Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [45,12,Mod(19,45)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(45, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 12, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("45.19");
S:= CuspForms(chi, 12);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 45.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
− | 76.5078i | 0 | −3805.45 | −6524.36 | − | 2502.17i | 0 | − | 35612.9i | 134459.i | 0 | −191435. | + | 499165.i | ||||||||||||||||||||||||||||||||||||
19.2 | − | 76.5078i | 0 | −3805.45 | 6524.36 | − | 2502.17i | 0 | 35612.9i | 134459.i | 0 | −191435. | − | 499165.i | ||||||||||||||||||||||||||||||||||||||
19.3 | − | 22.0579i | 0 | 1561.45 | −5411.49 | − | 4420.85i | 0 | 55546.4i | − | 79616.9i | 0 | −97514.6 | + | 119366.i | |||||||||||||||||||||||||||||||||||||
19.4 | − | 22.0579i | 0 | 1561.45 | 5411.49 | − | 4420.85i | 0 | − | 55546.4i | − | 79616.9i | 0 | −97514.6 | − | 119366.i | ||||||||||||||||||||||||||||||||||||
19.5 | 22.0579i | 0 | 1561.45 | −5411.49 | + | 4420.85i | 0 | − | 55546.4i | 79616.9i | 0 | −97514.6 | − | 119366.i | ||||||||||||||||||||||||||||||||||||||
19.6 | 22.0579i | 0 | 1561.45 | 5411.49 | + | 4420.85i | 0 | 55546.4i | 79616.9i | 0 | −97514.6 | + | 119366.i | |||||||||||||||||||||||||||||||||||||||
19.7 | 76.5078i | 0 | −3805.45 | −6524.36 | + | 2502.17i | 0 | 35612.9i | − | 134459.i | 0 | −191435. | − | 499165.i | ||||||||||||||||||||||||||||||||||||||
19.8 | 76.5078i | 0 | −3805.45 | 6524.36 | + | 2502.17i | 0 | − | 35612.9i | − | 134459.i | 0 | −191435. | + | 499165.i | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 45.12.b.c | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 45.12.b.c | ✓ | 8 |
5.b | even | 2 | 1 | inner | 45.12.b.c | ✓ | 8 |
5.c | odd | 4 | 2 | 225.12.a.z | 8 | ||
15.d | odd | 2 | 1 | inner | 45.12.b.c | ✓ | 8 |
15.e | even | 4 | 2 | 225.12.a.z | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
45.12.b.c | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
45.12.b.c | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
45.12.b.c | ✓ | 8 | 5.b | even | 2 | 1 | inner |
45.12.b.c | ✓ | 8 | 15.d | odd | 2 | 1 | inner |
225.12.a.z | 8 | 5.c | odd | 4 | 2 | ||
225.12.a.z | 8 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .