Properties

Label 448.6.a.bf.1.3
Level $448$
Weight $6$
Character 448.1
Self dual yes
Analytic conductor $71.852$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,6,Mod(1,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 448.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.8519512762\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 229x^{3} - 272x^{2} + 7973x - 13998 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 224)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.24605\) of defining polynomial
Character \(\chi\) \(=\) 448.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49210 q^{3} +99.5911 q^{5} +49.0000 q^{7} -236.789 q^{9} -292.685 q^{11} +163.156 q^{13} -248.190 q^{15} -1509.24 q^{17} +2117.22 q^{19} -122.113 q^{21} +4585.65 q^{23} +6793.38 q^{25} +1195.68 q^{27} -800.137 q^{29} +1276.43 q^{31} +729.399 q^{33} +4879.96 q^{35} -9375.25 q^{37} -406.599 q^{39} +6583.50 q^{41} +4935.97 q^{43} -23582.1 q^{45} +25847.4 q^{47} +2401.00 q^{49} +3761.16 q^{51} +6214.40 q^{53} -29148.8 q^{55} -5276.32 q^{57} +2803.61 q^{59} +828.062 q^{61} -11602.7 q^{63} +16248.8 q^{65} -62870.3 q^{67} -11427.9 q^{69} -60730.6 q^{71} +26058.6 q^{73} -16929.7 q^{75} -14341.6 q^{77} +55359.0 q^{79} +54560.1 q^{81} +118671. q^{83} -150306. q^{85} +1994.02 q^{87} +98218.5 q^{89} +7994.62 q^{91} -3180.98 q^{93} +210856. q^{95} +106682. q^{97} +69304.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 10 q^{3} - 36 q^{5} + 245 q^{7} + 637 q^{9} - 116 q^{11} - 40 q^{13} + 16 q^{15} - 402 q^{17} + 3582 q^{19} + 490 q^{21} + 472 q^{23} + 9615 q^{25} - 356 q^{27} - 4754 q^{29} - 10500 q^{31} + 15864 q^{33}+ \cdots + 260236 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.49210 −0.159868 −0.0799340 0.996800i \(-0.525471\pi\)
−0.0799340 + 0.996800i \(0.525471\pi\)
\(4\) 0 0
\(5\) 99.5911 1.78154 0.890769 0.454455i \(-0.150166\pi\)
0.890769 + 0.454455i \(0.150166\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −236.789 −0.974442
\(10\) 0 0
\(11\) −292.685 −0.729321 −0.364660 0.931141i \(-0.618815\pi\)
−0.364660 + 0.931141i \(0.618815\pi\)
\(12\) 0 0
\(13\) 163.156 0.267759 0.133879 0.990998i \(-0.457257\pi\)
0.133879 + 0.990998i \(0.457257\pi\)
\(14\) 0 0
\(15\) −248.190 −0.284811
\(16\) 0 0
\(17\) −1509.24 −1.26659 −0.633293 0.773912i \(-0.718297\pi\)
−0.633293 + 0.773912i \(0.718297\pi\)
\(18\) 0 0
\(19\) 2117.22 1.34550 0.672748 0.739871i \(-0.265114\pi\)
0.672748 + 0.739871i \(0.265114\pi\)
\(20\) 0 0
\(21\) −122.113 −0.0604244
\(22\) 0 0
\(23\) 4585.65 1.80751 0.903756 0.428048i \(-0.140799\pi\)
0.903756 + 0.428048i \(0.140799\pi\)
\(24\) 0 0
\(25\) 6793.38 2.17388
\(26\) 0 0
\(27\) 1195.68 0.315650
\(28\) 0 0
\(29\) −800.137 −0.176673 −0.0883364 0.996091i \(-0.528155\pi\)
−0.0883364 + 0.996091i \(0.528155\pi\)
\(30\) 0 0
\(31\) 1276.43 0.238557 0.119278 0.992861i \(-0.461942\pi\)
0.119278 + 0.992861i \(0.461942\pi\)
\(32\) 0 0
\(33\) 729.399 0.116595
\(34\) 0 0
\(35\) 4879.96 0.673358
\(36\) 0 0
\(37\) −9375.25 −1.12584 −0.562922 0.826510i \(-0.690323\pi\)
−0.562922 + 0.826510i \(0.690323\pi\)
\(38\) 0 0
\(39\) −406.599 −0.0428060
\(40\) 0 0
\(41\) 6583.50 0.611642 0.305821 0.952089i \(-0.401069\pi\)
0.305821 + 0.952089i \(0.401069\pi\)
\(42\) 0 0
\(43\) 4935.97 0.407100 0.203550 0.979065i \(-0.434752\pi\)
0.203550 + 0.979065i \(0.434752\pi\)
\(44\) 0 0
\(45\) −23582.1 −1.73601
\(46\) 0 0
\(47\) 25847.4 1.70676 0.853379 0.521291i \(-0.174549\pi\)
0.853379 + 0.521291i \(0.174549\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 3761.16 0.202487
\(52\) 0 0
\(53\) 6214.40 0.303885 0.151943 0.988389i \(-0.451447\pi\)
0.151943 + 0.988389i \(0.451447\pi\)
\(54\) 0 0
\(55\) −29148.8 −1.29931
\(56\) 0 0
\(57\) −5276.32 −0.215102
\(58\) 0 0
\(59\) 2803.61 0.104855 0.0524273 0.998625i \(-0.483304\pi\)
0.0524273 + 0.998625i \(0.483304\pi\)
\(60\) 0 0
\(61\) 828.062 0.0284930 0.0142465 0.999899i \(-0.495465\pi\)
0.0142465 + 0.999899i \(0.495465\pi\)
\(62\) 0 0
\(63\) −11602.7 −0.368305
\(64\) 0 0
\(65\) 16248.8 0.477022
\(66\) 0 0
\(67\) −62870.3 −1.71103 −0.855517 0.517774i \(-0.826761\pi\)
−0.855517 + 0.517774i \(0.826761\pi\)
\(68\) 0 0
\(69\) −11427.9 −0.288963
\(70\) 0 0
\(71\) −60730.6 −1.42976 −0.714878 0.699249i \(-0.753518\pi\)
−0.714878 + 0.699249i \(0.753518\pi\)
\(72\) 0 0
\(73\) 26058.6 0.572327 0.286163 0.958181i \(-0.407620\pi\)
0.286163 + 0.958181i \(0.407620\pi\)
\(74\) 0 0
\(75\) −16929.7 −0.347534
\(76\) 0 0
\(77\) −14341.6 −0.275657
\(78\) 0 0
\(79\) 55359.0 0.997976 0.498988 0.866609i \(-0.333705\pi\)
0.498988 + 0.866609i \(0.333705\pi\)
\(80\) 0 0
\(81\) 54560.1 0.923980
\(82\) 0 0
\(83\) 118671. 1.89081 0.945405 0.325898i \(-0.105667\pi\)
0.945405 + 0.325898i \(0.105667\pi\)
\(84\) 0 0
\(85\) −150306. −2.25647
\(86\) 0 0
\(87\) 1994.02 0.0282443
\(88\) 0 0
\(89\) 98218.5 1.31437 0.657186 0.753728i \(-0.271747\pi\)
0.657186 + 0.753728i \(0.271747\pi\)
\(90\) 0 0
\(91\) 7994.62 0.101203
\(92\) 0 0
\(93\) −3180.98 −0.0381376
\(94\) 0 0
\(95\) 210856. 2.39705
\(96\) 0 0
\(97\) 106682. 1.15123 0.575615 0.817721i \(-0.304763\pi\)
0.575615 + 0.817721i \(0.304763\pi\)
\(98\) 0 0
\(99\) 69304.7 0.710681
\(100\) 0 0
\(101\) 72914.8 0.711234 0.355617 0.934632i \(-0.384271\pi\)
0.355617 + 0.934632i \(0.384271\pi\)
\(102\) 0 0
\(103\) 116173. 1.07897 0.539487 0.841994i \(-0.318618\pi\)
0.539487 + 0.841994i \(0.318618\pi\)
\(104\) 0 0
\(105\) −12161.3 −0.107648
\(106\) 0 0
\(107\) −27014.4 −0.228106 −0.114053 0.993475i \(-0.536383\pi\)
−0.114053 + 0.993475i \(0.536383\pi\)
\(108\) 0 0
\(109\) −65745.1 −0.530026 −0.265013 0.964245i \(-0.585376\pi\)
−0.265013 + 0.964245i \(0.585376\pi\)
\(110\) 0 0
\(111\) 23364.0 0.179987
\(112\) 0 0
\(113\) −237242. −1.74782 −0.873908 0.486091i \(-0.838422\pi\)
−0.873908 + 0.486091i \(0.838422\pi\)
\(114\) 0 0
\(115\) 456690. 3.22015
\(116\) 0 0
\(117\) −38633.5 −0.260915
\(118\) 0 0
\(119\) −73952.5 −0.478725
\(120\) 0 0
\(121\) −75386.5 −0.468091
\(122\) 0 0
\(123\) −16406.7 −0.0977820
\(124\) 0 0
\(125\) 365338. 2.09131
\(126\) 0 0
\(127\) 277543. 1.52694 0.763469 0.645845i \(-0.223495\pi\)
0.763469 + 0.645845i \(0.223495\pi\)
\(128\) 0 0
\(129\) −12300.9 −0.0650823
\(130\) 0 0
\(131\) −46802.2 −0.238280 −0.119140 0.992877i \(-0.538014\pi\)
−0.119140 + 0.992877i \(0.538014\pi\)
\(132\) 0 0
\(133\) 103744. 0.508550
\(134\) 0 0
\(135\) 119079. 0.562343
\(136\) 0 0
\(137\) −303785. −1.38282 −0.691410 0.722463i \(-0.743010\pi\)
−0.691410 + 0.722463i \(0.743010\pi\)
\(138\) 0 0
\(139\) 118250. 0.519116 0.259558 0.965727i \(-0.416423\pi\)
0.259558 + 0.965727i \(0.416423\pi\)
\(140\) 0 0
\(141\) −64414.1 −0.272856
\(142\) 0 0
\(143\) −47753.2 −0.195282
\(144\) 0 0
\(145\) −79686.5 −0.314749
\(146\) 0 0
\(147\) −5983.52 −0.0228383
\(148\) 0 0
\(149\) 192791. 0.711413 0.355707 0.934598i \(-0.384240\pi\)
0.355707 + 0.934598i \(0.384240\pi\)
\(150\) 0 0
\(151\) 197879. 0.706248 0.353124 0.935576i \(-0.385119\pi\)
0.353124 + 0.935576i \(0.385119\pi\)
\(152\) 0 0
\(153\) 357371. 1.23422
\(154\) 0 0
\(155\) 127121. 0.424999
\(156\) 0 0
\(157\) −431399. −1.39679 −0.698394 0.715714i \(-0.746101\pi\)
−0.698394 + 0.715714i \(0.746101\pi\)
\(158\) 0 0
\(159\) −15486.9 −0.0485815
\(160\) 0 0
\(161\) 224697. 0.683175
\(162\) 0 0
\(163\) 220103. 0.648868 0.324434 0.945908i \(-0.394826\pi\)
0.324434 + 0.945908i \(0.394826\pi\)
\(164\) 0 0
\(165\) 72641.6 0.207719
\(166\) 0 0
\(167\) −350625. −0.972862 −0.486431 0.873719i \(-0.661702\pi\)
−0.486431 + 0.873719i \(0.661702\pi\)
\(168\) 0 0
\(169\) −344673. −0.928305
\(170\) 0 0
\(171\) −501336. −1.31111
\(172\) 0 0
\(173\) 618823. 1.57200 0.785998 0.618229i \(-0.212150\pi\)
0.785998 + 0.618229i \(0.212150\pi\)
\(174\) 0 0
\(175\) 332876. 0.821650
\(176\) 0 0
\(177\) −6986.85 −0.0167629
\(178\) 0 0
\(179\) 233031. 0.543602 0.271801 0.962353i \(-0.412381\pi\)
0.271801 + 0.962353i \(0.412381\pi\)
\(180\) 0 0
\(181\) 336718. 0.763960 0.381980 0.924171i \(-0.375242\pi\)
0.381980 + 0.924171i \(0.375242\pi\)
\(182\) 0 0
\(183\) −2063.61 −0.00455512
\(184\) 0 0
\(185\) −933691. −2.00574
\(186\) 0 0
\(187\) 441731. 0.923748
\(188\) 0 0
\(189\) 58588.4 0.119305
\(190\) 0 0
\(191\) 186039. 0.368996 0.184498 0.982833i \(-0.440934\pi\)
0.184498 + 0.982833i \(0.440934\pi\)
\(192\) 0 0
\(193\) 210636. 0.407043 0.203521 0.979071i \(-0.434761\pi\)
0.203521 + 0.979071i \(0.434761\pi\)
\(194\) 0 0
\(195\) −40493.6 −0.0762606
\(196\) 0 0
\(197\) −579772. −1.06437 −0.532184 0.846629i \(-0.678629\pi\)
−0.532184 + 0.846629i \(0.678629\pi\)
\(198\) 0 0
\(199\) 162586. 0.291038 0.145519 0.989355i \(-0.453515\pi\)
0.145519 + 0.989355i \(0.453515\pi\)
\(200\) 0 0
\(201\) 156679. 0.273540
\(202\) 0 0
\(203\) −39206.7 −0.0667760
\(204\) 0 0
\(205\) 655658. 1.08966
\(206\) 0 0
\(207\) −1.08583e6 −1.76132
\(208\) 0 0
\(209\) −619679. −0.981299
\(210\) 0 0
\(211\) −663978. −1.02671 −0.513355 0.858176i \(-0.671598\pi\)
−0.513355 + 0.858176i \(0.671598\pi\)
\(212\) 0 0
\(213\) 151346. 0.228572
\(214\) 0 0
\(215\) 491579. 0.725265
\(216\) 0 0
\(217\) 62545.0 0.0901661
\(218\) 0 0
\(219\) −64940.5 −0.0914967
\(220\) 0 0
\(221\) −246240. −0.339139
\(222\) 0 0
\(223\) 635216. 0.855380 0.427690 0.903926i \(-0.359328\pi\)
0.427690 + 0.903926i \(0.359328\pi\)
\(224\) 0 0
\(225\) −1.60860e6 −2.11832
\(226\) 0 0
\(227\) −833129. −1.07312 −0.536559 0.843863i \(-0.680276\pi\)
−0.536559 + 0.843863i \(0.680276\pi\)
\(228\) 0 0
\(229\) 259565. 0.327082 0.163541 0.986537i \(-0.447708\pi\)
0.163541 + 0.986537i \(0.447708\pi\)
\(230\) 0 0
\(231\) 35740.5 0.0440688
\(232\) 0 0
\(233\) 1.11572e6 1.34638 0.673189 0.739471i \(-0.264924\pi\)
0.673189 + 0.739471i \(0.264924\pi\)
\(234\) 0 0
\(235\) 2.57417e6 3.04066
\(236\) 0 0
\(237\) −137960. −0.159544
\(238\) 0 0
\(239\) 662116. 0.749789 0.374895 0.927067i \(-0.377679\pi\)
0.374895 + 0.927067i \(0.377679\pi\)
\(240\) 0 0
\(241\) 918955. 1.01918 0.509591 0.860417i \(-0.329797\pi\)
0.509591 + 0.860417i \(0.329797\pi\)
\(242\) 0 0
\(243\) −426519. −0.463365
\(244\) 0 0
\(245\) 239118. 0.254506
\(246\) 0 0
\(247\) 345437. 0.360268
\(248\) 0 0
\(249\) −295738. −0.302280
\(250\) 0 0
\(251\) 861484. 0.863104 0.431552 0.902088i \(-0.357966\pi\)
0.431552 + 0.902088i \(0.357966\pi\)
\(252\) 0 0
\(253\) −1.34215e6 −1.31826
\(254\) 0 0
\(255\) 374578. 0.360738
\(256\) 0 0
\(257\) 2.01631e6 1.90425 0.952124 0.305713i \(-0.0988947\pi\)
0.952124 + 0.305713i \(0.0988947\pi\)
\(258\) 0 0
\(259\) −459387. −0.425529
\(260\) 0 0
\(261\) 189464. 0.172157
\(262\) 0 0
\(263\) −1.34088e6 −1.19536 −0.597682 0.801733i \(-0.703911\pi\)
−0.597682 + 0.801733i \(0.703911\pi\)
\(264\) 0 0
\(265\) 618899. 0.541384
\(266\) 0 0
\(267\) −244770. −0.210126
\(268\) 0 0
\(269\) −1.24957e6 −1.05288 −0.526440 0.850212i \(-0.676474\pi\)
−0.526440 + 0.850212i \(0.676474\pi\)
\(270\) 0 0
\(271\) −1.18725e6 −0.982016 −0.491008 0.871155i \(-0.663371\pi\)
−0.491008 + 0.871155i \(0.663371\pi\)
\(272\) 0 0
\(273\) −19923.4 −0.0161792
\(274\) 0 0
\(275\) −1.98832e6 −1.58546
\(276\) 0 0
\(277\) −805766. −0.630971 −0.315486 0.948930i \(-0.602167\pi\)
−0.315486 + 0.948930i \(0.602167\pi\)
\(278\) 0 0
\(279\) −302245. −0.232460
\(280\) 0 0
\(281\) 1.21309e6 0.916490 0.458245 0.888826i \(-0.348478\pi\)
0.458245 + 0.888826i \(0.348478\pi\)
\(282\) 0 0
\(283\) 196007. 0.145481 0.0727403 0.997351i \(-0.476826\pi\)
0.0727403 + 0.997351i \(0.476826\pi\)
\(284\) 0 0
\(285\) −525474. −0.383212
\(286\) 0 0
\(287\) 322592. 0.231179
\(288\) 0 0
\(289\) 857935. 0.604241
\(290\) 0 0
\(291\) −265862. −0.184045
\(292\) 0 0
\(293\) −1.96904e6 −1.33994 −0.669969 0.742389i \(-0.733693\pi\)
−0.669969 + 0.742389i \(0.733693\pi\)
\(294\) 0 0
\(295\) 279214. 0.186802
\(296\) 0 0
\(297\) −349958. −0.230210
\(298\) 0 0
\(299\) 748174. 0.483977
\(300\) 0 0
\(301\) 241863. 0.153869
\(302\) 0 0
\(303\) −181711. −0.113703
\(304\) 0 0
\(305\) 82467.5 0.0507614
\(306\) 0 0
\(307\) 445961. 0.270054 0.135027 0.990842i \(-0.456888\pi\)
0.135027 + 0.990842i \(0.456888\pi\)
\(308\) 0 0
\(309\) −289513. −0.172493
\(310\) 0 0
\(311\) −1.76254e6 −1.03333 −0.516664 0.856188i \(-0.672826\pi\)
−0.516664 + 0.856188i \(0.672826\pi\)
\(312\) 0 0
\(313\) −1.43435e6 −0.827549 −0.413774 0.910379i \(-0.635790\pi\)
−0.413774 + 0.910379i \(0.635790\pi\)
\(314\) 0 0
\(315\) −1.15552e6 −0.656149
\(316\) 0 0
\(317\) 983837. 0.549889 0.274944 0.961460i \(-0.411341\pi\)
0.274944 + 0.961460i \(0.411341\pi\)
\(318\) 0 0
\(319\) 234188. 0.128851
\(320\) 0 0
\(321\) 67322.6 0.0364668
\(322\) 0 0
\(323\) −3.19539e6 −1.70419
\(324\) 0 0
\(325\) 1.10838e6 0.582075
\(326\) 0 0
\(327\) 163843. 0.0847341
\(328\) 0 0
\(329\) 1.26652e6 0.645094
\(330\) 0 0
\(331\) −606501. −0.304272 −0.152136 0.988360i \(-0.548615\pi\)
−0.152136 + 0.988360i \(0.548615\pi\)
\(332\) 0 0
\(333\) 2.21996e6 1.09707
\(334\) 0 0
\(335\) −6.26132e6 −3.04827
\(336\) 0 0
\(337\) 1.50022e6 0.719580 0.359790 0.933033i \(-0.382848\pi\)
0.359790 + 0.933033i \(0.382848\pi\)
\(338\) 0 0
\(339\) 591230. 0.279420
\(340\) 0 0
\(341\) −373591. −0.173985
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) −1.13811e6 −0.514799
\(346\) 0 0
\(347\) −3.03086e6 −1.35127 −0.675635 0.737236i \(-0.736130\pi\)
−0.675635 + 0.737236i \(0.736130\pi\)
\(348\) 0 0
\(349\) −294660. −0.129496 −0.0647482 0.997902i \(-0.520624\pi\)
−0.0647482 + 0.997902i \(0.520624\pi\)
\(350\) 0 0
\(351\) 195082. 0.0845180
\(352\) 0 0
\(353\) −834926. −0.356625 −0.178312 0.983974i \(-0.557064\pi\)
−0.178312 + 0.983974i \(0.557064\pi\)
\(354\) 0 0
\(355\) −6.04823e6 −2.54717
\(356\) 0 0
\(357\) 184297. 0.0765327
\(358\) 0 0
\(359\) −1.59728e6 −0.654099 −0.327050 0.945007i \(-0.606054\pi\)
−0.327050 + 0.945007i \(0.606054\pi\)
\(360\) 0 0
\(361\) 2.00653e6 0.810361
\(362\) 0 0
\(363\) 187870. 0.0748328
\(364\) 0 0
\(365\) 2.59521e6 1.01962
\(366\) 0 0
\(367\) −1.37342e6 −0.532277 −0.266139 0.963935i \(-0.585748\pi\)
−0.266139 + 0.963935i \(0.585748\pi\)
\(368\) 0 0
\(369\) −1.55890e6 −0.596010
\(370\) 0 0
\(371\) 304506. 0.114858
\(372\) 0 0
\(373\) −4.62695e6 −1.72196 −0.860980 0.508640i \(-0.830149\pi\)
−0.860980 + 0.508640i \(0.830149\pi\)
\(374\) 0 0
\(375\) −910456. −0.334334
\(376\) 0 0
\(377\) −130547. −0.0473056
\(378\) 0 0
\(379\) −216405. −0.0773874 −0.0386937 0.999251i \(-0.512320\pi\)
−0.0386937 + 0.999251i \(0.512320\pi\)
\(380\) 0 0
\(381\) −691664. −0.244108
\(382\) 0 0
\(383\) 4.14346e6 1.44333 0.721665 0.692242i \(-0.243377\pi\)
0.721665 + 0.692242i \(0.243377\pi\)
\(384\) 0 0
\(385\) −1.42829e6 −0.491094
\(386\) 0 0
\(387\) −1.16879e6 −0.396696
\(388\) 0 0
\(389\) −3.41596e6 −1.14456 −0.572280 0.820059i \(-0.693941\pi\)
−0.572280 + 0.820059i \(0.693941\pi\)
\(390\) 0 0
\(391\) −6.92082e6 −2.28937
\(392\) 0 0
\(393\) 116636. 0.0380934
\(394\) 0 0
\(395\) 5.51326e6 1.77793
\(396\) 0 0
\(397\) −5.12761e6 −1.63282 −0.816411 0.577471i \(-0.804040\pi\)
−0.816411 + 0.577471i \(0.804040\pi\)
\(398\) 0 0
\(399\) −258540. −0.0813008
\(400\) 0 0
\(401\) 65538.5 0.0203533 0.0101767 0.999948i \(-0.496761\pi\)
0.0101767 + 0.999948i \(0.496761\pi\)
\(402\) 0 0
\(403\) 208256. 0.0638757
\(404\) 0 0
\(405\) 5.43370e6 1.64611
\(406\) 0 0
\(407\) 2.74399e6 0.821102
\(408\) 0 0
\(409\) 5.28095e6 1.56100 0.780501 0.625154i \(-0.214964\pi\)
0.780501 + 0.625154i \(0.214964\pi\)
\(410\) 0 0
\(411\) 757062. 0.221069
\(412\) 0 0
\(413\) 137377. 0.0396313
\(414\) 0 0
\(415\) 1.18185e7 3.36855
\(416\) 0 0
\(417\) −294691. −0.0829901
\(418\) 0 0
\(419\) 6.18612e6 1.72141 0.860703 0.509107i \(-0.170024\pi\)
0.860703 + 0.509107i \(0.170024\pi\)
\(420\) 0 0
\(421\) 3.52682e6 0.969792 0.484896 0.874572i \(-0.338857\pi\)
0.484896 + 0.874572i \(0.338857\pi\)
\(422\) 0 0
\(423\) −6.12039e6 −1.66314
\(424\) 0 0
\(425\) −1.02528e7 −2.75341
\(426\) 0 0
\(427\) 40575.0 0.0107693
\(428\) 0 0
\(429\) 119005. 0.0312193
\(430\) 0 0
\(431\) 4.38322e6 1.13658 0.568290 0.822828i \(-0.307605\pi\)
0.568290 + 0.822828i \(0.307605\pi\)
\(432\) 0 0
\(433\) −3.55834e6 −0.912070 −0.456035 0.889962i \(-0.650731\pi\)
−0.456035 + 0.889962i \(0.650731\pi\)
\(434\) 0 0
\(435\) 198586. 0.0503183
\(436\) 0 0
\(437\) 9.70884e6 2.43200
\(438\) 0 0
\(439\) 512004. 0.126798 0.0633990 0.997988i \(-0.479806\pi\)
0.0633990 + 0.997988i \(0.479806\pi\)
\(440\) 0 0
\(441\) −568531. −0.139206
\(442\) 0 0
\(443\) −4.17109e6 −1.00981 −0.504906 0.863174i \(-0.668473\pi\)
−0.504906 + 0.863174i \(0.668473\pi\)
\(444\) 0 0
\(445\) 9.78169e6 2.34161
\(446\) 0 0
\(447\) −480454. −0.113732
\(448\) 0 0
\(449\) −2.70167e6 −0.632435 −0.316217 0.948687i \(-0.602413\pi\)
−0.316217 + 0.948687i \(0.602413\pi\)
\(450\) 0 0
\(451\) −1.92689e6 −0.446083
\(452\) 0 0
\(453\) −493133. −0.112907
\(454\) 0 0
\(455\) 796193. 0.180298
\(456\) 0 0
\(457\) −2.36210e6 −0.529063 −0.264531 0.964377i \(-0.585217\pi\)
−0.264531 + 0.964377i \(0.585217\pi\)
\(458\) 0 0
\(459\) −1.80456e6 −0.399798
\(460\) 0 0
\(461\) −5.98494e6 −1.31162 −0.655809 0.754927i \(-0.727672\pi\)
−0.655809 + 0.754927i \(0.727672\pi\)
\(462\) 0 0
\(463\) −5.00684e6 −1.08545 −0.542727 0.839909i \(-0.682608\pi\)
−0.542727 + 0.839909i \(0.682608\pi\)
\(464\) 0 0
\(465\) −316797. −0.0679437
\(466\) 0 0
\(467\) 1.65286e6 0.350706 0.175353 0.984506i \(-0.443893\pi\)
0.175353 + 0.984506i \(0.443893\pi\)
\(468\) 0 0
\(469\) −3.08065e6 −0.646710
\(470\) 0 0
\(471\) 1.07509e6 0.223302
\(472\) 0 0
\(473\) −1.44468e6 −0.296907
\(474\) 0 0
\(475\) 1.43831e7 2.92495
\(476\) 0 0
\(477\) −1.47151e6 −0.296119
\(478\) 0 0
\(479\) 5.95428e6 1.18574 0.592871 0.805297i \(-0.297994\pi\)
0.592871 + 0.805297i \(0.297994\pi\)
\(480\) 0 0
\(481\) −1.52962e6 −0.301455
\(482\) 0 0
\(483\) −559966. −0.109218
\(484\) 0 0
\(485\) 1.06246e7 2.05096
\(486\) 0 0
\(487\) −6.14901e6 −1.17485 −0.587426 0.809278i \(-0.699858\pi\)
−0.587426 + 0.809278i \(0.699858\pi\)
\(488\) 0 0
\(489\) −548517. −0.103733
\(490\) 0 0
\(491\) −6.26140e6 −1.17211 −0.586054 0.810272i \(-0.699319\pi\)
−0.586054 + 0.810272i \(0.699319\pi\)
\(492\) 0 0
\(493\) 1.20760e6 0.223771
\(494\) 0 0
\(495\) 6.90213e6 1.26611
\(496\) 0 0
\(497\) −2.97580e6 −0.540397
\(498\) 0 0
\(499\) −7.10012e6 −1.27648 −0.638240 0.769837i \(-0.720337\pi\)
−0.638240 + 0.769837i \(0.720337\pi\)
\(500\) 0 0
\(501\) 873790. 0.155530
\(502\) 0 0
\(503\) −5.65833e6 −0.997168 −0.498584 0.866841i \(-0.666146\pi\)
−0.498584 + 0.866841i \(0.666146\pi\)
\(504\) 0 0
\(505\) 7.26166e6 1.26709
\(506\) 0 0
\(507\) 858959. 0.148406
\(508\) 0 0
\(509\) −607346. −0.103906 −0.0519532 0.998650i \(-0.516545\pi\)
−0.0519532 + 0.998650i \(0.516545\pi\)
\(510\) 0 0
\(511\) 1.27687e6 0.216319
\(512\) 0 0
\(513\) 2.53152e6 0.424706
\(514\) 0 0
\(515\) 1.15698e7 1.92223
\(516\) 0 0
\(517\) −7.56514e6 −1.24477
\(518\) 0 0
\(519\) −1.54217e6 −0.251312
\(520\) 0 0
\(521\) 502953. 0.0811770 0.0405885 0.999176i \(-0.487077\pi\)
0.0405885 + 0.999176i \(0.487077\pi\)
\(522\) 0 0
\(523\) −9.59744e6 −1.53427 −0.767134 0.641487i \(-0.778318\pi\)
−0.767134 + 0.641487i \(0.778318\pi\)
\(524\) 0 0
\(525\) −829557. −0.131355
\(526\) 0 0
\(527\) −1.92643e6 −0.302153
\(528\) 0 0
\(529\) 1.45918e7 2.26710
\(530\) 0 0
\(531\) −663865. −0.102175
\(532\) 0 0
\(533\) 1.07414e6 0.163772
\(534\) 0 0
\(535\) −2.69040e6 −0.406380
\(536\) 0 0
\(537\) −580735. −0.0869046
\(538\) 0 0
\(539\) −702737. −0.104189
\(540\) 0 0
\(541\) −9.46010e6 −1.38964 −0.694821 0.719183i \(-0.744516\pi\)
−0.694821 + 0.719183i \(0.744516\pi\)
\(542\) 0 0
\(543\) −839134. −0.122133
\(544\) 0 0
\(545\) −6.54762e6 −0.944261
\(546\) 0 0
\(547\) −4.26708e6 −0.609765 −0.304882 0.952390i \(-0.598617\pi\)
−0.304882 + 0.952390i \(0.598617\pi\)
\(548\) 0 0
\(549\) −196076. −0.0277648
\(550\) 0 0
\(551\) −1.69407e6 −0.237713
\(552\) 0 0
\(553\) 2.71259e6 0.377200
\(554\) 0 0
\(555\) 2.32685e6 0.320653
\(556\) 0 0
\(557\) 1.19790e7 1.63600 0.818001 0.575216i \(-0.195082\pi\)
0.818001 + 0.575216i \(0.195082\pi\)
\(558\) 0 0
\(559\) 805331. 0.109005
\(560\) 0 0
\(561\) −1.10083e6 −0.147678
\(562\) 0 0
\(563\) −5.63496e6 −0.749238 −0.374619 0.927179i \(-0.622226\pi\)
−0.374619 + 0.927179i \(0.622226\pi\)
\(564\) 0 0
\(565\) −2.36272e7 −3.11380
\(566\) 0 0
\(567\) 2.67344e6 0.349232
\(568\) 0 0
\(569\) −4.23993e6 −0.549008 −0.274504 0.961586i \(-0.588514\pi\)
−0.274504 + 0.961586i \(0.588514\pi\)
\(570\) 0 0
\(571\) 1.26701e7 1.62626 0.813129 0.582084i \(-0.197762\pi\)
0.813129 + 0.582084i \(0.197762\pi\)
\(572\) 0 0
\(573\) −463628. −0.0589906
\(574\) 0 0
\(575\) 3.11520e7 3.92932
\(576\) 0 0
\(577\) 6.16763e6 0.771221 0.385610 0.922662i \(-0.373991\pi\)
0.385610 + 0.922662i \(0.373991\pi\)
\(578\) 0 0
\(579\) −524926. −0.0650731
\(580\) 0 0
\(581\) 5.81486e6 0.714659
\(582\) 0 0
\(583\) −1.81886e6 −0.221630
\(584\) 0 0
\(585\) −3.84755e6 −0.464831
\(586\) 0 0
\(587\) 9.30640e6 1.11477 0.557387 0.830253i \(-0.311804\pi\)
0.557387 + 0.830253i \(0.311804\pi\)
\(588\) 0 0
\(589\) 2.70248e6 0.320978
\(590\) 0 0
\(591\) 1.44485e6 0.170158
\(592\) 0 0
\(593\) −9.23152e6 −1.07804 −0.539022 0.842292i \(-0.681206\pi\)
−0.539022 + 0.842292i \(0.681206\pi\)
\(594\) 0 0
\(595\) −7.36501e6 −0.852867
\(596\) 0 0
\(597\) −405180. −0.0465277
\(598\) 0 0
\(599\) −8.33587e6 −0.949257 −0.474629 0.880186i \(-0.657418\pi\)
−0.474629 + 0.880186i \(0.657418\pi\)
\(600\) 0 0
\(601\) 6.13490e6 0.692821 0.346411 0.938083i \(-0.387400\pi\)
0.346411 + 0.938083i \(0.387400\pi\)
\(602\) 0 0
\(603\) 1.48870e7 1.66730
\(604\) 0 0
\(605\) −7.50782e6 −0.833922
\(606\) 0 0
\(607\) −2.03253e6 −0.223905 −0.111953 0.993714i \(-0.535710\pi\)
−0.111953 + 0.993714i \(0.535710\pi\)
\(608\) 0 0
\(609\) 97706.9 0.0106753
\(610\) 0 0
\(611\) 4.21714e6 0.456999
\(612\) 0 0
\(613\) −1.12990e7 −1.21448 −0.607238 0.794520i \(-0.707723\pi\)
−0.607238 + 0.794520i \(0.707723\pi\)
\(614\) 0 0
\(615\) −1.63396e6 −0.174202
\(616\) 0 0
\(617\) 4.42817e6 0.468286 0.234143 0.972202i \(-0.424772\pi\)
0.234143 + 0.972202i \(0.424772\pi\)
\(618\) 0 0
\(619\) 8.33489e6 0.874325 0.437163 0.899382i \(-0.355983\pi\)
0.437163 + 0.899382i \(0.355983\pi\)
\(620\) 0 0
\(621\) 5.48297e6 0.570541
\(622\) 0 0
\(623\) 4.81271e6 0.496786
\(624\) 0 0
\(625\) 1.51551e7 1.55188
\(626\) 0 0
\(627\) 1.54430e6 0.156878
\(628\) 0 0
\(629\) 1.41495e7 1.42598
\(630\) 0 0
\(631\) 6.07865e6 0.607762 0.303881 0.952710i \(-0.401718\pi\)
0.303881 + 0.952710i \(0.401718\pi\)
\(632\) 0 0
\(633\) 1.65470e6 0.164138
\(634\) 0 0
\(635\) 2.76408e7 2.72030
\(636\) 0 0
\(637\) 391737. 0.0382512
\(638\) 0 0
\(639\) 1.43804e7 1.39321
\(640\) 0 0
\(641\) 1.56516e7 1.50457 0.752287 0.658836i \(-0.228951\pi\)
0.752287 + 0.658836i \(0.228951\pi\)
\(642\) 0 0
\(643\) −1.01616e7 −0.969245 −0.484623 0.874723i \(-0.661043\pi\)
−0.484623 + 0.874723i \(0.661043\pi\)
\(644\) 0 0
\(645\) −1.22506e6 −0.115947
\(646\) 0 0
\(647\) 1.29888e7 1.21986 0.609930 0.792455i \(-0.291198\pi\)
0.609930 + 0.792455i \(0.291198\pi\)
\(648\) 0 0
\(649\) −820573. −0.0764726
\(650\) 0 0
\(651\) −155868. −0.0144147
\(652\) 0 0
\(653\) 6.43248e6 0.590331 0.295166 0.955446i \(-0.404625\pi\)
0.295166 + 0.955446i \(0.404625\pi\)
\(654\) 0 0
\(655\) −4.66108e6 −0.424506
\(656\) 0 0
\(657\) −6.17041e6 −0.557700
\(658\) 0 0
\(659\) −1.44738e7 −1.29828 −0.649140 0.760669i \(-0.724871\pi\)
−0.649140 + 0.760669i \(0.724871\pi\)
\(660\) 0 0
\(661\) 5.72612e6 0.509750 0.254875 0.966974i \(-0.417966\pi\)
0.254875 + 0.966974i \(0.417966\pi\)
\(662\) 0 0
\(663\) 613654. 0.0542175
\(664\) 0 0
\(665\) 1.03320e7 0.906002
\(666\) 0 0
\(667\) −3.66915e6 −0.319338
\(668\) 0 0
\(669\) −1.58302e6 −0.136748
\(670\) 0 0
\(671\) −242361. −0.0207805
\(672\) 0 0
\(673\) −6.63951e6 −0.565065 −0.282533 0.959258i \(-0.591175\pi\)
−0.282533 + 0.959258i \(0.591175\pi\)
\(674\) 0 0
\(675\) 8.12271e6 0.686186
\(676\) 0 0
\(677\) −1.60011e7 −1.34177 −0.670885 0.741562i \(-0.734085\pi\)
−0.670885 + 0.741562i \(0.734085\pi\)
\(678\) 0 0
\(679\) 5.22742e6 0.435124
\(680\) 0 0
\(681\) 2.07624e6 0.171557
\(682\) 0 0
\(683\) 2.15548e7 1.76804 0.884020 0.467450i \(-0.154827\pi\)
0.884020 + 0.467450i \(0.154827\pi\)
\(684\) 0 0
\(685\) −3.02543e7 −2.46355
\(686\) 0 0
\(687\) −646859. −0.0522899
\(688\) 0 0
\(689\) 1.01391e6 0.0813679
\(690\) 0 0
\(691\) −5.75267e6 −0.458325 −0.229163 0.973388i \(-0.573599\pi\)
−0.229163 + 0.973388i \(0.573599\pi\)
\(692\) 0 0
\(693\) 3.39593e6 0.268612
\(694\) 0 0
\(695\) 1.17767e7 0.924826
\(696\) 0 0
\(697\) −9.93606e6 −0.774697
\(698\) 0 0
\(699\) −2.78049e6 −0.215243
\(700\) 0 0
\(701\) −2.26190e7 −1.73851 −0.869257 0.494360i \(-0.835402\pi\)
−0.869257 + 0.494360i \(0.835402\pi\)
\(702\) 0 0
\(703\) −1.98495e7 −1.51482
\(704\) 0 0
\(705\) −6.41507e6 −0.486103
\(706\) 0 0
\(707\) 3.57283e6 0.268821
\(708\) 0 0
\(709\) 1.02453e7 0.765434 0.382717 0.923866i \(-0.374988\pi\)
0.382717 + 0.923866i \(0.374988\pi\)
\(710\) 0 0
\(711\) −1.31084e7 −0.972470
\(712\) 0 0
\(713\) 5.85325e6 0.431195
\(714\) 0 0
\(715\) −4.75579e6 −0.347902
\(716\) 0 0
\(717\) −1.65006e6 −0.119867
\(718\) 0 0
\(719\) −953623. −0.0687946 −0.0343973 0.999408i \(-0.510951\pi\)
−0.0343973 + 0.999408i \(0.510951\pi\)
\(720\) 0 0
\(721\) 5.69246e6 0.407814
\(722\) 0 0
\(723\) −2.29012e6 −0.162935
\(724\) 0 0
\(725\) −5.43563e6 −0.384065
\(726\) 0 0
\(727\) 2.15807e6 0.151436 0.0757182 0.997129i \(-0.475875\pi\)
0.0757182 + 0.997129i \(0.475875\pi\)
\(728\) 0 0
\(729\) −1.21952e7 −0.849903
\(730\) 0 0
\(731\) −7.44954e6 −0.515628
\(732\) 0 0
\(733\) 1.47257e7 1.01232 0.506158 0.862441i \(-0.331065\pi\)
0.506158 + 0.862441i \(0.331065\pi\)
\(734\) 0 0
\(735\) −595905. −0.0406873
\(736\) 0 0
\(737\) 1.84012e7 1.24789
\(738\) 0 0
\(739\) −2.65235e7 −1.78657 −0.893286 0.449489i \(-0.851606\pi\)
−0.893286 + 0.449489i \(0.851606\pi\)
\(740\) 0 0
\(741\) −860861. −0.0575954
\(742\) 0 0
\(743\) 3.35953e6 0.223258 0.111629 0.993750i \(-0.464393\pi\)
0.111629 + 0.993750i \(0.464393\pi\)
\(744\) 0 0
\(745\) 1.92003e7 1.26741
\(746\) 0 0
\(747\) −2.80999e7 −1.84248
\(748\) 0 0
\(749\) −1.32371e6 −0.0862160
\(750\) 0 0
\(751\) −2.35689e7 −1.52489 −0.762446 0.647051i \(-0.776002\pi\)
−0.762446 + 0.647051i \(0.776002\pi\)
\(752\) 0 0
\(753\) −2.14690e6 −0.137983
\(754\) 0 0
\(755\) 1.97070e7 1.25821
\(756\) 0 0
\(757\) −1.80124e7 −1.14244 −0.571219 0.820798i \(-0.693529\pi\)
−0.571219 + 0.820798i \(0.693529\pi\)
\(758\) 0 0
\(759\) 3.34477e6 0.210747
\(760\) 0 0
\(761\) −1.04944e7 −0.656898 −0.328449 0.944522i \(-0.606526\pi\)
−0.328449 + 0.944522i \(0.606526\pi\)
\(762\) 0 0
\(763\) −3.22151e6 −0.200331
\(764\) 0 0
\(765\) 3.55910e7 2.19880
\(766\) 0 0
\(767\) 457424. 0.0280757
\(768\) 0 0
\(769\) −2.03672e7 −1.24198 −0.620991 0.783818i \(-0.713270\pi\)
−0.620991 + 0.783818i \(0.713270\pi\)
\(770\) 0 0
\(771\) −5.02482e6 −0.304428
\(772\) 0 0
\(773\) 1.41705e7 0.852978 0.426489 0.904493i \(-0.359750\pi\)
0.426489 + 0.904493i \(0.359750\pi\)
\(774\) 0 0
\(775\) 8.67126e6 0.518594
\(776\) 0 0
\(777\) 1.14484e6 0.0680285
\(778\) 0 0
\(779\) 1.39387e7 0.822962
\(780\) 0 0
\(781\) 1.77749e7 1.04275
\(782\) 0 0
\(783\) −956709. −0.0557668
\(784\) 0 0
\(785\) −4.29635e7 −2.48843
\(786\) 0 0
\(787\) 1.94138e6 0.111731 0.0558655 0.998438i \(-0.482208\pi\)
0.0558655 + 0.998438i \(0.482208\pi\)
\(788\) 0 0
\(789\) 3.34160e6 0.191100
\(790\) 0 0
\(791\) −1.16249e7 −0.660612
\(792\) 0 0
\(793\) 135103. 0.00762925
\(794\) 0 0
\(795\) −1.54236e6 −0.0865499
\(796\) 0 0
\(797\) 2.44578e7 1.36387 0.681933 0.731415i \(-0.261140\pi\)
0.681933 + 0.731415i \(0.261140\pi\)
\(798\) 0 0
\(799\) −3.90098e7 −2.16176
\(800\) 0 0
\(801\) −2.32571e7 −1.28078
\(802\) 0 0
\(803\) −7.62696e6 −0.417410
\(804\) 0 0
\(805\) 2.23778e7 1.21710
\(806\) 0 0
\(807\) 3.11404e6 0.168322
\(808\) 0 0
\(809\) −2.18414e7 −1.17330 −0.586651 0.809840i \(-0.699554\pi\)
−0.586651 + 0.809840i \(0.699554\pi\)
\(810\) 0 0
\(811\) 8.22026e6 0.438867 0.219434 0.975627i \(-0.429579\pi\)
0.219434 + 0.975627i \(0.429579\pi\)
\(812\) 0 0
\(813\) 2.95874e6 0.156993
\(814\) 0 0
\(815\) 2.19203e7 1.15598
\(816\) 0 0
\(817\) 1.04506e7 0.547752
\(818\) 0 0
\(819\) −1.89304e6 −0.0986167
\(820\) 0 0
\(821\) −5.77947e6 −0.299247 −0.149624 0.988743i \(-0.547806\pi\)
−0.149624 + 0.988743i \(0.547806\pi\)
\(822\) 0 0
\(823\) 2.01035e7 1.03460 0.517300 0.855804i \(-0.326937\pi\)
0.517300 + 0.855804i \(0.326937\pi\)
\(824\) 0 0
\(825\) 4.95508e6 0.253464
\(826\) 0 0
\(827\) −1.33274e7 −0.677615 −0.338808 0.940856i \(-0.610024\pi\)
−0.338808 + 0.940856i \(0.610024\pi\)
\(828\) 0 0
\(829\) −7.21926e6 −0.364843 −0.182422 0.983220i \(-0.558394\pi\)
−0.182422 + 0.983220i \(0.558394\pi\)
\(830\) 0 0
\(831\) 2.00805e6 0.100872
\(832\) 0 0
\(833\) −3.62367e6 −0.180941
\(834\) 0 0
\(835\) −3.49191e7 −1.73319
\(836\) 0 0
\(837\) 1.52620e6 0.0753005
\(838\) 0 0
\(839\) −3.63257e7 −1.78159 −0.890797 0.454401i \(-0.849853\pi\)
−0.890797 + 0.454401i \(0.849853\pi\)
\(840\) 0 0
\(841\) −1.98709e7 −0.968787
\(842\) 0 0
\(843\) −3.02314e6 −0.146517
\(844\) 0 0
\(845\) −3.43264e7 −1.65381
\(846\) 0 0
\(847\) −3.69394e6 −0.176922
\(848\) 0 0
\(849\) −488468. −0.0232577
\(850\) 0 0
\(851\) −4.29916e7 −2.03498
\(852\) 0 0
\(853\) 2.39547e7 1.12725 0.563623 0.826032i \(-0.309407\pi\)
0.563623 + 0.826032i \(0.309407\pi\)
\(854\) 0 0
\(855\) −4.99286e7 −2.33579
\(856\) 0 0
\(857\) −3.22646e6 −0.150063 −0.0750316 0.997181i \(-0.523906\pi\)
−0.0750316 + 0.997181i \(0.523906\pi\)
\(858\) 0 0
\(859\) 8.71503e6 0.402983 0.201491 0.979490i \(-0.435421\pi\)
0.201491 + 0.979490i \(0.435421\pi\)
\(860\) 0 0
\(861\) −803929. −0.0369581
\(862\) 0 0
\(863\) 7.23457e6 0.330663 0.165332 0.986238i \(-0.447131\pi\)
0.165332 + 0.986238i \(0.447131\pi\)
\(864\) 0 0
\(865\) 6.16293e7 2.80057
\(866\) 0 0
\(867\) −2.13806e6 −0.0965987
\(868\) 0 0
\(869\) −1.62027e7 −0.727845
\(870\) 0 0
\(871\) −1.02576e7 −0.458144
\(872\) 0 0
\(873\) −2.52612e7 −1.12181
\(874\) 0 0
\(875\) 1.79015e7 0.790443
\(876\) 0 0
\(877\) 2.33000e7 1.02295 0.511477 0.859297i \(-0.329098\pi\)
0.511477 + 0.859297i \(0.329098\pi\)
\(878\) 0 0
\(879\) 4.90702e6 0.214213
\(880\) 0 0
\(881\) 1.69404e7 0.735333 0.367666 0.929958i \(-0.380157\pi\)
0.367666 + 0.929958i \(0.380157\pi\)
\(882\) 0 0
\(883\) 3.40145e7 1.46812 0.734060 0.679084i \(-0.237623\pi\)
0.734060 + 0.679084i \(0.237623\pi\)
\(884\) 0 0
\(885\) −695828. −0.0298637
\(886\) 0 0
\(887\) −2.67616e7 −1.14210 −0.571049 0.820916i \(-0.693463\pi\)
−0.571049 + 0.820916i \(0.693463\pi\)
\(888\) 0 0
\(889\) 1.35996e7 0.577128
\(890\) 0 0
\(891\) −1.59689e7 −0.673878
\(892\) 0 0
\(893\) 5.47247e7 2.29644
\(894\) 0 0
\(895\) 2.32078e7 0.968448
\(896\) 0 0
\(897\) −1.86452e6 −0.0773724
\(898\) 0 0
\(899\) −1.02132e6 −0.0421465
\(900\) 0 0
\(901\) −9.37900e6 −0.384897
\(902\) 0 0
\(903\) −602745. −0.0245988
\(904\) 0 0
\(905\) 3.35341e7 1.36102
\(906\) 0 0
\(907\) −1.76702e7 −0.713221 −0.356610 0.934253i \(-0.616068\pi\)
−0.356610 + 0.934253i \(0.616068\pi\)
\(908\) 0 0
\(909\) −1.72655e7 −0.693056
\(910\) 0 0
\(911\) 4.31389e7 1.72216 0.861079 0.508471i \(-0.169789\pi\)
0.861079 + 0.508471i \(0.169789\pi\)
\(912\) 0 0
\(913\) −3.47331e7 −1.37901
\(914\) 0 0
\(915\) −205517. −0.00811512
\(916\) 0 0
\(917\) −2.29331e6 −0.0900615
\(918\) 0 0
\(919\) −1.25403e7 −0.489800 −0.244900 0.969548i \(-0.578755\pi\)
−0.244900 + 0.969548i \(0.578755\pi\)
\(920\) 0 0
\(921\) −1.11138e6 −0.0431731
\(922\) 0 0
\(923\) −9.90854e6 −0.382829
\(924\) 0 0
\(925\) −6.36896e7 −2.44745
\(926\) 0 0
\(927\) −2.75084e7 −1.05140
\(928\) 0 0
\(929\) −7.84854e6 −0.298366 −0.149183 0.988810i \(-0.547664\pi\)
−0.149183 + 0.988810i \(0.547664\pi\)
\(930\) 0 0
\(931\) 5.08345e6 0.192214
\(932\) 0 0
\(933\) 4.39242e6 0.165196
\(934\) 0 0
\(935\) 4.39924e7 1.64569
\(936\) 0 0
\(937\) 1.03129e7 0.383736 0.191868 0.981421i \(-0.438545\pi\)
0.191868 + 0.981421i \(0.438545\pi\)
\(938\) 0 0
\(939\) 3.57453e6 0.132299
\(940\) 0 0
\(941\) −9.04037e6 −0.332822 −0.166411 0.986056i \(-0.553218\pi\)
−0.166411 + 0.986056i \(0.553218\pi\)
\(942\) 0 0
\(943\) 3.01896e7 1.10555
\(944\) 0 0
\(945\) 5.83488e6 0.212546
\(946\) 0 0
\(947\) 4.69853e7 1.70250 0.851251 0.524759i \(-0.175845\pi\)
0.851251 + 0.524759i \(0.175845\pi\)
\(948\) 0 0
\(949\) 4.25161e6 0.153245
\(950\) 0 0
\(951\) −2.45181e6 −0.0879096
\(952\) 0 0
\(953\) −2.63875e7 −0.941165 −0.470582 0.882356i \(-0.655956\pi\)
−0.470582 + 0.882356i \(0.655956\pi\)
\(954\) 0 0
\(955\) 1.85278e7 0.657380
\(956\) 0 0
\(957\) −583619. −0.0205992
\(958\) 0 0
\(959\) −1.48855e7 −0.522657
\(960\) 0 0
\(961\) −2.69999e7 −0.943091
\(962\) 0 0
\(963\) 6.39674e6 0.222276
\(964\) 0 0
\(965\) 2.09775e7 0.725162
\(966\) 0 0
\(967\) 4.08697e6 0.140551 0.0702757 0.997528i \(-0.477612\pi\)
0.0702757 + 0.997528i \(0.477612\pi\)
\(968\) 0 0
\(969\) 7.96321e6 0.272445
\(970\) 0 0
\(971\) −1.58015e7 −0.537837 −0.268919 0.963163i \(-0.586666\pi\)
−0.268919 + 0.963163i \(0.586666\pi\)
\(972\) 0 0
\(973\) 5.79426e6 0.196208
\(974\) 0 0
\(975\) −2.76218e6 −0.0930552
\(976\) 0 0
\(977\) 2.78593e7 0.933757 0.466879 0.884321i \(-0.345378\pi\)
0.466879 + 0.884321i \(0.345378\pi\)
\(978\) 0 0
\(979\) −2.87471e7 −0.958599
\(980\) 0 0
\(981\) 1.55677e7 0.516479
\(982\) 0 0
\(983\) −2.89667e7 −0.956128 −0.478064 0.878325i \(-0.658661\pi\)
−0.478064 + 0.878325i \(0.658661\pi\)
\(984\) 0 0
\(985\) −5.77401e7 −1.89621
\(986\) 0 0
\(987\) −3.15629e6 −0.103130
\(988\) 0 0
\(989\) 2.26346e7 0.735839
\(990\) 0 0
\(991\) −3.98714e7 −1.28967 −0.644833 0.764324i \(-0.723073\pi\)
−0.644833 + 0.764324i \(0.723073\pi\)
\(992\) 0 0
\(993\) 1.51146e6 0.0486433
\(994\) 0 0
\(995\) 1.61921e7 0.518496
\(996\) 0 0
\(997\) 1.42645e7 0.454484 0.227242 0.973838i \(-0.427029\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(998\) 0 0
\(999\) −1.12098e7 −0.355373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.6.a.bf.1.3 5
4.3 odd 2 448.6.a.be.1.3 5
8.3 odd 2 224.6.a.j.1.3 yes 5
8.5 even 2 224.6.a.i.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.6.a.i.1.3 5 8.5 even 2
224.6.a.j.1.3 yes 5 8.3 odd 2
448.6.a.be.1.3 5 4.3 odd 2
448.6.a.bf.1.3 5 1.1 even 1 trivial