Properties

Label 45.10.a
Level $45$
Weight $10$
Character orbit 45.a
Rep. character $\chi_{45}(1,\cdot)$
Character field $\Q$
Dimension $15$
Newform subspaces $8$
Sturm bound $60$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(60\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(45))\).

Total New Old
Modular forms 58 15 43
Cusp forms 50 15 35
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(5\)
\(-\)\(-\)\(+\)\(4\)
Plus space\(+\)\(7\)
Minus space\(-\)\(8\)

Trace form

\( 15 q - 50 q^{2} + 4352 q^{4} - 625 q^{5} + 2294 q^{7} - 55332 q^{8} + 21250 q^{10} + 109300 q^{11} + 150454 q^{13} + 358836 q^{14} + 1300292 q^{16} - 487142 q^{17} + 128716 q^{19} - 27500 q^{20} + 93704 q^{22}+ \cdots - 5314785106 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(45))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
45.10.a.a 45.a 1.a $1$ $23.177$ \(\Q\) None 15.10.a.b \(-22\) \(0\) \(625\) \(-5988\) $-$ $-$ $\mathrm{SU}(2)$ \(q-22q^{2}-28q^{4}+5^{4}q^{5}-5988q^{7}+\cdots\)
45.10.a.b 45.a 1.a $1$ $23.177$ \(\Q\) None 15.10.a.a \(4\) \(0\) \(-625\) \(-7680\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}-496q^{4}-5^{4}q^{5}-7680q^{7}+\cdots\)
45.10.a.c 45.a 1.a $1$ $23.177$ \(\Q\) None 5.10.a.a \(8\) \(0\) \(625\) \(4242\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}-448q^{4}+5^{4}q^{5}+4242q^{7}+\cdots\)
45.10.a.d 45.a 1.a $2$ $23.177$ \(\Q(\sqrt{241}) \) None 15.10.a.d \(-31\) \(0\) \(-1250\) \(14112\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2^{4}-\beta )q^{2}+(286+31\beta )q^{4}-5^{4}q^{5}+\cdots\)
45.10.a.e 45.a 1.a $2$ $23.177$ \(\Q(\sqrt{4729}) \) None 15.10.a.c \(-19\) \(0\) \(1250\) \(-11872\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-9-\beta )q^{2}+(751+19\beta )q^{4}+5^{4}q^{5}+\cdots\)
45.10.a.f 45.a 1.a $2$ $23.177$ \(\Q(\sqrt{1009}) \) None 5.10.a.b \(10\) \(0\) \(-1250\) \(1700\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(5-\beta )q^{2}+(522-10\beta )q^{4}-5^{4}q^{5}+\cdots\)
45.10.a.g 45.a 1.a $3$ $23.177$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 45.10.a.g \(-25\) \(0\) \(-1875\) \(3890\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-8+\beta _{1})q^{2}+(366-10\beta _{1}-\beta _{2})q^{4}+\cdots\)
45.10.a.h 45.a 1.a $3$ $23.177$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 45.10.a.g \(25\) \(0\) \(1875\) \(3890\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(8-\beta _{1})q^{2}+(366-10\beta _{1}-\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(45))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(45)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)