Properties

Label 45.14.a.g
Level $45$
Weight $14$
Character orbit 45.a
Self dual yes
Analytic conductor $48.254$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,14,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.2539180284\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 24774x^{2} - 86616x + 52534656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 4) q^{2} + (\beta_{2} - 2 \beta_1 + 4210) q^{4} + 15625 q^{5} + (\beta_{3} - 9 \beta_{2} + \cdots + 85614) q^{7} + (2 \beta_{3} - 5 \beta_{2} + \cdots - 4750) q^{8} + (15625 \beta_1 - 62500) q^{10}+ \cdots + ( - 16932160 \beta_{3} + \cdots - 4405636123892) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 15 q^{2} + 16837 q^{4} + 62500 q^{5} + 343040 q^{7} - 14865 q^{8} - 234375 q^{10} + 12697800 q^{11} + 34336040 q^{13} + 26944650 q^{14} + 66562801 q^{16} + 84377280 q^{17} - 131821144 q^{19} + 263078125 q^{20}+ \cdots - 17650752985395 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 24774x^{2} - 86616x + 52534656 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 6\nu - 12386 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 7\nu^{2} - 20494\nu + 8292 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 6\beta _1 + 12386 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 7\beta_{2} + 20536\beta _1 + 78410 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−146.991
−50.6908
46.2561
152.425
−150.991 0 14606.2 15625.0 0 −242904. −968489. 0 −2.35923e6
1.2 −54.6908 0 −5200.92 15625.0 0 591583. 732469. 0 −854543.
1.3 42.2561 0 −6406.42 15625.0 0 −220964. −616873. 0 660252.
1.4 148.425 0 13838.1 15625.0 0 215324. 838027. 0 2.31915e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 45.14.a.g 4
3.b odd 2 1 45.14.a.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
45.14.a.g 4 1.a even 1 1 trivial
45.14.a.h yes 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 15T_{2}^{3} - 24690T_{2}^{2} - 284600T_{2} + 51792000 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(45))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 15 T^{3} + \cdots + 51792000 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T - 15625)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 57\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 86\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 38\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 95\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 84\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 77\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 62\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 63\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 60\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
show more
show less