Properties

Label 448.4.j.a
Level 448448
Weight 44
Character orbit 448.j
Analytic conductor 26.43326.433
Analytic rank 00
Dimension 44
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 448=267 448 = 2^{6} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 448.j (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.432855682626.4328556826
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,7)\Q(i, \sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x43x2+4 x^{4} - 3x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: U(1)[D4]\mathrm{U}(1)[D_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+7β2q7+27β1q9+(5β35β234β1+34)q1140q23+125β1q25+(50β3+50β2+83)q29+(2β3+2β2++225)q37++(135β3135β2++918)q99+O(q100) q + 7 \beta_{2} q^{7} + 27 \beta_1 q^{9} + (5 \beta_{3} - 5 \beta_{2} - 34 \beta_1 + 34) q^{11} - 40 q^{23} + 125 \beta_1 q^{25} + ( - 50 \beta_{3} + 50 \beta_{2} + \cdots - 83) q^{29} + (2 \beta_{3} + 2 \beta_{2} + \cdots + 225) q^{37}+ \cdots + ( - 135 \beta_{3} - 135 \beta_{2} + \cdots + 918) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+136q11160q23332q29+900q37360q43+1372q49+1180q53+1480q67980q772916q81+3672q99+O(q100) 4 q + 136 q^{11} - 160 q^{23} - 332 q^{29} + 900 q^{37} - 360 q^{43} + 1372 q^{49} + 1180 q^{53} + 1480 q^{67} - 980 q^{77} - 2916 q^{81} + 3672 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x43x2+4 x^{4} - 3x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== (ν3ν)/2 ( \nu^{3} - \nu ) / 2 Copy content Toggle raw display
β2\beta_{2}== (ν3+5ν)/2 ( -\nu^{3} + 5\nu ) / 2 Copy content Toggle raw display
β3\beta_{3}== 2ν23 2\nu^{2} - 3 Copy content Toggle raw display
ν\nu== (β2+β1)/2 ( \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+3)/2 ( \beta_{3} + 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β2+5β1)/2 ( \beta_{2} + 5\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/448Z)×\left(\mathbb{Z}/448\mathbb{Z}\right)^\times.

nn 127127 129129 197197
χ(n)\chi(n) 1-1 1-1 β1\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
111.1
−1.32288 0.500000i
1.32288 0.500000i
−1.32288 + 0.500000i
1.32288 + 0.500000i
0 0 0 0 0 −18.5203 0 27.0000i 0
111.2 0 0 0 0 0 18.5203 0 27.0000i 0
335.1 0 0 0 0 0 −18.5203 0 27.0000i 0
335.2 0 0 0 0 0 18.5203 0 27.0000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
16.f odd 4 1 inner
112.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.4.j.a 4
4.b odd 2 1 112.4.j.a 4
7.b odd 2 1 CM 448.4.j.a 4
16.e even 4 1 112.4.j.a 4
16.f odd 4 1 inner 448.4.j.a 4
28.d even 2 1 112.4.j.a 4
112.j even 4 1 inner 448.4.j.a 4
112.l odd 4 1 112.4.j.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.4.j.a 4 4.b odd 2 1
112.4.j.a 4 16.e even 4 1
112.4.j.a 4 28.d even 2 1
112.4.j.a 4 112.l odd 4 1
448.4.j.a 4 1.a even 1 1 trivial
448.4.j.a 4 7.b odd 2 1 CM
448.4.j.a 4 16.f odd 4 1 inner
448.4.j.a 4 112.j even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3 T_{3} acting on S4new(448,[χ])S_{4}^{\mathrm{new}}(448, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2343)2 (T^{2} - 343)^{2} Copy content Toggle raw display
1111 T4136T3++3849444 T^{4} - 136 T^{3} + \cdots + 3849444 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T+40)4 (T + 40)^{4} Copy content Toggle raw display
2929 T4+332T3++450373284 T^{4} + 332 T^{3} + \cdots + 450373284 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4++10240225636 T^{4} + \cdots + 10240225636 Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4++16031104996 T^{4} + \cdots + 16031104996 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4++2534719716 T^{4} + \cdots + 2534719716 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4++2908013476 T^{4} + \cdots + 2908013476 Copy content Toggle raw display
7171 (T2958300)2 (T^{2} - 958300)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2+1915456)2 (T^{2} + 1915456)^{2} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less