Properties

Label 45.14.a.g.1.4
Level $45$
Weight $14$
Character 45.1
Self dual yes
Analytic conductor $48.254$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,14,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.2539180284\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 24774x^{2} - 86616x + 52534656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{4}\cdot 5^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(152.425\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+148.425 q^{2} +13838.1 q^{4} +15625.0 q^{5} +215324. q^{7} +838027. q^{8} +2.31915e6 q^{10} +3.50194e6 q^{11} -1.22382e6 q^{13} +3.19596e7 q^{14} +1.10227e7 q^{16} +1.14596e8 q^{17} +1.26403e8 q^{19} +2.16221e8 q^{20} +5.19777e8 q^{22} -1.54080e8 q^{23} +2.44141e8 q^{25} -1.81646e8 q^{26} +2.97968e9 q^{28} -3.50622e9 q^{29} +6.23402e9 q^{31} -5.22907e9 q^{32} +1.70089e10 q^{34} +3.36444e9 q^{35} +2.11673e10 q^{37} +1.87614e10 q^{38} +1.30942e10 q^{40} +5.91552e10 q^{41} -1.84126e10 q^{43} +4.84603e10 q^{44} -2.28694e10 q^{46} -3.33828e10 q^{47} -5.05244e10 q^{49} +3.62367e10 q^{50} -1.69354e10 q^{52} -7.18621e10 q^{53} +5.47178e10 q^{55} +1.80448e11 q^{56} -5.20412e11 q^{58} +2.91405e10 q^{59} -5.52018e11 q^{61} +9.25288e11 q^{62} -8.66425e11 q^{64} -1.91222e10 q^{65} +9.87816e11 q^{67} +1.58579e12 q^{68} +4.99369e11 q^{70} +1.33203e11 q^{71} +1.18101e10 q^{73} +3.14177e12 q^{74} +1.74918e12 q^{76} +7.54053e11 q^{77} -3.39311e12 q^{79} +1.72230e11 q^{80} +8.78014e12 q^{82} -1.44794e12 q^{83} +1.79056e12 q^{85} -2.73290e12 q^{86} +2.93472e12 q^{88} -1.62879e11 q^{89} -2.63518e11 q^{91} -2.13218e12 q^{92} -4.95485e12 q^{94} +1.97504e12 q^{95} +3.58718e12 q^{97} -7.49911e12 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 15 q^{2} + 16837 q^{4} + 62500 q^{5} + 343040 q^{7} - 14865 q^{8} - 234375 q^{10} + 12697800 q^{11} + 34336040 q^{13} + 26944650 q^{14} + 66562801 q^{16} + 84377280 q^{17} - 131821144 q^{19} + 263078125 q^{20}+ \cdots - 17650752985395 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 148.425 1.63989 0.819943 0.572446i \(-0.194005\pi\)
0.819943 + 0.572446i \(0.194005\pi\)
\(3\) 0 0
\(4\) 13838.1 1.68922
\(5\) 15625.0 0.447214
\(6\) 0 0
\(7\) 215324. 0.691761 0.345880 0.938279i \(-0.387580\pi\)
0.345880 + 0.938279i \(0.387580\pi\)
\(8\) 838027. 1.13025
\(9\) 0 0
\(10\) 2.31915e6 0.733379
\(11\) 3.50194e6 0.596014 0.298007 0.954564i \(-0.403678\pi\)
0.298007 + 0.954564i \(0.403678\pi\)
\(12\) 0 0
\(13\) −1.22382e6 −0.0703211 −0.0351605 0.999382i \(-0.511194\pi\)
−0.0351605 + 0.999382i \(0.511194\pi\)
\(14\) 3.19596e7 1.13441
\(15\) 0 0
\(16\) 1.10227e7 0.164252
\(17\) 1.14596e8 1.15146 0.575731 0.817639i \(-0.304717\pi\)
0.575731 + 0.817639i \(0.304717\pi\)
\(18\) 0 0
\(19\) 1.26403e8 0.616393 0.308197 0.951323i \(-0.400275\pi\)
0.308197 + 0.951323i \(0.400275\pi\)
\(20\) 2.16221e8 0.755444
\(21\) 0 0
\(22\) 5.19777e8 0.977394
\(23\) −1.54080e8 −0.217028 −0.108514 0.994095i \(-0.534609\pi\)
−0.108514 + 0.994095i \(0.534609\pi\)
\(24\) 0 0
\(25\) 2.44141e8 0.200000
\(26\) −1.81646e8 −0.115318
\(27\) 0 0
\(28\) 2.97968e9 1.16854
\(29\) −3.50622e9 −1.09459 −0.547295 0.836940i \(-0.684343\pi\)
−0.547295 + 0.836940i \(0.684343\pi\)
\(30\) 0 0
\(31\) 6.23402e9 1.26159 0.630794 0.775950i \(-0.282729\pi\)
0.630794 + 0.775950i \(0.282729\pi\)
\(32\) −5.22907e9 −0.860893
\(33\) 0 0
\(34\) 1.70089e10 1.88827
\(35\) 3.36444e9 0.309365
\(36\) 0 0
\(37\) 2.11673e10 1.35630 0.678148 0.734925i \(-0.262783\pi\)
0.678148 + 0.734925i \(0.262783\pi\)
\(38\) 1.87614e10 1.01081
\(39\) 0 0
\(40\) 1.30942e10 0.505462
\(41\) 5.91552e10 1.94490 0.972451 0.233107i \(-0.0748892\pi\)
0.972451 + 0.233107i \(0.0748892\pi\)
\(42\) 0 0
\(43\) −1.84126e10 −0.444192 −0.222096 0.975025i \(-0.571290\pi\)
−0.222096 + 0.975025i \(0.571290\pi\)
\(44\) 4.84603e10 1.00680
\(45\) 0 0
\(46\) −2.28694e10 −0.355901
\(47\) −3.33828e10 −0.451737 −0.225869 0.974158i \(-0.572522\pi\)
−0.225869 + 0.974158i \(0.572522\pi\)
\(48\) 0 0
\(49\) −5.05244e10 −0.521467
\(50\) 3.62367e10 0.327977
\(51\) 0 0
\(52\) −1.69354e10 −0.118788
\(53\) −7.18621e10 −0.445356 −0.222678 0.974892i \(-0.571480\pi\)
−0.222678 + 0.974892i \(0.571480\pi\)
\(54\) 0 0
\(55\) 5.47178e10 0.266546
\(56\) 1.80448e11 0.781860
\(57\) 0 0
\(58\) −5.20412e11 −1.79500
\(59\) 2.91405e10 0.0899412 0.0449706 0.998988i \(-0.485681\pi\)
0.0449706 + 0.998988i \(0.485681\pi\)
\(60\) 0 0
\(61\) −5.52018e11 −1.37186 −0.685929 0.727669i \(-0.740604\pi\)
−0.685929 + 0.727669i \(0.740604\pi\)
\(62\) 9.25288e11 2.06886
\(63\) 0 0
\(64\) −8.66425e11 −1.57602
\(65\) −1.91222e10 −0.0314485
\(66\) 0 0
\(67\) 9.87816e11 1.33410 0.667052 0.745011i \(-0.267556\pi\)
0.667052 + 0.745011i \(0.267556\pi\)
\(68\) 1.58579e12 1.94508
\(69\) 0 0
\(70\) 4.99369e11 0.507323
\(71\) 1.33203e11 0.123406 0.0617030 0.998095i \(-0.480347\pi\)
0.0617030 + 0.998095i \(0.480347\pi\)
\(72\) 0 0
\(73\) 1.18101e10 0.00913385 0.00456693 0.999990i \(-0.498546\pi\)
0.00456693 + 0.999990i \(0.498546\pi\)
\(74\) 3.14177e12 2.22417
\(75\) 0 0
\(76\) 1.74918e12 1.04123
\(77\) 7.54053e11 0.412299
\(78\) 0 0
\(79\) −3.39311e12 −1.57044 −0.785222 0.619215i \(-0.787451\pi\)
−0.785222 + 0.619215i \(0.787451\pi\)
\(80\) 1.72230e11 0.0734555
\(81\) 0 0
\(82\) 8.78014e12 3.18942
\(83\) −1.44794e12 −0.486118 −0.243059 0.970011i \(-0.578151\pi\)
−0.243059 + 0.970011i \(0.578151\pi\)
\(84\) 0 0
\(85\) 1.79056e12 0.514950
\(86\) −2.73290e12 −0.728424
\(87\) 0 0
\(88\) 2.93472e12 0.673643
\(89\) −1.62879e11 −0.0347400 −0.0173700 0.999849i \(-0.505529\pi\)
−0.0173700 + 0.999849i \(0.505529\pi\)
\(90\) 0 0
\(91\) −2.63518e11 −0.0486454
\(92\) −2.13218e12 −0.366609
\(93\) 0 0
\(94\) −4.95485e12 −0.740798
\(95\) 1.97504e12 0.275659
\(96\) 0 0
\(97\) 3.58718e12 0.437258 0.218629 0.975808i \(-0.429842\pi\)
0.218629 + 0.975808i \(0.429842\pi\)
\(98\) −7.49911e12 −0.855146
\(99\) 0 0
\(100\) 3.37845e12 0.337845
\(101\) 1.32945e13 1.24619 0.623095 0.782146i \(-0.285875\pi\)
0.623095 + 0.782146i \(0.285875\pi\)
\(102\) 0 0
\(103\) −2.14656e13 −1.77134 −0.885669 0.464317i \(-0.846300\pi\)
−0.885669 + 0.464317i \(0.846300\pi\)
\(104\) −1.02559e12 −0.0794801
\(105\) 0 0
\(106\) −1.06662e13 −0.730332
\(107\) −4.53570e12 −0.292180 −0.146090 0.989271i \(-0.546669\pi\)
−0.146090 + 0.989271i \(0.546669\pi\)
\(108\) 0 0
\(109\) −2.75975e13 −1.57615 −0.788074 0.615580i \(-0.788922\pi\)
−0.788074 + 0.615580i \(0.788922\pi\)
\(110\) 8.12152e12 0.437104
\(111\) 0 0
\(112\) 2.37346e12 0.113623
\(113\) −3.59293e13 −1.62345 −0.811725 0.584040i \(-0.801471\pi\)
−0.811725 + 0.584040i \(0.801471\pi\)
\(114\) 0 0
\(115\) −2.40751e12 −0.0970580
\(116\) −4.85194e13 −1.84901
\(117\) 0 0
\(118\) 4.32519e12 0.147493
\(119\) 2.46752e13 0.796537
\(120\) 0 0
\(121\) −2.22591e13 −0.644767
\(122\) −8.19335e13 −2.24969
\(123\) 0 0
\(124\) 8.62671e13 2.13110
\(125\) 3.81470e12 0.0894427
\(126\) 0 0
\(127\) −8.24154e13 −1.74295 −0.871473 0.490443i \(-0.836835\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(128\) −8.57630e13 −1.72359
\(129\) 0 0
\(130\) −2.83822e12 −0.0515720
\(131\) −9.61500e13 −1.66221 −0.831105 0.556115i \(-0.812291\pi\)
−0.831105 + 0.556115i \(0.812291\pi\)
\(132\) 0 0
\(133\) 2.72176e13 0.426397
\(134\) 1.46617e14 2.18778
\(135\) 0 0
\(136\) 9.60342e13 1.30144
\(137\) 1.15756e14 1.49575 0.747877 0.663837i \(-0.231073\pi\)
0.747877 + 0.663837i \(0.231073\pi\)
\(138\) 0 0
\(139\) 8.85611e13 1.04147 0.520735 0.853718i \(-0.325658\pi\)
0.520735 + 0.853718i \(0.325658\pi\)
\(140\) 4.65576e13 0.522586
\(141\) 0 0
\(142\) 1.97708e13 0.202372
\(143\) −4.28574e12 −0.0419123
\(144\) 0 0
\(145\) −5.47846e13 −0.489516
\(146\) 1.75292e12 0.0149785
\(147\) 0 0
\(148\) 2.92916e14 2.29109
\(149\) 1.45878e14 1.09215 0.546073 0.837738i \(-0.316122\pi\)
0.546073 + 0.837738i \(0.316122\pi\)
\(150\) 0 0
\(151\) 1.41584e13 0.0971994 0.0485997 0.998818i \(-0.484524\pi\)
0.0485997 + 0.998818i \(0.484524\pi\)
\(152\) 1.05929e14 0.696676
\(153\) 0 0
\(154\) 1.11921e14 0.676123
\(155\) 9.74066e13 0.564199
\(156\) 0 0
\(157\) −3.21755e14 −1.71466 −0.857329 0.514768i \(-0.827878\pi\)
−0.857329 + 0.514768i \(0.827878\pi\)
\(158\) −5.03624e14 −2.57535
\(159\) 0 0
\(160\) −8.17041e13 −0.385003
\(161\) −3.31773e13 −0.150132
\(162\) 0 0
\(163\) −1.93760e14 −0.809181 −0.404591 0.914498i \(-0.632586\pi\)
−0.404591 + 0.914498i \(0.632586\pi\)
\(164\) 8.18596e14 3.28537
\(165\) 0 0
\(166\) −2.14911e14 −0.797178
\(167\) −3.35780e14 −1.19784 −0.598919 0.800809i \(-0.704403\pi\)
−0.598919 + 0.800809i \(0.704403\pi\)
\(168\) 0 0
\(169\) −3.01377e14 −0.995055
\(170\) 2.65764e14 0.844458
\(171\) 0 0
\(172\) −2.54796e14 −0.750340
\(173\) −1.10123e14 −0.312306 −0.156153 0.987733i \(-0.549909\pi\)
−0.156153 + 0.987733i \(0.549909\pi\)
\(174\) 0 0
\(175\) 5.25694e13 0.138352
\(176\) 3.86010e13 0.0978962
\(177\) 0 0
\(178\) −2.41754e13 −0.0569697
\(179\) 7.53350e14 1.71180 0.855898 0.517145i \(-0.173005\pi\)
0.855898 + 0.517145i \(0.173005\pi\)
\(180\) 0 0
\(181\) −1.93468e14 −0.408977 −0.204488 0.978869i \(-0.565553\pi\)
−0.204488 + 0.978869i \(0.565553\pi\)
\(182\) −3.91128e13 −0.0797728
\(183\) 0 0
\(184\) −1.29124e14 −0.245296
\(185\) 3.30739e14 0.606554
\(186\) 0 0
\(187\) 4.01307e14 0.686288
\(188\) −4.61954e14 −0.763085
\(189\) 0 0
\(190\) 2.93147e14 0.452050
\(191\) 3.06017e14 0.456067 0.228033 0.973653i \(-0.426770\pi\)
0.228033 + 0.973653i \(0.426770\pi\)
\(192\) 0 0
\(193\) 2.32828e14 0.324274 0.162137 0.986768i \(-0.448161\pi\)
0.162137 + 0.986768i \(0.448161\pi\)
\(194\) 5.32429e14 0.717052
\(195\) 0 0
\(196\) −6.99163e14 −0.880874
\(197\) 3.64429e14 0.444204 0.222102 0.975023i \(-0.428708\pi\)
0.222102 + 0.975023i \(0.428708\pi\)
\(198\) 0 0
\(199\) −2.43854e14 −0.278346 −0.139173 0.990268i \(-0.544444\pi\)
−0.139173 + 0.990268i \(0.544444\pi\)
\(200\) 2.04596e14 0.226049
\(201\) 0 0
\(202\) 1.97325e15 2.04361
\(203\) −7.54974e14 −0.757195
\(204\) 0 0
\(205\) 9.24300e14 0.869787
\(206\) −3.18604e15 −2.90479
\(207\) 0 0
\(208\) −1.34898e13 −0.0115503
\(209\) 4.42655e14 0.367379
\(210\) 0 0
\(211\) 1.86277e15 1.45319 0.726596 0.687065i \(-0.241101\pi\)
0.726596 + 0.687065i \(0.241101\pi\)
\(212\) −9.94436e14 −0.752305
\(213\) 0 0
\(214\) −6.73213e14 −0.479141
\(215\) −2.87697e14 −0.198649
\(216\) 0 0
\(217\) 1.34234e15 0.872717
\(218\) −4.09617e15 −2.58470
\(219\) 0 0
\(220\) 7.57192e14 0.450255
\(221\) −1.40244e14 −0.0809721
\(222\) 0 0
\(223\) 8.44142e14 0.459657 0.229829 0.973231i \(-0.426183\pi\)
0.229829 + 0.973231i \(0.426183\pi\)
\(224\) −1.12595e15 −0.595532
\(225\) 0 0
\(226\) −5.33282e15 −2.66227
\(227\) 7.84425e14 0.380525 0.190263 0.981733i \(-0.439066\pi\)
0.190263 + 0.981733i \(0.439066\pi\)
\(228\) 0 0
\(229\) 2.50019e14 0.114563 0.0572813 0.998358i \(-0.481757\pi\)
0.0572813 + 0.998358i \(0.481757\pi\)
\(230\) −3.57335e14 −0.159164
\(231\) 0 0
\(232\) −2.93830e15 −1.23716
\(233\) 2.82252e15 1.15564 0.577822 0.816163i \(-0.303903\pi\)
0.577822 + 0.816163i \(0.303903\pi\)
\(234\) 0 0
\(235\) −5.21606e14 −0.202023
\(236\) 4.03249e14 0.151931
\(237\) 0 0
\(238\) 3.66243e15 1.30623
\(239\) 3.19985e15 1.11056 0.555281 0.831663i \(-0.312611\pi\)
0.555281 + 0.831663i \(0.312611\pi\)
\(240\) 0 0
\(241\) 1.14929e15 0.377848 0.188924 0.981992i \(-0.439500\pi\)
0.188924 + 0.981992i \(0.439500\pi\)
\(242\) −3.30382e15 −1.05734
\(243\) 0 0
\(244\) −7.63888e15 −2.31737
\(245\) −7.89444e14 −0.233207
\(246\) 0 0
\(247\) −1.54694e14 −0.0433454
\(248\) 5.22428e15 1.42591
\(249\) 0 0
\(250\) 5.66198e14 0.146676
\(251\) 4.56021e15 1.15108 0.575540 0.817773i \(-0.304792\pi\)
0.575540 + 0.817773i \(0.304792\pi\)
\(252\) 0 0
\(253\) −5.39580e14 −0.129352
\(254\) −1.22325e16 −2.85823
\(255\) 0 0
\(256\) −5.63166e15 −1.25048
\(257\) 2.41893e15 0.523671 0.261835 0.965113i \(-0.415672\pi\)
0.261835 + 0.965113i \(0.415672\pi\)
\(258\) 0 0
\(259\) 4.55784e15 0.938233
\(260\) −2.64615e14 −0.0531236
\(261\) 0 0
\(262\) −1.42711e16 −2.72583
\(263\) 1.39889e15 0.260657 0.130329 0.991471i \(-0.458397\pi\)
0.130329 + 0.991471i \(0.458397\pi\)
\(264\) 0 0
\(265\) −1.12285e15 −0.199169
\(266\) 4.03978e15 0.699242
\(267\) 0 0
\(268\) 1.36695e16 2.25360
\(269\) −7.53557e15 −1.21262 −0.606312 0.795227i \(-0.707352\pi\)
−0.606312 + 0.795227i \(0.707352\pi\)
\(270\) 0 0
\(271\) −3.68276e15 −0.564772 −0.282386 0.959301i \(-0.591126\pi\)
−0.282386 + 0.959301i \(0.591126\pi\)
\(272\) 1.26316e15 0.189130
\(273\) 0 0
\(274\) 1.71812e16 2.45287
\(275\) 8.54966e14 0.119203
\(276\) 0 0
\(277\) −2.90631e15 −0.386566 −0.193283 0.981143i \(-0.561914\pi\)
−0.193283 + 0.981143i \(0.561914\pi\)
\(278\) 1.31447e16 1.70789
\(279\) 0 0
\(280\) 2.81950e15 0.349659
\(281\) 4.98905e15 0.604542 0.302271 0.953222i \(-0.402255\pi\)
0.302271 + 0.953222i \(0.402255\pi\)
\(282\) 0 0
\(283\) 1.44585e16 1.67306 0.836529 0.547922i \(-0.184581\pi\)
0.836529 + 0.547922i \(0.184581\pi\)
\(284\) 1.84329e15 0.208460
\(285\) 0 0
\(286\) −6.36113e14 −0.0687314
\(287\) 1.27376e16 1.34541
\(288\) 0 0
\(289\) 3.22757e15 0.325866
\(290\) −8.13143e15 −0.802750
\(291\) 0 0
\(292\) 1.63429e14 0.0154291
\(293\) 1.80867e16 1.67001 0.835007 0.550239i \(-0.185463\pi\)
0.835007 + 0.550239i \(0.185463\pi\)
\(294\) 0 0
\(295\) 4.55320e14 0.0402229
\(296\) 1.77388e16 1.53295
\(297\) 0 0
\(298\) 2.16521e16 1.79099
\(299\) 1.88567e14 0.0152617
\(300\) 0 0
\(301\) −3.96469e15 −0.307275
\(302\) 2.10147e15 0.159396
\(303\) 0 0
\(304\) 1.39330e15 0.101244
\(305\) −8.62528e15 −0.613513
\(306\) 0 0
\(307\) −2.08974e16 −1.42460 −0.712301 0.701874i \(-0.752347\pi\)
−0.712301 + 0.701874i \(0.752347\pi\)
\(308\) 1.04347e16 0.696465
\(309\) 0 0
\(310\) 1.44576e16 0.925222
\(311\) −7.80809e15 −0.489330 −0.244665 0.969608i \(-0.578678\pi\)
−0.244665 + 0.969608i \(0.578678\pi\)
\(312\) 0 0
\(313\) −1.63797e16 −0.984620 −0.492310 0.870420i \(-0.663847\pi\)
−0.492310 + 0.870420i \(0.663847\pi\)
\(314\) −4.77566e16 −2.81184
\(315\) 0 0
\(316\) −4.69543e16 −2.65283
\(317\) 3.59584e15 0.199028 0.0995141 0.995036i \(-0.468271\pi\)
0.0995141 + 0.995036i \(0.468271\pi\)
\(318\) 0 0
\(319\) −1.22786e16 −0.652391
\(320\) −1.35379e16 −0.704816
\(321\) 0 0
\(322\) −4.92435e15 −0.246199
\(323\) 1.44852e16 0.709754
\(324\) 0 0
\(325\) −2.98784e14 −0.0140642
\(326\) −2.87590e16 −1.32696
\(327\) 0 0
\(328\) 4.95737e16 2.19822
\(329\) −7.18812e15 −0.312494
\(330\) 0 0
\(331\) −2.21791e16 −0.926961 −0.463480 0.886107i \(-0.653400\pi\)
−0.463480 + 0.886107i \(0.653400\pi\)
\(332\) −2.00367e16 −0.821162
\(333\) 0 0
\(334\) −4.98384e16 −1.96432
\(335\) 1.54346e16 0.596629
\(336\) 0 0
\(337\) 3.17420e16 1.18043 0.590215 0.807246i \(-0.299043\pi\)
0.590215 + 0.807246i \(0.299043\pi\)
\(338\) −4.47321e16 −1.63178
\(339\) 0 0
\(340\) 2.47779e16 0.869865
\(341\) 2.18312e16 0.751924
\(342\) 0 0
\(343\) −3.17417e16 −1.05249
\(344\) −1.54303e16 −0.502047
\(345\) 0 0
\(346\) −1.63451e16 −0.512146
\(347\) −1.06948e16 −0.328876 −0.164438 0.986387i \(-0.552581\pi\)
−0.164438 + 0.986387i \(0.552581\pi\)
\(348\) 0 0
\(349\) −4.43687e16 −1.31435 −0.657176 0.753737i \(-0.728249\pi\)
−0.657176 + 0.753737i \(0.728249\pi\)
\(350\) 7.80264e15 0.226882
\(351\) 0 0
\(352\) −1.83119e16 −0.513104
\(353\) 1.05902e16 0.291319 0.145660 0.989335i \(-0.453470\pi\)
0.145660 + 0.989335i \(0.453470\pi\)
\(354\) 0 0
\(355\) 2.08130e15 0.0551888
\(356\) −2.25394e15 −0.0586837
\(357\) 0 0
\(358\) 1.11816e17 2.80715
\(359\) 5.10726e15 0.125914 0.0629570 0.998016i \(-0.479947\pi\)
0.0629570 + 0.998016i \(0.479947\pi\)
\(360\) 0 0
\(361\) −2.60753e16 −0.620059
\(362\) −2.87156e16 −0.670675
\(363\) 0 0
\(364\) −3.64659e15 −0.0821729
\(365\) 1.84532e14 0.00408478
\(366\) 0 0
\(367\) 5.49713e16 1.17437 0.587187 0.809452i \(-0.300235\pi\)
0.587187 + 0.809452i \(0.300235\pi\)
\(368\) −1.69839e15 −0.0356472
\(369\) 0 0
\(370\) 4.90902e16 0.994679
\(371\) −1.54737e16 −0.308080
\(372\) 0 0
\(373\) 4.60597e16 0.885551 0.442775 0.896633i \(-0.353994\pi\)
0.442775 + 0.896633i \(0.353994\pi\)
\(374\) 5.95642e16 1.12543
\(375\) 0 0
\(376\) −2.79757e16 −0.510575
\(377\) 4.29097e15 0.0769728
\(378\) 0 0
\(379\) 1.36123e16 0.235926 0.117963 0.993018i \(-0.462364\pi\)
0.117963 + 0.993018i \(0.462364\pi\)
\(380\) 2.73309e16 0.465650
\(381\) 0 0
\(382\) 4.54207e16 0.747897
\(383\) −1.14040e17 −1.84615 −0.923074 0.384623i \(-0.874331\pi\)
−0.923074 + 0.384623i \(0.874331\pi\)
\(384\) 0 0
\(385\) 1.17821e16 0.184386
\(386\) 3.45576e16 0.531772
\(387\) 0 0
\(388\) 4.96399e16 0.738626
\(389\) 5.53953e16 0.810589 0.405295 0.914186i \(-0.367169\pi\)
0.405295 + 0.914186i \(0.367169\pi\)
\(390\) 0 0
\(391\) −1.76569e16 −0.249900
\(392\) −4.23408e16 −0.589386
\(393\) 0 0
\(394\) 5.40905e16 0.728443
\(395\) −5.30174e16 −0.702324
\(396\) 0 0
\(397\) −7.12560e16 −0.913447 −0.456723 0.889609i \(-0.650977\pi\)
−0.456723 + 0.889609i \(0.650977\pi\)
\(398\) −3.61941e16 −0.456455
\(399\) 0 0
\(400\) 2.69110e15 0.0328503
\(401\) −1.25835e17 −1.51135 −0.755674 0.654948i \(-0.772691\pi\)
−0.755674 + 0.654948i \(0.772691\pi\)
\(402\) 0 0
\(403\) −7.62932e15 −0.0887162
\(404\) 1.83971e17 2.10509
\(405\) 0 0
\(406\) −1.12057e17 −1.24171
\(407\) 7.41267e16 0.808372
\(408\) 0 0
\(409\) 9.42268e16 0.995343 0.497672 0.867365i \(-0.334188\pi\)
0.497672 + 0.867365i \(0.334188\pi\)
\(410\) 1.37190e17 1.42635
\(411\) 0 0
\(412\) −2.97044e17 −2.99219
\(413\) 6.27466e15 0.0622178
\(414\) 0 0
\(415\) −2.26240e16 −0.217399
\(416\) 6.39943e15 0.0605389
\(417\) 0 0
\(418\) 6.57012e16 0.602459
\(419\) 2.06207e17 1.86171 0.930857 0.365383i \(-0.119062\pi\)
0.930857 + 0.365383i \(0.119062\pi\)
\(420\) 0 0
\(421\) 8.51583e16 0.745406 0.372703 0.927951i \(-0.378431\pi\)
0.372703 + 0.927951i \(0.378431\pi\)
\(422\) 2.76482e17 2.38307
\(423\) 0 0
\(424\) −6.02224e16 −0.503362
\(425\) 2.79774e16 0.230293
\(426\) 0 0
\(427\) −1.18863e17 −0.948997
\(428\) −6.27656e16 −0.493556
\(429\) 0 0
\(430\) −4.27016e16 −0.325761
\(431\) −8.69860e16 −0.653653 −0.326826 0.945084i \(-0.605979\pi\)
−0.326826 + 0.945084i \(0.605979\pi\)
\(432\) 0 0
\(433\) 1.26824e17 0.924759 0.462380 0.886682i \(-0.346996\pi\)
0.462380 + 0.886682i \(0.346996\pi\)
\(434\) 1.99237e17 1.43116
\(435\) 0 0
\(436\) −3.81897e17 −2.66247
\(437\) −1.94762e16 −0.133775
\(438\) 0 0
\(439\) 4.81345e16 0.320950 0.160475 0.987040i \(-0.448697\pi\)
0.160475 + 0.987040i \(0.448697\pi\)
\(440\) 4.58550e16 0.301262
\(441\) 0 0
\(442\) −2.08158e16 −0.132785
\(443\) −1.59797e17 −1.00449 −0.502244 0.864726i \(-0.667492\pi\)
−0.502244 + 0.864726i \(0.667492\pi\)
\(444\) 0 0
\(445\) −2.54499e15 −0.0155362
\(446\) 1.25292e17 0.753785
\(447\) 0 0
\(448\) −1.86562e17 −1.09023
\(449\) −8.88441e16 −0.511714 −0.255857 0.966715i \(-0.582358\pi\)
−0.255857 + 0.966715i \(0.582358\pi\)
\(450\) 0 0
\(451\) 2.07158e17 1.15919
\(452\) −4.97194e17 −2.74237
\(453\) 0 0
\(454\) 1.16429e17 0.624017
\(455\) −4.11747e15 −0.0217549
\(456\) 0 0
\(457\) 1.18218e16 0.0607056 0.0303528 0.999539i \(-0.490337\pi\)
0.0303528 + 0.999539i \(0.490337\pi\)
\(458\) 3.71092e16 0.187869
\(459\) 0 0
\(460\) −3.33153e16 −0.163953
\(461\) −2.74119e17 −1.33010 −0.665049 0.746799i \(-0.731590\pi\)
−0.665049 + 0.746799i \(0.731590\pi\)
\(462\) 0 0
\(463\) 1.93108e17 0.911011 0.455506 0.890233i \(-0.349458\pi\)
0.455506 + 0.890233i \(0.349458\pi\)
\(464\) −3.86481e16 −0.179788
\(465\) 0 0
\(466\) 4.18934e17 1.89512
\(467\) −1.32213e17 −0.589812 −0.294906 0.955526i \(-0.595288\pi\)
−0.294906 + 0.955526i \(0.595288\pi\)
\(468\) 0 0
\(469\) 2.12701e17 0.922881
\(470\) −7.74195e16 −0.331295
\(471\) 0 0
\(472\) 2.44205e16 0.101656
\(473\) −6.44800e16 −0.264745
\(474\) 0 0
\(475\) 3.08600e16 0.123279
\(476\) 3.41459e17 1.34553
\(477\) 0 0
\(478\) 4.74939e17 1.82119
\(479\) −2.43680e17 −0.921804 −0.460902 0.887451i \(-0.652474\pi\)
−0.460902 + 0.887451i \(0.652474\pi\)
\(480\) 0 0
\(481\) −2.59050e16 −0.0953762
\(482\) 1.70583e17 0.619628
\(483\) 0 0
\(484\) −3.08024e17 −1.08916
\(485\) 5.60497e16 0.195548
\(486\) 0 0
\(487\) 3.83909e17 1.30404 0.652018 0.758203i \(-0.273922\pi\)
0.652018 + 0.758203i \(0.273922\pi\)
\(488\) −4.62606e17 −1.55054
\(489\) 0 0
\(490\) −1.17174e17 −0.382433
\(491\) 4.57681e15 0.0147412 0.00737060 0.999973i \(-0.497654\pi\)
0.00737060 + 0.999973i \(0.497654\pi\)
\(492\) 0 0
\(493\) −4.01797e17 −1.26038
\(494\) −2.29605e16 −0.0710815
\(495\) 0 0
\(496\) 6.87160e16 0.207218
\(497\) 2.86820e16 0.0853674
\(498\) 0 0
\(499\) −5.27519e17 −1.52962 −0.764812 0.644254i \(-0.777168\pi\)
−0.764812 + 0.644254i \(0.777168\pi\)
\(500\) 5.27882e16 0.151089
\(501\) 0 0
\(502\) 6.76851e17 1.88764
\(503\) 3.47045e17 0.955418 0.477709 0.878518i \(-0.341467\pi\)
0.477709 + 0.878518i \(0.341467\pi\)
\(504\) 0 0
\(505\) 2.07727e17 0.557313
\(506\) −8.00875e16 −0.212122
\(507\) 0 0
\(508\) −1.14047e18 −2.94423
\(509\) −1.22973e17 −0.313433 −0.156717 0.987644i \(-0.550091\pi\)
−0.156717 + 0.987644i \(0.550091\pi\)
\(510\) 0 0
\(511\) 2.54300e15 0.00631844
\(512\) −1.33311e17 −0.327048
\(513\) 0 0
\(514\) 3.59031e17 0.858760
\(515\) −3.35400e17 −0.792167
\(516\) 0 0
\(517\) −1.16904e17 −0.269242
\(518\) 6.76500e17 1.53859
\(519\) 0 0
\(520\) −1.60249e16 −0.0355446
\(521\) −6.98024e17 −1.52906 −0.764531 0.644587i \(-0.777029\pi\)
−0.764531 + 0.644587i \(0.777029\pi\)
\(522\) 0 0
\(523\) −1.17031e17 −0.250057 −0.125028 0.992153i \(-0.539902\pi\)
−0.125028 + 0.992153i \(0.539902\pi\)
\(524\) −1.33053e18 −2.80784
\(525\) 0 0
\(526\) 2.07630e17 0.427448
\(527\) 7.14392e17 1.45267
\(528\) 0 0
\(529\) −4.80296e17 −0.952899
\(530\) −1.66659e17 −0.326614
\(531\) 0 0
\(532\) 3.76640e17 0.720279
\(533\) −7.23953e16 −0.136768
\(534\) 0 0
\(535\) −7.08703e16 −0.130667
\(536\) 8.27816e17 1.50787
\(537\) 0 0
\(538\) −1.11847e18 −1.98857
\(539\) −1.76933e17 −0.310801
\(540\) 0 0
\(541\) −4.80930e17 −0.824707 −0.412353 0.911024i \(-0.635293\pi\)
−0.412353 + 0.911024i \(0.635293\pi\)
\(542\) −5.46616e17 −0.926162
\(543\) 0 0
\(544\) −5.99228e17 −0.991286
\(545\) −4.31210e17 −0.704875
\(546\) 0 0
\(547\) −1.58434e16 −0.0252889 −0.0126445 0.999920i \(-0.504025\pi\)
−0.0126445 + 0.999920i \(0.504025\pi\)
\(548\) 1.60185e18 2.52666
\(549\) 0 0
\(550\) 1.26899e17 0.195479
\(551\) −4.43195e17 −0.674698
\(552\) 0 0
\(553\) −7.30620e17 −1.08637
\(554\) −4.31370e17 −0.633923
\(555\) 0 0
\(556\) 1.22552e18 1.75928
\(557\) 7.17753e17 1.01840 0.509198 0.860650i \(-0.329942\pi\)
0.509198 + 0.860650i \(0.329942\pi\)
\(558\) 0 0
\(559\) 2.25337e16 0.0312361
\(560\) 3.70854e16 0.0508137
\(561\) 0 0
\(562\) 7.40502e17 0.991380
\(563\) 8.56529e17 1.13354 0.566771 0.823876i \(-0.308193\pi\)
0.566771 + 0.823876i \(0.308193\pi\)
\(564\) 0 0
\(565\) −5.61395e17 −0.726029
\(566\) 2.14601e18 2.74362
\(567\) 0 0
\(568\) 1.11628e17 0.139479
\(569\) 4.50162e17 0.556083 0.278041 0.960569i \(-0.410315\pi\)
0.278041 + 0.960569i \(0.410315\pi\)
\(570\) 0 0
\(571\) −8.83282e16 −0.106651 −0.0533255 0.998577i \(-0.516982\pi\)
−0.0533255 + 0.998577i \(0.516982\pi\)
\(572\) −5.93066e16 −0.0707993
\(573\) 0 0
\(574\) 1.89058e18 2.20631
\(575\) −3.76173e16 −0.0434057
\(576\) 0 0
\(577\) −2.23416e17 −0.252042 −0.126021 0.992028i \(-0.540221\pi\)
−0.126021 + 0.992028i \(0.540221\pi\)
\(578\) 4.79054e17 0.534384
\(579\) 0 0
\(580\) −7.58116e17 −0.826901
\(581\) −3.11776e17 −0.336278
\(582\) 0 0
\(583\) −2.51657e17 −0.265438
\(584\) 9.89717e15 0.0103235
\(585\) 0 0
\(586\) 2.68453e18 2.73863
\(587\) 9.27969e17 0.936237 0.468119 0.883666i \(-0.344932\pi\)
0.468119 + 0.883666i \(0.344932\pi\)
\(588\) 0 0
\(589\) 7.87997e17 0.777634
\(590\) 6.75811e16 0.0659610
\(591\) 0 0
\(592\) 2.33322e17 0.222774
\(593\) −7.24111e16 −0.0683832 −0.0341916 0.999415i \(-0.510886\pi\)
−0.0341916 + 0.999415i \(0.510886\pi\)
\(594\) 0 0
\(595\) 3.85550e17 0.356222
\(596\) 2.01868e18 1.84488
\(597\) 0 0
\(598\) 2.79881e16 0.0250274
\(599\) −7.61377e17 −0.673481 −0.336740 0.941597i \(-0.609325\pi\)
−0.336740 + 0.941597i \(0.609325\pi\)
\(600\) 0 0
\(601\) 8.87128e17 0.767896 0.383948 0.923355i \(-0.374564\pi\)
0.383948 + 0.923355i \(0.374564\pi\)
\(602\) −5.88461e17 −0.503895
\(603\) 0 0
\(604\) 1.95925e17 0.164192
\(605\) −3.47799e17 −0.288349
\(606\) 0 0
\(607\) −7.33626e17 −0.595317 −0.297658 0.954672i \(-0.596206\pi\)
−0.297658 + 0.954672i \(0.596206\pi\)
\(608\) −6.60968e17 −0.530649
\(609\) 0 0
\(610\) −1.28021e18 −1.00609
\(611\) 4.08545e16 0.0317667
\(612\) 0 0
\(613\) 1.49204e18 1.13576 0.567880 0.823111i \(-0.307764\pi\)
0.567880 + 0.823111i \(0.307764\pi\)
\(614\) −3.10171e18 −2.33618
\(615\) 0 0
\(616\) 6.31917e17 0.466000
\(617\) 1.83926e17 0.134211 0.0671057 0.997746i \(-0.478624\pi\)
0.0671057 + 0.997746i \(0.478624\pi\)
\(618\) 0 0
\(619\) 1.24283e16 0.00888019 0.00444009 0.999990i \(-0.498587\pi\)
0.00444009 + 0.999990i \(0.498587\pi\)
\(620\) 1.34792e18 0.953058
\(621\) 0 0
\(622\) −1.15892e18 −0.802445
\(623\) −3.50719e16 −0.0240318
\(624\) 0 0
\(625\) 5.96046e16 0.0400000
\(626\) −2.43117e18 −1.61466
\(627\) 0 0
\(628\) −4.45248e18 −2.89644
\(629\) 2.42568e18 1.56173
\(630\) 0 0
\(631\) −1.68478e18 −1.06256 −0.531279 0.847197i \(-0.678289\pi\)
−0.531279 + 0.847197i \(0.678289\pi\)
\(632\) −2.84352e18 −1.77499
\(633\) 0 0
\(634\) 5.33714e17 0.326383
\(635\) −1.28774e18 −0.779469
\(636\) 0 0
\(637\) 6.18327e16 0.0366701
\(638\) −1.82245e18 −1.06985
\(639\) 0 0
\(640\) −1.34005e18 −0.770815
\(641\) −2.25951e18 −1.28658 −0.643290 0.765623i \(-0.722431\pi\)
−0.643290 + 0.765623i \(0.722431\pi\)
\(642\) 0 0
\(643\) 1.14956e18 0.641449 0.320725 0.947173i \(-0.396074\pi\)
0.320725 + 0.947173i \(0.396074\pi\)
\(644\) −4.59111e17 −0.253606
\(645\) 0 0
\(646\) 2.14997e18 1.16391
\(647\) 2.91569e18 1.56266 0.781328 0.624121i \(-0.214543\pi\)
0.781328 + 0.624121i \(0.214543\pi\)
\(648\) 0 0
\(649\) 1.02048e17 0.0536062
\(650\) −4.43471e16 −0.0230637
\(651\) 0 0
\(652\) −2.68128e18 −1.36689
\(653\) 2.16676e18 1.09364 0.546821 0.837249i \(-0.315838\pi\)
0.546821 + 0.837249i \(0.315838\pi\)
\(654\) 0 0
\(655\) −1.50234e18 −0.743363
\(656\) 6.52052e17 0.319453
\(657\) 0 0
\(658\) −1.06690e18 −0.512455
\(659\) 4.11523e18 1.95722 0.978608 0.205732i \(-0.0659574\pi\)
0.978608 + 0.205732i \(0.0659574\pi\)
\(660\) 0 0
\(661\) 1.51002e17 0.0704162 0.0352081 0.999380i \(-0.488791\pi\)
0.0352081 + 0.999380i \(0.488791\pi\)
\(662\) −3.29194e18 −1.52011
\(663\) 0 0
\(664\) −1.21341e18 −0.549434
\(665\) 4.25275e17 0.190690
\(666\) 0 0
\(667\) 5.40239e17 0.237557
\(668\) −4.64657e18 −2.02342
\(669\) 0 0
\(670\) 2.29089e18 0.978404
\(671\) −1.93313e18 −0.817646
\(672\) 0 0
\(673\) −4.17178e18 −1.73071 −0.865354 0.501161i \(-0.832906\pi\)
−0.865354 + 0.501161i \(0.832906\pi\)
\(674\) 4.71133e18 1.93577
\(675\) 0 0
\(676\) −4.17049e18 −1.68087
\(677\) 1.27061e18 0.507206 0.253603 0.967308i \(-0.418384\pi\)
0.253603 + 0.967308i \(0.418384\pi\)
\(678\) 0 0
\(679\) 7.72408e17 0.302478
\(680\) 1.50053e18 0.582020
\(681\) 0 0
\(682\) 3.24030e18 1.23307
\(683\) −2.64932e18 −0.998619 −0.499310 0.866424i \(-0.666413\pi\)
−0.499310 + 0.866424i \(0.666413\pi\)
\(684\) 0 0
\(685\) 1.80869e18 0.668922
\(686\) −4.71128e18 −1.72596
\(687\) 0 0
\(688\) −2.02958e17 −0.0729593
\(689\) 8.79463e16 0.0313179
\(690\) 0 0
\(691\) 4.37627e18 1.52931 0.764657 0.644438i \(-0.222909\pi\)
0.764657 + 0.644438i \(0.222909\pi\)
\(692\) −1.52390e18 −0.527554
\(693\) 0 0
\(694\) −1.58738e18 −0.539319
\(695\) 1.38377e18 0.465760
\(696\) 0 0
\(697\) 6.77892e18 2.23948
\(698\) −6.58545e18 −2.15539
\(699\) 0 0
\(700\) 7.27462e17 0.233708
\(701\) −3.76541e18 −1.19852 −0.599260 0.800555i \(-0.704538\pi\)
−0.599260 + 0.800555i \(0.704538\pi\)
\(702\) 0 0
\(703\) 2.67561e18 0.836012
\(704\) −3.03417e18 −0.939328
\(705\) 0 0
\(706\) 1.57186e18 0.477730
\(707\) 2.86264e18 0.862066
\(708\) 0 0
\(709\) 1.74388e18 0.515604 0.257802 0.966198i \(-0.417002\pi\)
0.257802 + 0.966198i \(0.417002\pi\)
\(710\) 3.08919e17 0.0905034
\(711\) 0 0
\(712\) −1.36497e17 −0.0392648
\(713\) −9.60541e17 −0.273800
\(714\) 0 0
\(715\) −6.69647e16 −0.0187438
\(716\) 1.04249e19 2.89160
\(717\) 0 0
\(718\) 7.58048e17 0.206485
\(719\) 4.92987e18 1.33075 0.665377 0.746507i \(-0.268271\pi\)
0.665377 + 0.746507i \(0.268271\pi\)
\(720\) 0 0
\(721\) −4.62207e18 −1.22534
\(722\) −3.87024e18 −1.01683
\(723\) 0 0
\(724\) −2.67724e18 −0.690853
\(725\) −8.56010e17 −0.218918
\(726\) 0 0
\(727\) 5.68333e18 1.42767 0.713837 0.700312i \(-0.246956\pi\)
0.713837 + 0.700312i \(0.246956\pi\)
\(728\) −2.20835e17 −0.0549813
\(729\) 0 0
\(730\) 2.73893e16 0.00669858
\(731\) −2.11001e18 −0.511471
\(732\) 0 0
\(733\) 2.88616e18 0.687298 0.343649 0.939098i \(-0.388337\pi\)
0.343649 + 0.939098i \(0.388337\pi\)
\(734\) 8.15913e18 1.92584
\(735\) 0 0
\(736\) 8.05696e17 0.186838
\(737\) 3.45927e18 0.795145
\(738\) 0 0
\(739\) −7.62132e18 −1.72124 −0.860620 0.509248i \(-0.829924\pi\)
−0.860620 + 0.509248i \(0.829924\pi\)
\(740\) 4.57681e18 1.02461
\(741\) 0 0
\(742\) −2.29669e18 −0.505215
\(743\) 6.95681e18 1.51699 0.758495 0.651679i \(-0.225935\pi\)
0.758495 + 0.651679i \(0.225935\pi\)
\(744\) 0 0
\(745\) 2.27935e18 0.488422
\(746\) 6.83643e18 1.45220
\(747\) 0 0
\(748\) 5.55333e18 1.15929
\(749\) −9.76647e17 −0.202118
\(750\) 0 0
\(751\) 3.81292e18 0.775528 0.387764 0.921759i \(-0.373248\pi\)
0.387764 + 0.921759i \(0.373248\pi\)
\(752\) −3.67969e17 −0.0741986
\(753\) 0 0
\(754\) 6.36890e17 0.126227
\(755\) 2.21225e17 0.0434689
\(756\) 0 0
\(757\) −7.07019e18 −1.36555 −0.682775 0.730629i \(-0.739227\pi\)
−0.682775 + 0.730629i \(0.739227\pi\)
\(758\) 2.02041e18 0.386892
\(759\) 0 0
\(760\) 1.65514e18 0.311563
\(761\) −4.26743e18 −0.796465 −0.398232 0.917285i \(-0.630376\pi\)
−0.398232 + 0.917285i \(0.630376\pi\)
\(762\) 0 0
\(763\) −5.94241e18 −1.09032
\(764\) 4.23469e18 0.770398
\(765\) 0 0
\(766\) −1.69265e19 −3.02747
\(767\) −3.56627e16 −0.00632476
\(768\) 0 0
\(769\) −5.55109e16 −0.00967959 −0.00483980 0.999988i \(-0.501541\pi\)
−0.00483980 + 0.999988i \(0.501541\pi\)
\(770\) 1.74876e18 0.302371
\(771\) 0 0
\(772\) 3.22190e18 0.547771
\(773\) −6.47032e18 −1.09083 −0.545417 0.838165i \(-0.683629\pi\)
−0.545417 + 0.838165i \(0.683629\pi\)
\(774\) 0 0
\(775\) 1.52198e18 0.252318
\(776\) 3.00616e18 0.494209
\(777\) 0 0
\(778\) 8.22208e18 1.32927
\(779\) 7.47738e18 1.19882
\(780\) 0 0
\(781\) 4.66471e17 0.0735517
\(782\) −2.62074e18 −0.409807
\(783\) 0 0
\(784\) −5.56917e17 −0.0856517
\(785\) −5.02742e18 −0.766819
\(786\) 0 0
\(787\) −8.41309e18 −1.26218 −0.631088 0.775712i \(-0.717391\pi\)
−0.631088 + 0.775712i \(0.717391\pi\)
\(788\) 5.04301e18 0.750360
\(789\) 0 0
\(790\) −7.86913e18 −1.15173
\(791\) −7.73645e18 −1.12304
\(792\) 0 0
\(793\) 6.75570e17 0.0964705
\(794\) −1.05762e19 −1.49795
\(795\) 0 0
\(796\) −3.37448e18 −0.470188
\(797\) 7.81826e18 1.08052 0.540258 0.841499i \(-0.318327\pi\)
0.540258 + 0.841499i \(0.318327\pi\)
\(798\) 0 0
\(799\) −3.82552e18 −0.520159
\(800\) −1.27663e18 −0.172179
\(801\) 0 0
\(802\) −1.86772e19 −2.47844
\(803\) 4.13582e16 0.00544390
\(804\) 0 0
\(805\) −5.18395e17 −0.0671409
\(806\) −1.13238e18 −0.145484
\(807\) 0 0
\(808\) 1.11412e19 1.40850
\(809\) −1.29209e19 −1.62041 −0.810207 0.586144i \(-0.800645\pi\)
−0.810207 + 0.586144i \(0.800645\pi\)
\(810\) 0 0
\(811\) −7.85766e18 −0.969745 −0.484872 0.874585i \(-0.661134\pi\)
−0.484872 + 0.874585i \(0.661134\pi\)
\(812\) −1.04474e19 −1.27907
\(813\) 0 0
\(814\) 1.10023e19 1.32564
\(815\) −3.02751e18 −0.361877
\(816\) 0 0
\(817\) −2.32741e18 −0.273797
\(818\) 1.39857e19 1.63225
\(819\) 0 0
\(820\) 1.27906e19 1.46926
\(821\) −3.45810e17 −0.0394101 −0.0197051 0.999806i \(-0.506273\pi\)
−0.0197051 + 0.999806i \(0.506273\pi\)
\(822\) 0 0
\(823\) 8.61836e18 0.966776 0.483388 0.875406i \(-0.339406\pi\)
0.483388 + 0.875406i \(0.339406\pi\)
\(824\) −1.79888e19 −2.00205
\(825\) 0 0
\(826\) 9.31319e17 0.102030
\(827\) 1.58749e19 1.72554 0.862768 0.505600i \(-0.168729\pi\)
0.862768 + 0.505600i \(0.168729\pi\)
\(828\) 0 0
\(829\) 6.99647e18 0.748643 0.374321 0.927299i \(-0.377876\pi\)
0.374321 + 0.927299i \(0.377876\pi\)
\(830\) −3.35798e18 −0.356509
\(831\) 0 0
\(832\) 1.06035e18 0.110827
\(833\) −5.78987e18 −0.600450
\(834\) 0 0
\(835\) −5.24657e18 −0.535690
\(836\) 6.12551e18 0.620585
\(837\) 0 0
\(838\) 3.06064e19 3.05300
\(839\) 1.67940e18 0.166227 0.0831134 0.996540i \(-0.473514\pi\)
0.0831134 + 0.996540i \(0.473514\pi\)
\(840\) 0 0
\(841\) 2.03292e18 0.198128
\(842\) 1.26397e19 1.22238
\(843\) 0 0
\(844\) 2.57772e19 2.45476
\(845\) −4.70902e18 −0.445002
\(846\) 0 0
\(847\) −4.79293e18 −0.446025
\(848\) −7.92117e17 −0.0731503
\(849\) 0 0
\(850\) 4.15256e18 0.377653
\(851\) −3.26147e18 −0.294355
\(852\) 0 0
\(853\) −1.88404e19 −1.67464 −0.837322 0.546711i \(-0.815880\pi\)
−0.837322 + 0.546711i \(0.815880\pi\)
\(854\) −1.76423e19 −1.55625
\(855\) 0 0
\(856\) −3.80104e18 −0.330235
\(857\) −1.46107e19 −1.25978 −0.629892 0.776683i \(-0.716901\pi\)
−0.629892 + 0.776683i \(0.716901\pi\)
\(858\) 0 0
\(859\) 8.75747e17 0.0743743 0.0371872 0.999308i \(-0.488160\pi\)
0.0371872 + 0.999308i \(0.488160\pi\)
\(860\) −3.98119e18 −0.335562
\(861\) 0 0
\(862\) −1.29109e19 −1.07192
\(863\) 1.80636e19 1.48845 0.744226 0.667928i \(-0.232819\pi\)
0.744226 + 0.667928i \(0.232819\pi\)
\(864\) 0 0
\(865\) −1.72068e18 −0.139667
\(866\) 1.88238e19 1.51650
\(867\) 0 0
\(868\) 1.85754e19 1.47421
\(869\) −1.18825e19 −0.936006
\(870\) 0 0
\(871\) −1.20891e18 −0.0938156
\(872\) −2.31274e19 −1.78144
\(873\) 0 0
\(874\) −2.89076e18 −0.219375
\(875\) 8.21397e17 0.0618730
\(876\) 0 0
\(877\) 3.65611e18 0.271345 0.135673 0.990754i \(-0.456680\pi\)
0.135673 + 0.990754i \(0.456680\pi\)
\(878\) 7.14439e18 0.526321
\(879\) 0 0
\(880\) 6.03140e17 0.0437805
\(881\) 1.10129e18 0.0793521 0.0396761 0.999213i \(-0.487367\pi\)
0.0396761 + 0.999213i \(0.487367\pi\)
\(882\) 0 0
\(883\) 8.49972e18 0.603476 0.301738 0.953391i \(-0.402433\pi\)
0.301738 + 0.953391i \(0.402433\pi\)
\(884\) −1.94072e18 −0.136780
\(885\) 0 0
\(886\) −2.37180e19 −1.64725
\(887\) −2.42544e19 −1.67219 −0.836096 0.548583i \(-0.815168\pi\)
−0.836096 + 0.548583i \(0.815168\pi\)
\(888\) 0 0
\(889\) −1.77460e19 −1.20570
\(890\) −3.77741e17 −0.0254776
\(891\) 0 0
\(892\) 1.16813e19 0.776463
\(893\) −4.21967e18 −0.278448
\(894\) 0 0
\(895\) 1.17711e19 0.765538
\(896\) −1.84669e19 −1.19231
\(897\) 0 0
\(898\) −1.31867e19 −0.839152
\(899\) −2.18578e19 −1.38092
\(900\) 0 0
\(901\) −8.23508e18 −0.512810
\(902\) 3.07475e19 1.90094
\(903\) 0 0
\(904\) −3.01097e19 −1.83490
\(905\) −3.02294e18 −0.182900
\(906\) 0 0
\(907\) 2.28334e19 1.36183 0.680915 0.732362i \(-0.261582\pi\)
0.680915 + 0.732362i \(0.261582\pi\)
\(908\) 1.08550e19 0.642792
\(909\) 0 0
\(910\) −6.11137e17 −0.0356755
\(911\) 1.92508e19 1.11578 0.557890 0.829915i \(-0.311611\pi\)
0.557890 + 0.829915i \(0.311611\pi\)
\(912\) 0 0
\(913\) −5.07059e18 −0.289733
\(914\) 1.75466e18 0.0995502
\(915\) 0 0
\(916\) 3.45979e18 0.193522
\(917\) −2.07034e19 −1.14985
\(918\) 0 0
\(919\) −2.09489e19 −1.14712 −0.573561 0.819163i \(-0.694438\pi\)
−0.573561 + 0.819163i \(0.694438\pi\)
\(920\) −2.01756e18 −0.109699
\(921\) 0 0
\(922\) −4.06863e19 −2.18121
\(923\) −1.63017e17 −0.00867804
\(924\) 0 0
\(925\) 5.16780e18 0.271259
\(926\) 2.86621e19 1.49395
\(927\) 0 0
\(928\) 1.83342e19 0.942325
\(929\) 3.06906e18 0.156640 0.0783201 0.996928i \(-0.475044\pi\)
0.0783201 + 0.996928i \(0.475044\pi\)
\(930\) 0 0
\(931\) −6.38642e18 −0.321429
\(932\) 3.90584e19 1.95214
\(933\) 0 0
\(934\) −1.96237e19 −0.967224
\(935\) 6.27042e18 0.306917
\(936\) 0 0
\(937\) 1.98628e19 0.958809 0.479405 0.877594i \(-0.340853\pi\)
0.479405 + 0.877594i \(0.340853\pi\)
\(938\) 3.15702e19 1.51342
\(939\) 0 0
\(940\) −7.21804e18 −0.341262
\(941\) −3.52700e19 −1.65605 −0.828023 0.560694i \(-0.810534\pi\)
−0.828023 + 0.560694i \(0.810534\pi\)
\(942\) 0 0
\(943\) −9.11465e18 −0.422099
\(944\) 3.21208e17 0.0147730
\(945\) 0 0
\(946\) −9.57047e18 −0.434151
\(947\) 4.03654e19 1.81859 0.909295 0.416153i \(-0.136622\pi\)
0.909295 + 0.416153i \(0.136622\pi\)
\(948\) 0 0
\(949\) −1.44534e16 −0.000642302 0
\(950\) 4.58041e18 0.202163
\(951\) 0 0
\(952\) 2.06785e19 0.900283
\(953\) 6.85871e18 0.296578 0.148289 0.988944i \(-0.452623\pi\)
0.148289 + 0.988944i \(0.452623\pi\)
\(954\) 0 0
\(955\) 4.78151e18 0.203959
\(956\) 4.42799e19 1.87599
\(957\) 0 0
\(958\) −3.61683e19 −1.51165
\(959\) 2.49251e19 1.03470
\(960\) 0 0
\(961\) 1.44455e19 0.591603
\(962\) −3.84496e18 −0.156406
\(963\) 0 0
\(964\) 1.59040e19 0.638270
\(965\) 3.63793e18 0.145020
\(966\) 0 0
\(967\) 4.77789e19 1.87916 0.939581 0.342328i \(-0.111215\pi\)
0.939581 + 0.342328i \(0.111215\pi\)
\(968\) −1.86538e19 −0.728746
\(969\) 0 0
\(970\) 8.31921e18 0.320675
\(971\) −5.51002e18 −0.210974 −0.105487 0.994421i \(-0.533640\pi\)
−0.105487 + 0.994421i \(0.533640\pi\)
\(972\) 0 0
\(973\) 1.90694e19 0.720448
\(974\) 5.69818e19 2.13847
\(975\) 0 0
\(976\) −6.08474e18 −0.225330
\(977\) 3.66274e18 0.134738 0.0673691 0.997728i \(-0.478539\pi\)
0.0673691 + 0.997728i \(0.478539\pi\)
\(978\) 0 0
\(979\) −5.70393e17 −0.0207055
\(980\) −1.09244e19 −0.393939
\(981\) 0 0
\(982\) 6.79315e17 0.0241739
\(983\) −1.33604e19 −0.472303 −0.236151 0.971716i \(-0.575886\pi\)
−0.236151 + 0.971716i \(0.575886\pi\)
\(984\) 0 0
\(985\) 5.69420e18 0.198654
\(986\) −5.96369e19 −2.06688
\(987\) 0 0
\(988\) −2.14067e18 −0.0732201
\(989\) 2.83703e18 0.0964023
\(990\) 0 0
\(991\) 3.12719e19 1.04876 0.524379 0.851485i \(-0.324297\pi\)
0.524379 + 0.851485i \(0.324297\pi\)
\(992\) −3.25981e19 −1.08609
\(993\) 0 0
\(994\) 4.25713e18 0.139993
\(995\) −3.81022e18 −0.124480
\(996\) 0 0
\(997\) 5.94349e18 0.191656 0.0958282 0.995398i \(-0.469450\pi\)
0.0958282 + 0.995398i \(0.469450\pi\)
\(998\) −7.82973e19 −2.50841
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.14.a.g.1.4 4
3.2 odd 2 45.14.a.h.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.14.a.g.1.4 4 1.1 even 1 trivial
45.14.a.h.1.1 yes 4 3.2 odd 2