Properties

Label 45.10.a
Level 4545
Weight 1010
Character orbit 45.a
Rep. character χ45(1,)\chi_{45}(1,\cdot)
Character field Q\Q
Dimension 1515
Newform subspaces 88
Sturm bound 6060
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 10 10
Character orbit: [χ][\chi] == 45.a (trivial)
Character field: Q\Q
Newform subspaces: 8 8
Sturm bound: 6060
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M10(Γ0(45))M_{10}(\Gamma_0(45)).

Total New Old
Modular forms 58 15 43
Cusp forms 50 15 35
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

3355FrickeDim
++++++33
++--33
-++-55
--++44
Plus space++77
Minus space-88

Trace form

15q50q2+4352q4625q5+2294q755332q8+21250q10+109300q11+150454q13+358836q14+1300292q16487142q17+128716q1927500q20+93704q22+5314785106q98+O(q100) 15 q - 50 q^{2} + 4352 q^{4} - 625 q^{5} + 2294 q^{7} - 55332 q^{8} + 21250 q^{10} + 109300 q^{11} + 150454 q^{13} + 358836 q^{14} + 1300292 q^{16} - 487142 q^{17} + 128716 q^{19} - 27500 q^{20} + 93704 q^{22}+ \cdots - 5314785106 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(Γ0(45))S_{10}^{\mathrm{new}}(\Gamma_0(45)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 3 5
45.10.a.a 45.a 1.a 11 23.17723.177 Q\Q None 15.10.a.b 22-22 00 625625 5988-5988 - - SU(2)\mathrm{SU}(2) q22q228q4+54q55988q7+q-22q^{2}-28q^{4}+5^{4}q^{5}-5988q^{7}+\cdots
45.10.a.b 45.a 1.a 11 23.17723.177 Q\Q None 15.10.a.a 44 00 625-625 7680-7680 - ++ SU(2)\mathrm{SU}(2) q+4q2496q454q57680q7+q+4q^{2}-496q^{4}-5^{4}q^{5}-7680q^{7}+\cdots
45.10.a.c 45.a 1.a 11 23.17723.177 Q\Q None 5.10.a.a 88 00 625625 42424242 - - SU(2)\mathrm{SU}(2) q+8q2448q4+54q5+4242q7+q+8q^{2}-448q^{4}+5^{4}q^{5}+4242q^{7}+\cdots
45.10.a.d 45.a 1.a 22 23.17723.177 Q(241)\Q(\sqrt{241}) None 15.10.a.d 31-31 00 1250-1250 1411214112 - ++ SU(2)\mathrm{SU}(2) q+(24β)q2+(286+31β)q454q5+q+(-2^{4}-\beta )q^{2}+(286+31\beta )q^{4}-5^{4}q^{5}+\cdots
45.10.a.e 45.a 1.a 22 23.17723.177 Q(4729)\Q(\sqrt{4729}) None 15.10.a.c 19-19 00 12501250 11872-11872 - - SU(2)\mathrm{SU}(2) q+(9β)q2+(751+19β)q4+54q5+q+(-9-\beta )q^{2}+(751+19\beta )q^{4}+5^{4}q^{5}+\cdots
45.10.a.f 45.a 1.a 22 23.17723.177 Q(1009)\Q(\sqrt{1009}) None 5.10.a.b 1010 00 1250-1250 17001700 - ++ SU(2)\mathrm{SU}(2) q+(5β)q2+(52210β)q454q5+q+(5-\beta )q^{2}+(522-10\beta )q^{4}-5^{4}q^{5}+\cdots
45.10.a.g 45.a 1.a 33 23.17723.177 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 45.10.a.g 25-25 00 1875-1875 38903890 ++ ++ SU(2)\mathrm{SU}(2) q+(8+β1)q2+(36610β1β2)q4+q+(-8+\beta _{1})q^{2}+(366-10\beta _{1}-\beta _{2})q^{4}+\cdots
45.10.a.h 45.a 1.a 33 23.17723.177 Q[x]/(x3)\mathbb{Q}[x]/(x^{3} - \cdots) None 45.10.a.g 2525 00 18751875 38903890 ++ - SU(2)\mathrm{SU}(2) q+(8β1)q2+(36610β1β2)q4+q+(8-\beta _{1})q^{2}+(366-10\beta _{1}-\beta _{2})q^{4}+\cdots

Decomposition of S10old(Γ0(45))S_{10}^{\mathrm{old}}(\Gamma_0(45)) into lower level spaces

S10old(Γ0(45)) S_{10}^{\mathrm{old}}(\Gamma_0(45)) \simeq S10new(Γ0(3))S_{10}^{\mathrm{new}}(\Gamma_0(3))4^{\oplus 4}\oplusS10new(Γ0(5))S_{10}^{\mathrm{new}}(\Gamma_0(5))3^{\oplus 3}\oplusS10new(Γ0(9))S_{10}^{\mathrm{new}}(\Gamma_0(9))2^{\oplus 2}\oplusS10new(Γ0(15))S_{10}^{\mathrm{new}}(\Gamma_0(15))2^{\oplus 2}