Properties

Label 448.4.j.a
Level $448$
Weight $4$
Character orbit 448.j
Analytic conductor $26.433$
Analytic rank $0$
Dimension $4$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 7 \beta_{2} q^{7} + 27 \beta_1 q^{9} + (5 \beta_{3} - 5 \beta_{2} - 34 \beta_1 + 34) q^{11} - 40 q^{23} + 125 \beta_1 q^{25} + ( - 50 \beta_{3} + 50 \beta_{2} + \cdots - 83) q^{29} + (2 \beta_{3} + 2 \beta_{2} + \cdots + 225) q^{37}+ \cdots + ( - 135 \beta_{3} - 135 \beta_{2} + \cdots + 918) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 136 q^{11} - 160 q^{23} - 332 q^{29} + 900 q^{37} - 360 q^{43} + 1372 q^{49} + 1180 q^{53} + 1480 q^{67} - 980 q^{77} - 2916 q^{81} + 3672 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 5\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
111.1
−1.32288 0.500000i
1.32288 0.500000i
−1.32288 + 0.500000i
1.32288 + 0.500000i
0 0 0 0 0 −18.5203 0 27.0000i 0
111.2 0 0 0 0 0 18.5203 0 27.0000i 0
335.1 0 0 0 0 0 −18.5203 0 27.0000i 0
335.2 0 0 0 0 0 18.5203 0 27.0000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
16.f odd 4 1 inner
112.j even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.4.j.a 4
4.b odd 2 1 112.4.j.a 4
7.b odd 2 1 CM 448.4.j.a 4
16.e even 4 1 112.4.j.a 4
16.f odd 4 1 inner 448.4.j.a 4
28.d even 2 1 112.4.j.a 4
112.j even 4 1 inner 448.4.j.a 4
112.l odd 4 1 112.4.j.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.4.j.a 4 4.b odd 2 1
112.4.j.a 4 16.e even 4 1
112.4.j.a 4 28.d even 2 1
112.4.j.a 4 112.l odd 4 1
448.4.j.a 4 1.a even 1 1 trivial
448.4.j.a 4 7.b odd 2 1 CM
448.4.j.a 4 16.f odd 4 1 inner
448.4.j.a 4 112.j even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{4}^{\mathrm{new}}(448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 136 T^{3} + \cdots + 3849444 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T + 40)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 332 T^{3} + \cdots + 450373284 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 10240225636 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 16031104996 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 2534719716 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 2908013476 \) Copy content Toggle raw display
$71$ \( (T^{2} - 958300)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 1915456)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less