+82q13+24q1530q1768q1928q21+216q2389q25+152q27246q29112q3148q3342q35+132q99+O(q100) q - 4 q^{3} - 6 q^{5} + 7 q^{7} - 11 q^{9} + 12 q^{11} + 82 q^{13} + 24 q^{15} - 30 q^{17} - 68 q^{19} - 28 q^{21} + 216 q^{23} - 89 q^{25} + 152 q^{27} - 246 q^{29} - 112 q^{31} - 48 q^{33} - 42 q^{35}+ \cdots - 132 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −4.00000 0 −6.00000 0 7.00000 0 −11.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.4.a.d 1
4.b odd 2 1 448.4.a.m 1
8.b even 2 1 28.4.a.b 1
8.d odd 2 1 112.4.a.c 1
24.f even 2 1 1008.4.a.f 1
24.h odd 2 1 252.4.a.c 1
40.f even 2 1 700.4.a.e 1
40.i odd 4 2 700.4.e.f 2
56.e even 2 1 784.4.a.n 1
56.h odd 2 1 196.4.a.b 1
56.j odd 6 2 196.4.e.d 2
56.p even 6 2 196.4.e.c 2
168.i even 2 1 1764.4.a.k 1
168.s odd 6 2 1764.4.k.k 2
168.ba even 6 2 1764.4.k.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.4.a.b 1 8.b even 2 1
112.4.a.c 1 8.d odd 2 1
196.4.a.b 1 56.h odd 2 1
196.4.e.c 2 56.p even 6 2
196.4.e.d 2 56.j odd 6 2
252.4.a.c 1 24.h odd 2 1
448.4.a.d 1 1.a even 1 1 trivial
448.4.a.m 1 4.b odd 2 1
700.4.a.e 1 40.f even 2 1
700.4.e.f 2 40.i odd 4 2
784.4.a.n 1 56.e even 2 1
1008.4.a.f 1 24.f even 2 1
1764.4.a.k 1 168.i even 2 1
1764.4.k.e 2 168.ba even 6 2
1764.4.k.k 2 168.s odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(448))S_{4}^{\mathrm{new}}(\Gamma_0(448)):

T3+4 T_{3} + 4 Copy content Toggle raw display
T5+6 T_{5} + 6 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+4 T + 4 Copy content Toggle raw display
55 T+6 T + 6 Copy content Toggle raw display
77 T7 T - 7 Copy content Toggle raw display
1111 T12 T - 12 Copy content Toggle raw display
1313 T82 T - 82 Copy content Toggle raw display
1717 T+30 T + 30 Copy content Toggle raw display
1919 T+68 T + 68 Copy content Toggle raw display
2323 T216 T - 216 Copy content Toggle raw display
2929 T+246 T + 246 Copy content Toggle raw display
3131 T+112 T + 112 Copy content Toggle raw display
3737 T+110 T + 110 Copy content Toggle raw display
4141 T+246 T + 246 Copy content Toggle raw display
4343 T172 T - 172 Copy content Toggle raw display
4747 T192 T - 192 Copy content Toggle raw display
5353 T+558 T + 558 Copy content Toggle raw display
5959 T+540 T + 540 Copy content Toggle raw display
6161 T+110 T + 110 Copy content Toggle raw display
6767 T+140 T + 140 Copy content Toggle raw display
7171 T+840 T + 840 Copy content Toggle raw display
7373 T+550 T + 550 Copy content Toggle raw display
7979 T+208 T + 208 Copy content Toggle raw display
8383 T+516 T + 516 Copy content Toggle raw display
8989 T+1398 T + 1398 Copy content Toggle raw display
9797 T1586 T - 1586 Copy content Toggle raw display
show more
show less