Properties

Label 45.12.a.h
Level $45$
Weight $12$
Character orbit 45.a
Self dual yes
Analytic conductor $34.575$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,12,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.5754431252\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 795x^{2} - 6374x + 16128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 19) q^{2} + ( - \beta_{3} - 15 \beta_1 + 1807) q^{4} - 3125 q^{5} + ( - 2 \beta_{3} + 5 \beta_{2} + \cdots - 15340) q^{7} + ( - 35 \beta_{3} + 16 \beta_{2} + \cdots + 49203) q^{8} + (3125 \beta_1 - 59375) q^{10}+ \cdots + (7812800 \beta_{3} + \cdots - 54233238377) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 75 q^{2} + 7213 q^{4} - 12500 q^{5} - 62080 q^{7} + 194925 q^{8} - 234375 q^{10} + 1041000 q^{11} - 2363320 q^{13} + 8970750 q^{14} + 15570721 q^{16} - 6446400 q^{17} + 17454584 q^{19} - 22540625 q^{20}+ \cdots - 219422718225 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 795x^{2} - 6374x + 16128 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} + 779\nu + 3204 ) / 54 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 76\nu^{3} - 979\nu^{2} - 35579\nu + 25848 ) / 54 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -10\nu^{3} + 310\nu^{2} + 5630\nu - 75420 ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 5\beta_{3} + 4\beta_{2} + 204\beta _1 - 52 ) / 1350 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 175\beta_{3} + 32\beta_{2} - 1068\beta _1 + 536884 ) / 1350 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4595\beta_{3} + 3244\beta_{2} + 81744\beta _1 + 6432428 ) / 1350 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.02264
31.3366
−21.5535
−11.8057
−69.6616 0 2804.74 −3125.00 0 −79546.9 −52716.0 0 217693.
1.2 4.71838 0 −2025.74 −3125.00 0 −6243.26 −19221.4 0 −14744.9
1.3 50.7631 0 528.891 −3125.00 0 −34993.8 −77114.7 0 −158635.
1.4 89.1802 0 5905.10 −3125.00 0 58704.0 343977. 0 −278688.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.12.a.h yes 4
3.b odd 2 1 45.12.a.g 4
5.b even 2 1 225.12.a.o 4
5.c odd 4 2 225.12.b.m 8
15.d odd 2 1 225.12.a.u 4
15.e even 4 2 225.12.b.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.12.a.g 4 3.b odd 2 1
45.12.a.h yes 4 1.a even 1 1 trivial
225.12.a.o 4 5.b even 2 1
225.12.a.u 4 15.d odd 2 1
225.12.b.l 8 15.e even 4 2
225.12.b.m 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 75T_{2}^{3} - 4890T_{2}^{2} + 340000T_{2} - 1488000 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(45))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 75 T^{3} + \cdots - 1488000 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T + 3125)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 71\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 70\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 62\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 90\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 25\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 86\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 88\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 64\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
show more
show less