Properties

Label 45.12.b.c
Level 4545
Weight 1212
Character orbit 45.b
Analytic conductor 34.57534.575
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,12,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: N N == 45=325 45 = 3^{2} \cdot 5
Weight: k k == 12 12
Character orbit: [χ][\chi] == 45.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 34.575443125234.5754431252
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x75706x6+91460x5+8073323x4237717036x3+1329030846x2++2557326711753 x^{8} - 2 x^{7} - 5706 x^{6} + 91460 x^{5} + 8073323 x^{4} - 237717036 x^{3} + 1329030846 x^{2} + \cdots + 2557326711753 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22031259 2^{20}\cdot 3^{12}\cdot 5^{9}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β31122)q4+(β2+46β1)q5β5q7+(16β41348β1)q8+(β7+3β5+144475)q10+(β627β4++27β1)q11++(5417280β4+570418663β1)q98+O(q100) q + \beta_1 q^{2} + (\beta_{3} - 1122) q^{4} + (\beta_{2} + 46 \beta_1) q^{5} - \beta_{5} q^{7} + (16 \beta_{4} - 1348 \beta_1) q^{8} + (\beta_{7} + 3 \beta_{5} + \cdots - 144475) q^{10} + ( - \beta_{6} - 27 \beta_{4} + \cdots + 27 \beta_1) q^{11}+ \cdots + ( - 5417280 \beta_{4} + 570418663 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8976q41155800q10+15740992q16+61220032q19+184187000q25+279698464q31+309623120q3462144800q4013964841760q461596098056q49+15819804000q55+460752353440q94+O(q100) 8 q - 8976 q^{4} - 1155800 q^{10} + 15740992 q^{16} + 61220032 q^{19} + 184187000 q^{25} + 279698464 q^{31} + 309623120 q^{34} - 62144800 q^{40} - 13964841760 q^{46} - 1596098056 q^{49} + 15819804000 q^{55}+ \cdots - 460752353440 q^{94}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x75706x6+91460x5+8073323x4237717036x3+1329030846x2++2557326711753 x^{8} - 2 x^{7} - 5706 x^{6} + 91460 x^{5} + 8073323 x^{4} - 237717036 x^{3} + 1329030846 x^{2} + \cdots + 2557326711753 : Copy content Toggle raw display

β1\beta_{1}== (204272349772633ν7++99 ⁣ ⁣87)/17 ⁣ ⁣25 ( - 204272349772633 \nu^{7} + \cdots + 99\!\cdots\!87 ) / 17\!\cdots\!25 Copy content Toggle raw display
β2\beta_{2}== (63 ⁣ ⁣06ν7++41 ⁣ ⁣91)/34 ⁣ ⁣50 ( 63\!\cdots\!06 \nu^{7} + \cdots + 41\!\cdots\!91 ) / 34\!\cdots\!50 Copy content Toggle raw display
β3\beta_{3}== (522596740ν7+21933629000ν62409355769170ν559489761647320ν4++31 ⁣ ⁣90)/26 ⁣ ⁣99 ( 522596740 \nu^{7} + 21933629000 \nu^{6} - 2409355769170 \nu^{5} - 59489761647320 \nu^{4} + \cdots + 31\!\cdots\!90 ) / 26\!\cdots\!99 Copy content Toggle raw display
β4\beta_{4}== (21 ⁣ ⁣59ν7++18 ⁣ ⁣76)/57 ⁣ ⁣75 ( - 21\!\cdots\!59 \nu^{7} + \cdots + 18\!\cdots\!76 ) / 57\!\cdots\!75 Copy content Toggle raw display
β5\beta_{5}== (63224941064ν7+4023377232856ν6104365227890702ν5+17 ⁣ ⁣44)/40 ⁣ ⁣85 ( 63224941064 \nu^{7} + 4023377232856 \nu^{6} - 104365227890702 \nu^{5} + \cdots - 17\!\cdots\!44 ) / 40\!\cdots\!85 Copy content Toggle raw display
β6\beta_{6}== (48 ⁣ ⁣94ν7++10 ⁣ ⁣91)/34 ⁣ ⁣50 ( - 48\!\cdots\!94 \nu^{7} + \cdots + 10\!\cdots\!91 ) / 34\!\cdots\!50 Copy content Toggle raw display
β7\beta_{7}== (2019605839238ν7+116738896580452ν6+14 ⁣ ⁣73)/40 ⁣ ⁣85 ( 2019605839238 \nu^{7} + 116738896580452 \nu^{6} + \cdots - 14\!\cdots\!73 ) / 40\!\cdots\!85 Copy content Toggle raw display
ν\nu== (β6+34β4+120β3261β24306β1+10800)/43200 ( \beta_{6} + 34\beta_{4} + 120\beta_{3} - 261\beta_{2} - 4306\beta _1 + 10800 ) / 43200 Copy content Toggle raw display
ν2\nu^{2}== (52β733β6184β52682β422346β3+2133β2++61646400)/43200 ( 52 \beta_{7} - 33 \beta_{6} - 184 \beta_{5} - 2682 \beta_{4} - 22346 \beta_{3} + 2133 \beta_{2} + \cdots + 61646400 ) / 43200 Copy content Toggle raw display
ν3\nu^{3}== (126β7+4981β69792β5+255034β4+483537β3+1296734400)/43200 ( 126 \beta_{7} + 4981 \beta_{6} - 9792 \beta_{5} + 255034 \beta_{4} + 483537 \beta_{3} + \cdots - 1296734400 ) / 43200 Copy content Toggle raw display
ν4\nu^{4}== (149248β7120009β6+624584β511835546β470314944β3++173789344800)/43200 ( 149248 \beta_{7} - 120009 \beta_{6} + 624584 \beta_{5} - 11835546 \beta_{4} - 70314944 \beta_{3} + \cdots + 173789344800 ) / 43200 Copy content Toggle raw display
ν5\nu^{5}== (4788150β7+14795584β626065200β5+1108109056β4+6358599457200)/43200 ( - 4788150 \beta_{7} + 14795584 \beta_{6} - 26065200 \beta_{5} + 1108109056 \beta_{4} + \cdots - 6358599457200 ) / 43200 Copy content Toggle raw display
ν6\nu^{6}== (321701744β7270889605β6+1728017752β521560898210β4++279669788164800)/21600 ( 321701744 \beta_{7} - 270889605 \beta_{6} + 1728017752 \beta_{5} - 21560898210 \beta_{4} + \cdots + 279669788164800 ) / 21600 Copy content Toggle raw display
ν7\nu^{7}== (29883863352β7+45830071063β6145662369216β5+3896956282462β4+24 ⁣ ⁣00)/43200 ( - 29883863352 \beta_{7} + 45830071063 \beta_{6} - 145662369216 \beta_{5} + 3896956282462 \beta_{4} + \cdots - 24\!\cdots\!00 ) / 43200 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/45Z)×\left(\mathbb{Z}/45\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
45.4346 + 3.04491i
−59.8426 + 3.04491i
24.4724 + 17.3199i
−9.06433 + 17.3199i
24.4724 17.3199i
−9.06433 17.3199i
45.4346 3.04491i
−59.8426 3.04491i
76.5078i 0 −3805.45 −6524.36 2502.17i 0 35612.9i 134459.i 0 −191435. + 499165.i
19.2 76.5078i 0 −3805.45 6524.36 2502.17i 0 35612.9i 134459.i 0 −191435. 499165.i
19.3 22.0579i 0 1561.45 −5411.49 4420.85i 0 55546.4i 79616.9i 0 −97514.6 + 119366.i
19.4 22.0579i 0 1561.45 5411.49 4420.85i 0 55546.4i 79616.9i 0 −97514.6 119366.i
19.5 22.0579i 0 1561.45 −5411.49 + 4420.85i 0 55546.4i 79616.9i 0 −97514.6 119366.i
19.6 22.0579i 0 1561.45 5411.49 + 4420.85i 0 55546.4i 79616.9i 0 −97514.6 + 119366.i
19.7 76.5078i 0 −3805.45 −6524.36 + 2502.17i 0 35612.9i 134459.i 0 −191435. 499165.i
19.8 76.5078i 0 −3805.45 6524.36 + 2502.17i 0 35612.9i 134459.i 0 −191435. + 499165.i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.12.b.c 8
3.b odd 2 1 inner 45.12.b.c 8
5.b even 2 1 inner 45.12.b.c 8
5.c odd 4 2 225.12.a.z 8
15.d odd 2 1 inner 45.12.b.c 8
15.e even 4 2 225.12.a.z 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.12.b.c 8 1.a even 1 1 trivial
45.12.b.c 8 3.b odd 2 1 inner
45.12.b.c 8 5.b even 2 1 inner
45.12.b.c 8 15.d odd 2 1 inner
225.12.a.z 8 5.c odd 4 2
225.12.a.z 8 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+6340T22+2848000 T_{2}^{4} + 6340T_{2}^{2} + 2848000 acting on S12new(45,[χ])S_{12}^{\mathrm{new}}(45, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+6340T2+2848000)2 (T^{4} + 6340 T^{2} + 2848000)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8++56 ⁣ ⁣25 T^{8} + \cdots + 56\!\cdots\!25 Copy content Toggle raw display
77 (T4++39 ⁣ ⁣00)2 (T^{4} + \cdots + 39\!\cdots\!00)^{2} Copy content Toggle raw display
1111 (T4++13 ⁣ ⁣00)2 (T^{4} + \cdots + 13\!\cdots\!00)^{2} Copy content Toggle raw display
1313 (T4++80 ⁣ ⁣00)2 (T^{4} + \cdots + 80\!\cdots\!00)^{2} Copy content Toggle raw display
1717 (T4++35 ⁣ ⁣00)2 (T^{4} + \cdots + 35\!\cdots\!00)^{2} Copy content Toggle raw display
1919 (T2++50861932029616)4 (T^{2} + \cdots + 50861932029616)^{4} Copy content Toggle raw display
2323 (T4++12 ⁣ ⁣00)2 (T^{4} + \cdots + 12\!\cdots\!00)^{2} Copy content Toggle raw display
2929 (T4++13 ⁣ ⁣00)2 (T^{4} + \cdots + 13\!\cdots\!00)^{2} Copy content Toggle raw display
3131 (T2+16 ⁣ ⁣36)4 (T^{2} + \cdots - 16\!\cdots\!36)^{4} Copy content Toggle raw display
3737 (T4++24 ⁣ ⁣00)2 (T^{4} + \cdots + 24\!\cdots\!00)^{2} Copy content Toggle raw display
4141 (T4++50 ⁣ ⁣00)2 (T^{4} + \cdots + 50\!\cdots\!00)^{2} Copy content Toggle raw display
4343 (T4++14 ⁣ ⁣00)2 (T^{4} + \cdots + 14\!\cdots\!00)^{2} Copy content Toggle raw display
4747 (T4++18 ⁣ ⁣00)2 (T^{4} + \cdots + 18\!\cdots\!00)^{2} Copy content Toggle raw display
5353 (T4++18 ⁣ ⁣00)2 (T^{4} + \cdots + 18\!\cdots\!00)^{2} Copy content Toggle raw display
5959 (T4++22 ⁣ ⁣00)2 (T^{4} + \cdots + 22\!\cdots\!00)^{2} Copy content Toggle raw display
6161 (T2+10 ⁣ ⁣96)4 (T^{2} + \cdots - 10\!\cdots\!96)^{4} Copy content Toggle raw display
6767 (T4++73 ⁣ ⁣00)2 (T^{4} + \cdots + 73\!\cdots\!00)^{2} Copy content Toggle raw display
7171 (T4++16 ⁣ ⁣00)2 (T^{4} + \cdots + 16\!\cdots\!00)^{2} Copy content Toggle raw display
7373 (T4++50 ⁣ ⁣00)2 (T^{4} + \cdots + 50\!\cdots\!00)^{2} Copy content Toggle raw display
7979 (T2++51 ⁣ ⁣56)4 (T^{2} + \cdots + 51\!\cdots\!56)^{4} Copy content Toggle raw display
8383 (T4++29 ⁣ ⁣00)2 (T^{4} + \cdots + 29\!\cdots\!00)^{2} Copy content Toggle raw display
8989 (T4++11 ⁣ ⁣00)2 (T^{4} + \cdots + 11\!\cdots\!00)^{2} Copy content Toggle raw display
9797 (T4++98 ⁣ ⁣00)2 (T^{4} + \cdots + 98\!\cdots\!00)^{2} Copy content Toggle raw display
show more
show less